Math 329 (Geometry) Exam 1

March 5, 2014 Professor Ilya Kofman

NAME: \qquad

Problem 1. Leave all construction marks. Clearly label your steps.
(a) Construct the circle circumscribed about $\triangle A B C$.

(b) Construct the circle inscribed in $\triangle A B C$.

(c) Given $A B$ below, construct a regular hexagon with perimeter $|A B|$.

Problem 2.

In the figure, circles O and P are tangent at A.

Show that $A B=B C$. (Hint: Draw $B P$ and $C D$.)

Problem 3.

Show that $m \angle A B C=\frac{1}{2}(\alpha-\beta)$.

Hint: Draw $A E$.

Theorem. If $\triangle A B C$ has side lengths a, b, c, and r is the radius of its circumcircle, then Area $(\triangle A B C)=\frac{a b c}{4 r}$.
Problem 4. Complete the proof of this theorem by precisely justifying each step.

Let $A D$ be an altitude of $\triangle A B C$. Let O be the circumcenter of $\triangle A B C$.
(a) $\angle A B C \cong \angle A E C$
(b) $\triangle A B D \sim \triangle A E C$
(c) $A B \cdot A C=A D \cdot A E$
(d) $\frac{A B \cdot A C \cdot B C}{4 r}=\operatorname{Area}(\triangle A B C)$.

Problem 5. On the back, prove the Pythagorean Theorem.

