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Abstract

We construct a cubical CW-complex CK(M ) whose rational cohomology algebra contains Vassiliev invari-
ants of knots in the 3-manifold M. We construct CK(R?) by attaching cells to CK(R?) for every degenerate
1-singular and 2-singular knot, and we show that 7;(CK(R*)) =1 and n,(CK(R?*)) = Z. We give conditions
for Vassiliev invariants to be nontrivial in cohomology. In particular, for R® we show that v, uniquely gen-
erates H*(CK,D), where D is the subcomplex of degenerate singular knots. More generally, we show that
any Vassiliev invariant coming from the Conway polynomial is nontrivial in cohomology. The cup product
in H*(CK) provides a new graded commutative algebra of Vassiliev invariants evaluated on ordered singular
knots. We show how the cup product arises naturally from a cocommutative differential graded Hopf algebra
of ordered chord diagrams. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In [15], Vassiliev constructed new knot invariants by a spectral sequence approximation of
H(#\X;Q), where ./ is the space of all closed curves in R3, and X is the space of singular
curves. In [9,8], Vassiliev invariants were extended to knots in certain 3-manifolds satisfying extra
conditions, and in [16] Vassiliev generalized his theory to all 3-manifolds. A natural question is
whether one could realize each Vassiliev invariant as a genuine cohomology class of a space in-
strinsically associated with the underlying 3-manifold M. For this purpose, we construct a cubical
CW-complex CK(M), resembling Vassiliev’s space g (a resolution of ¢), whose rational cohomology
algebra contains Vassiliev invariants.
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Starting with an algebraic chain complex of knots with ordered double points or base point
in any oriented 3-manifold M, we geometrically realize the chain complex as the CW-complex
CK(M) (Section 2). A similar chain complex used to generalize skein modules [3] does not seem
geometrically realizable.

For R?, we give conditions for Vassiliev invariants to be nontrivial in cohomology, and a dis-
parity emerges between even and odd orders (Section 4). Vassiliev invariants from the Conway
polynomial—the best understood invariants of strictly even order—are all nontrivial in cohomology.
For example, v/ is nontrivial in H*"(CK(R?),D; Q), where D is the subcomplex of degenerate sin-
gular knots. In particular, v, uniquely generates H>(CK(R?), D). Possibly, all nontrivial cohomology
of CK/D arises from Vassiliev invariants of even order.

The cup product in H*(CK) provides a new graded commutative algebra of Vassiliev invariants
evaluated on ordered singular knots. In Section 5, we show how the cup product arises naturally
from a cocommutative differential graded Hopf algebra of ordered chord diagrams.

As a topological consequence, by a theorem of Quillen [14], Vassiliev invariants under the cup
product are the rational cohomology ring of a simply connected pointed topological space. In
Section 3, we construct CK(R?) which seems very close to such a space for even Vassiliev in-
variants. We attach cells to CK(R?) for every degenerate 1-singular and 2-singular knot, and show
that 7;(CK(R?)) =1 and m,(CK(R*)) = Z by “almost general position” arguments [9].

2. Constructing the knot complexes CK (M)

Let M be an oriented 3-manifold. Let X, be the set of equivalence classes of oriented knots with
n double points in M, equivalent up to rigid-vertex isotopy. Let K«...x denote an element of X,. As
M 1is oriented, any double point can be resolved in two canonical ways:

WX -

K- Ky K+

We call a singular crossing degenerate if its positive and negative resolutions determine the same
knot type. A degenerate knot is a singular knot with at least one degenerate crossing. A singular
crossing is nugatory if a separating S? intersects the knot in only that point. Such a crossing is
degenerate, and it seems to be unknown whether there exist degenerate crossings which are not
nugatory.

