Mathematics for Liberal Arts (Math 102) Exam 1

Date: February 22, 2007

Professor Ilya Kofman

F

T

T

F

12

NAME: Key

Problem 1. Answer the questions that are below each graph:

- (a) This graph has an Euler circuit.
- (b) This graph has an Euler path, which is not a circuit.
- (c) How many edges must be <u>added</u> to best Eulerize this graph?
- (d) How many edges will a spanning tree for this graph have?

(e) This graph has an Euler circuit.

(f) This graph has an Euler path, which is not a circuit.

- (g) How many edges must be <u>added</u> to best Eulerize this graph?
- (h) How many edges will a spanning tree for this graph have?

- (i) This graph has an Euler circuit.
- (j) This graph has an Euler path, which is not a circuit.
- (k) How many edges must be <u>added</u> to best Eulerize this graph?
- (1) How many edges will a spanning tree for this graph have?

Problem 2. Consider the paths given by the sequences of numbered edges on the graphs as shown. Circle the number of every graph whose path has the property:

Problem 3. If a connected graph has 16 vertices of odd valence, at least how many edges must be added to Eulerize the graph?

Problem 4. Does the complete graph K_{15} have an Euler circuit? Why or why not?

Problem 5. Which <u>one</u> of the following techniques should be applied in each case:

I. Find an Euler circuit or best Eulerization

- II. Apply the sorted-edges algorithm to solve TSP
- III. Apply Kruskal's algorithm to find minimal-cost spanning tree
- (a) NYC subway fan wants to quickly III None visit every station. (b) NYC subway fan wants to quickly see all graffiti on subway tunnel walls. I II III None (c) NYC wants to install new expensive fiber None II optic cable between all subway stations. III I

3pts

2+4+5+9+11 = 31

(b) What is the cost of the minimal-cost spanning tree using Kruskal's algorithm?

2+4+5+5 = 16

Splz-Compitellurorstree 3/5