April 9, 2014

Professor Ilya Kofman

NAME:

Problem 1.

- (a) Prove that every isometry f of \mathbf{R}^2 has an inverse f^{-1} which is also an isometry.
- (b) Explain why every orientation-preserving isometry of S^2 must have fixed points.
- (c) On the map Wyoming appears to be a rectangle. Explain why its borders cannot lie on great circles.
- **Problem 2.** Let $f(x, y) = (r_4 \circ r_3 \circ r_2 \circ r_1)(x, y)$, where

 r_1 is the reflection in the line y = -1.

 r_2 is the reflection in the line y = x.

 r_3 is the reflection in the line y = -x.

 r_4 is the reflection in the line x = 2.

- (a) Calculate f(0,0).
- (b) Given f(1,-1) = (5,1) and f(-1,-1) = (3,1), classify the isometry f. Justify.

Problem 3. Rotations $R_{Q,\alpha}$ and $R_{P,\beta}$ satisfy $R_{Q,\alpha}(P) = P'$ and $R_{P,\beta}(Q) = Q'$ as shown. On the diagram below, find T such that $R_{T,\theta} = R_{Q,\alpha}R_{P,\beta}$. Indicate θ , α and β on the diagram, and also express θ using α and β .

Problem 4. Use vectors to prove the following:

- (a) The diagonals of a rectangle are congruent.
- (b) The diagonals of a parallelogram bisect each other.

Problem 5. Let f be an isometry of \mathbf{R}^3 such that f(0) = 0.

- (a) If P is a point on S^2 , prove that f(P) is a point on S^2 .
- (b) Prove that f is an isometry of S^2 . Hint: We proved that for any pairs of points on S^2 ,

$$|PQ|_{\text{chordal}} = |P'Q'|_{\text{chordal}} \iff |PQ|_{\text{great circle}} = |P'Q'|_{\text{great circle}}$$

Problem 6. We proved if a plane W intersects a sphere S in more than one point, then $W \cap S$ is a circle. Let A, B be two points in $W \cap S$. To prove part of this theorem, show that A and B belong to a circle with center P.

