Business Calculus I (Math 221) Exam 1

March 4, 2015
Justify answers and show all work for full credit. No calculators permitted on this exam.

NAME: \qquad

Problem 1 (20pts). The graph of $y=f(x)$ is shown above. Evaluate each limit, or write DNE if the limit does not exist. No justifications are necessary for this problem.
(a) $\lim _{x \rightarrow-2} f(x)=$
(b) $\lim _{x \rightarrow 1^{-}} f(x)=$
(c) $\lim _{x \rightarrow 1} f(x)=$
(d) $\lim _{x \rightarrow-3} f(x)=$
(e) $\lim _{x \rightarrow 4^{+}} f(x)=$
(f) $\lim _{x \rightarrow 4^{-}} f(x)=$
(g) For $f(x)$ to be continuous at $x=-2$, we must set $f(-2)=$
(h) Estimate the derivative $f^{\prime}(0)=$
(i) Estimate the derivative $f^{\prime}(3.5)=$
(j) Estimate for which x the derivative $f^{\prime}(x)=0, x=$

Problem 2 (12pts). Evaluate these limits. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify. Show all work!
(a) $\lim _{x \rightarrow 6} \frac{x^{2}-2 x-24}{x^{2}-36}$
(b) $\lim _{x \rightarrow 1^{-}} \frac{1}{x+1}$
(c) $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}$
(d) $\lim _{x \rightarrow \infty} \frac{-8 x^{4}+5 x^{2}-2}{6 x^{4}+3 x^{3}-2 x^{2}}$

Problem 3 (8pts). Recall $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
(a) If $f(x)=\sqrt{2 x}$, write the limit for $f^{\prime}(3)$. Do not evaluate this limit.
(b) Show that $g(x)=|x|$ is not differentiable at 0. Evaluate this limit. Show all work!

Problem 4 (5pts). (a) On the grid below, graph the following piecewise defined function.

$$
f(x)= \begin{cases}4+2 x & x \leq-1 \\ 2-x & x>-1\end{cases}
$$

(b) Is the function $f(x)$ continuous at $x=-1$? (Do not justify.) YES NO

Problem 5 (6pts). For what value of c (if any) is the function $g(x)$ continuous at $x=2$? Justify your answer.

$$
g(x)=\left\{\begin{array}{cc}
x^{3}-\frac{2 x-1}{3} & x<2 \\
c & x=2 \\
x^{2}+\frac{3 x}{2} & x>2
\end{array}\right.
$$

Problem 6 (24pts). Compute the derivative $y^{\prime}=\frac{d y}{d x}$. Do not simplify. Show all work!
(a) $y=\frac{x^{3}}{2}+9 x^{2 / 3}-2 x+6+10 x^{-1 / 2}$
(b) $y=\frac{4}{\sqrt[3]{x}}-3 \sqrt{x^{5}}+\frac{10}{x}+\frac{5}{x^{6}}$
(c) $y=\sqrt{5 x^{3}-4 x^{2}-3}$
(d) $y=\frac{8 x^{4}+7 x^{3}}{x^{6}-3}$
(e) $y=\left(3 x^{4}+2 x^{3}+7\right)\left(5 x^{9}-8\right)$
(f) $y=(6+\sqrt[3]{x-4})^{-4 / 5}$

Problem 7 (10pts). Circle every label for which the statement for that graph is true.
(a) The graph is continuous for all x shown.
f $\quad \mathrm{g} \quad \mathrm{p} \quad \mathrm{q}$
(b) The graph is differentiable for all x shown.
$\begin{array}{llll}\text { f } & \mathrm{g} & \mathrm{p} & \mathrm{q}\end{array}$
(c) For some x shown, the derivative is zero. $\quad \mathbf{f} \quad \mathbf{g} \quad \mathbf{p}$
(d) For all x where the derivative exists, it is positive. $\quad \mathbf{f} \quad \mathbf{g} \quad \mathbf{p} \quad \mathbf{q}$
(e) The derivative of the graph at $x=0$ is positive.
$\begin{array}{llll}\text { f } & \mathrm{g} & \mathrm{p} & \mathbf{q}\end{array}$

Problem 8 (5pts). Let $F(x)=2 x^{3}-x^{2}+1$. Find the equation of the tangent line to the graph of $F(x)$ at $x=2$. Leave your answer in the form $y=m x+b$.

Problem 9 (8pts). Let $g(x)=(3 x-1)^{4}$.
(a) Find $g^{\prime}(0)$.
(b) Find $g^{\prime \prime}(0)$.

Problem 10 (12pts). For x units sold, the total revenue function is $R(x)=42 x+200$. The total cost function is $C(x)=1000+30 x+\frac{1}{5} x^{2}$.
(a) Find the profit function $P(x)$.
(b) Find the marginal profit when 10 units are sold.
(c) If $P(10)=-700$, use your answer in part (b) to estimate the total profit if 11 units sold.
(d) Should the company sell the 11th unit? Explain using your answers above.

