Business Calculus I (Math 221) Exam 1

September 28, 2016
Professor Ilya Kofman
Justify answers and show all work for full credit. No calculators permitted on this exam.

NAME:

Problem 1 (20pts). The graph of $y=f(x)$ is shown above. Evaluate each limit, or write DNE if the limit does not exist. No justifications are necessary for this problem.
(a) $\lim _{x \rightarrow-2} f(x)=$
(b) $\lim _{x \rightarrow-4} f(x)=$
(c) $\lim _{x \rightarrow 1^{+}} f(x)=$
(d) $\lim _{x \rightarrow 1^{-}} f(x)=$
(e) $\lim _{x \rightarrow 1} f(x)=$
(f) $\lim _{x \rightarrow 4^{-}} f(x)=$
(g) For $f(x)$ to be continuous at $x=-2$, we must set $f(-2)=$
(h) Estimate the derivative $f^{\prime}(-1)=$
(i) Estimate the derivative $f^{\prime}(-3)=$
(j) Estimate for which x the derivative $f^{\prime}(x)=0, \quad x=$

Problem 2 (12pts). Evaluate these limits. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify. Show all work!
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-13 x+36}{x-4}$
(b) $\lim _{x \rightarrow-3} \frac{x^{2}-4 x-21}{x^{2}-9}$
(c) $\lim _{x \rightarrow 5^{-}} \frac{1}{2 x-10}$
(d) $\lim _{x \rightarrow \infty} \frac{6 x^{5}+8 x^{3}-1}{-7 x^{5}+3 x^{4}-2 x}$

Problem 3 (8pts). Recall $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
(a) If $f(x)=4 x^{3}$, write the limit for $f^{\prime}(2)$. Do not evaluate this limit.
(b) Show that $g(x)=|x|$ is not differentiable at 0. Evaluate this limit. Show all work!

Problem 4 (5pts). (a) On the grid below, graph the following piecewise defined function.

$$
f(x)= \begin{cases}3-2 x & x<3 \\ x-4 & x \geq 3\end{cases}
$$

(b) Is the function $f(x)$ continuous at $x=3$? (Do not justify.) YES NO

Problem 5 (6pts). For what value of c (if any) is the function $g(x)$ continuous at $x=4$? Justify your answer.

$$
g(x)= \begin{cases}\frac{x^{2}+2}{2 x-2} & x<4 \\ c & x=4 \\ x^{2}-3 x-1 & x>4\end{cases}
$$

Problem 6 (24pts). Compute the derivative $y^{\prime}=\frac{d y}{d x}$. Do not simplify. Show all work!
(a) $y=\frac{x^{4}}{3}+8 x^{3 / 4}-5 x+7+15 x^{-1 / 5}$
(b) $y=\frac{2}{\sqrt[3]{x}}-4 \sqrt{x^{7}}+\frac{6}{x}+\frac{3}{x^{5}}$
(c) $y=\sqrt[3]{3 x^{4}-2 x^{3}-4}$
(d) $y=\frac{6 x^{5}+4 x^{3}}{x^{8}-4}$
(e) $y=\left(4 x^{5}+3 x^{4}+20\right)\left(4 x^{9}-10\right)$
(f) $y=\sqrt{(3 x-4)^{5}-10 x}$

Problem 7 (8pts). The graph of $y=f(x)$ is shown above for $-6<x<6$.
(a) For which x values is $f(x)$ not continuous?
(b) For which x values is $f(x)$ not differentiable?
(c) For which x values is the derivative $f^{\prime}(x)=0$?

Problem $8(7 \mathrm{pts})$. Let $F(x)=4 x^{3}-2 x^{2}-12$. Find the equation of the tangent line to the graph of $F(x)$ at $x=1$. Leave your answer in the form $y=m x+b$.

Problem 9 (8pts). Let $g(x)=(2 x-1)^{5}$.
(a) Find $g^{\prime}(0)$.
(b) Find $g^{\prime \prime}(0)$.

Problem 10 (12pts). For x units sold, the total revenue function is $R(x)=30 x+200$. The total cost function is $C(x)=600+9 x+\frac{1}{8} x^{2}$.
(a) Find the profit function $P(x)$.
(b) Find the marginal profit when 100 units are sold.
(c) If $P(100)=450$, use your part (b) answer to estimate the total profit if 101 units sold.
(d) Should the company sell the 101st unit? Explain using your answers above.

