March 5, 2014

Professor Ilya Kofman

NAME: _____

Problem 1. Leave all construction marks. Clearly label your steps.

(a) Construct the circle circumscribed about $\triangle ABC$.

(b) Construct the circle inscribed in $\triangle ABC$.

 A_{-}

(c) Given AB below, construct a regular hexagon with perimeter |AB|.

Problem 2.

In the figure, circles O and P are tangent at A. Show that AB = BC. (Hint: Draw BP and CD.)

Theorem. If $\triangle ABC$ has side lengths a, b, c, and r is the radius of its circumcircle, then Area $(\Delta ABC) = \frac{abc}{4r}$. **Problem 4.** Complete the proof of this theorem by precisely justifying each step.

Let AD be an altitude of $\triangle ABC$. Let O be the circumcenter of $\triangle ABC$. (a) $\angle ABC \cong \angle AEC$

(b) $\Delta ABD \sim \Delta AEC$

(c) $AB \cdot AC = AD \cdot AE$

(d)
$$\frac{AB \cdot AC \cdot BC}{4r} = \operatorname{Area}(\Delta ABC).$$