Let X? be the set of equivalence classes of knots in X, with double points ordered from 1 to
n. For K , EX,? and any o €S, let K;(;.,) denote the knot obtained by permuting the ordering of
K ,. In X,?,Klmn = Ky(1..n) 1f there exists an orientation-preserving rigid-vertex isotopy which maps
Ki.» to K1), matching double points with the same labels. Let C,(X ) denote the free abelian
group with coefficients in @ generated by K;_, € X°.

Let X’ be the set of equivalence classes of knots in X, with a base point b apart from all the
double points. (K,b) = (K',b") if there exists an orientation-preserving rigid-vertex isotopy which
maps (K,b) to (K',b"), with the base point apart from the double points during the isotopy. As
knots are oriented, we can order double points from 1 to n around the knot starting from the base
point. Whenever possible, we will suppress notation for base points and denote based n-singular
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knots with this natural ordering by K, ,. Let C,(X”) denote the free abelian group with coefficients
in (0 generated by K;_, Ean .
Let C,(X) be either C,(X°) or C,(X?). Define d;: Cy(X) — C,—1(X) by diKin = Kyoopooox —

K..._..«, such that each resolution has its ordering induced from K;_,. Define the boundary operator

0: Co(X) — Cp1(X) by 0Ky, = > ", (—1)"'d;K;_,. The boundary operator is well defined with
respect to the equivalence relations for X and X? because any order-preserving isotopy from K;_, to
K1) induces an order-preserving isotopy between their ith resolutions with the induced ordering.
For any knot in X,? or Xf, if 1 <i<j<ndd;=d;_d;, so ?=0.

Let C,(D) denote the respective subgroup of C,(X) generated by degenerate n-singular knots,
with Co(D) = 0. If K;_, is degenerate, then for some i,d;K;_, =0 and 0K, _, € C,_1(D). Thus, we
obtain relative chain complexes C,(X,D) = C,(X)/C,(D).

Theorem 1. There exist CW-complexes CK, and CK, such that for X = X* and X°, respectively,
C{"(CK) = Cu(X).

Proof. We construct CK;, and CK, by attaching n-cubes in one—one correspondence with n-singular
knots K;_, eX,f’ or X,?, respectively. For n =0, each vertex corresponds to an oriented knot K € Xj.
Henceforth, CK will denote either CK, or CK}, and all unspecified statements are valid for both
complexes.

Let CK™ denote the n-skeleton of CK. CK" can be constructed immediately from the formula
0Ky =K, —K_. Let I =[ —1,1]. For any K, the attaching map fx, :0] — CK© is given by
f(£1) = K.. Therefore, any knots which differ by a single crossing change are connected by an
edge oriented from K_ to K,.. An edge joins distinct vertices if and only if Ky is nondegenerate.
Only knots in the same conjugacy class of m;(M) are obtained by crossing changes, so components
of CK(M) correspond bijectively with conjugacy classes of m;(M).

Having constructed CK("), we proceed inductively. Let " = {¥€R": — 1 < x; < 1}. Assuming
CK"=D is constructed, for every K;_, we attach an n-cube by fx, :6I" — CK"~D. Suppose
p+q=n. We label the p-faces of [” with p-singular knots obtained by resolving ¢ singularities as
follows (see Fig. 1):

Kxootyggoe = {(X150 0581008500 Xp) 6 € 1, -1 <x; < 1}

By assumption, for every (n — 1)-singular resolution K of K;_,, there is a characteristic map
g :1"" — CK"=D_ For ¥ € Ky....,..x C 0I", we define

Sr (Xt i, X)) = gKX...si,.,X(xla---,xiflaxi+la---axn)-
To complete the induction, we verify fx, , is well defined on intersections:
le___n(xl,...,8,-,...,g,-,...,xn):ng,_,&[___X(xl,...,)/c},...,g,-,...,xn)
:gKX___gl_»ﬁ/___X(xl,...,)?i,...,)?j,...,xn)
:gKX,_,Cj___X(x],...,si,...,)?j,...,x,,).

