Math 329 (Geometry) Exam 2

April 9, 2014
Professor Ilya Kofman

NAME: \qquad

Problem 1.

(a) Prove that every isometry f of \mathbf{R}^{2} has an inverse f^{-1} which is also an isometry.
(b) Explain why every orientation-preserving isometry of S^{2} must have fixed points.
(c) On the map Wyoming appears to be a rectangle. Explain why its borders cannot lie on great circles.

Problem 2. Let $f(x, y)=\left(r_{4} \circ r_{3} \circ r_{2} \circ r_{1}\right)(x, y)$, where
r_{1} is the reflection in the line $y=-1$.
r_{2} is the reflection in the line $y=x$.
r_{3} is the reflection in the line $y=-x$.
r_{4} is the reflection in the line $x=2$.
(a) Calculate $f(0,0)$.
(b) Given $f(1,-1)=(5,1)$ and $f(-1,-1)=(3,1)$, classify the isometry f. Justify.

Problem 3. Rotations $R_{Q, \alpha}$ and $R_{P, \beta}$ satisfy $R_{Q, \alpha}(P)=P^{\prime}$ and $R_{P, \beta}(Q)=$ Q^{\prime} as shown. On the diagram below, find T such that $R_{T, \theta}=R_{Q, \alpha} R_{P, \beta}$. Indicate θ, α and β on the diagram, and also express θ using α and β.

- Q'

P'

Problem 4. Use vectors to prove the following:
(a) The diagonals of a rectangle are congruent.
(b) The diagonals of a parallelogram bisect each other.

Problem 5. Let f be an isometry of \mathbf{R}^{3} such that $f(0)=0$.
(a) If P is a point on S^{2}, prove that $f(P)$ is a point on S^{2}.
(b) Prove that f is an isometry of S^{2}.

Hint: We proved that for any pairs of points on S^{2},

$$
|P Q|_{\text {chordal }}=\left|P^{\prime} Q^{\prime}\right|_{\text {chordal }} \Leftrightarrow|P Q|_{\text {great circle }}=\left|P^{\prime} Q^{\prime}\right|_{\text {great circle }}
$$

Problem 6. We proved if a plane W intersects a sphere S in more than one point, then $W \cap S$ is a circle. Let A, B be two points in $W \cap S$. To prove part of this theorem, show that A and B belong to a circle with center P.