Let @:C.(X) — CE"(CK) by &(K,_,) =gk, ,(I"), VK., €X? or X°. Each n-cell is oriented by
gk, , from the standard orientation of /" C R". Since @ maps generators bijectively, it remains to
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K-- K-x+ K-++
Kx-+ Kxx+
Kxt+
K+x+
K+-+ L K+++
® K-Xxx ® K-+x
KX-x KX
KXo K+xx )
K++x
K-Xx
K o K-+
Kx-- KXxx- KX+-
K- i K++-

Fig. 1. Labelings on the 3-cube Ki»3.

show @ od =00 ®. Let [g:1] denote the incidence number. By construction, [@(K_,):t] #0 only if
there exists some resolution Ky....,...x of Kj_, such that ®(K«......x) =71

6@(1(1_“”) = Z [(D(Kl...n): T]T

=D ) [P(Ki1n): (Kt IP(K ko)

i=1 g€+l

=" ok ") Gy " Dk )

i=1 ee+l1

= ) (-Degx,..,. A"
i=1 eex1

=Y (=" (Z eing...g[___ﬂ"—l))
i=1 cet1

=D (=DM P(dKi..) = POKy. O

i=1

CK is not locally finite. For example, infinitely many knots with unknotting number 1 are connected
by an edge to the unknot. Since a CW-complex is metrizable if and only if it is locally finite, the met-
ric topology on CK induced from the Gordian metric on knots [12], where every edge has length =1,
is strictly weaker than the CW topology, although the two are homotopy equivalent.
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Remark 2. C,(X?) and C,(X°) have an interesting common quotient, C,(X), generated by elements
K, ,, and relations K; , ~, sign(o)Ky._, for any g €S,, n > 2. Modulo this relation, 0K(1.,) =
sign(¢)0K_,, so the natural projections to C,(X®) are chain maps. The geometric realization of
C«(X®) would seem to be a natural orientable knot complex. Indeed, for CK,, if 6 €4,, f ~

o(1..n)
fk, 0" — CK(E"*”. However, the construction above fails because some knots are not orientable
in this sense.

For n > 2, the projection (X?/4,) — X, is either 2 — 1 or 1 — 1. Nonorientable knots have
exactly one preimage, and are killed by ~,,. Otherwise, K«...x is orientable and has a generator in
C,(X?) for each coset of K|, mod 4,,. Infinite families of non-orientable knots exist. For example,
K, _.s shown below is non-orientable since K; ¢ = Ky(1.6), Where ¢(123456) = (456123) is an odd
permutation.

3. Homotopy of CK(R?)

Let CK be CK with a 2-cell attached to every l-cell corresponding to a degenerate 1-singular
knot, and a 3-cell attached to every 2-sphere corresponding to a degenerate 2-singular knot. To be
precise, for i =1,2, let D; denote the corresponding degenerate subset of Xib or Xio. Let A=A, UA,,
where 41 =U,,ep, D, and 4 =Uy,ep, D} . Then CK=CK Uy A4, where [, :0D; — g,,(I) Vo €Dy,
and f,,:0D; — g,,(I*) Vo, € D,. The map f,, will be explained below.

Let @:S' x D> — M be a family of piecewise linear maps {¢,:S' — M|xe D?}, and let
(¢ = closure{x € D?| ¢, is not an embedding}.

Theorem 3 (Lin [9, Proposition 2.1]). 4 map @:S' x D> — M can be perturbed so that (s is a
one-dimensional subpolyhedron of D> which intersects 0D? in only finitely many boundary vertices.
Moreover,

(1) if x,x' € D? belong to the same component of (D*\(s) or ({s\{interior vertices}), then ¢, and
¢y are ambient isotopic;

(2) interior vertices of (o are of valence 4 or 1;

(3) if x€lyp lies in an edge or is a boundary vertex, ¢, has exactly one transverse double point;

(4) if x€lp is an interior 4-valent vertex, ¢, has exactly two transverse double points;

(5) if x €y is an interior 1-valent vertex, ¢, is an embedding ambient isotopic to nearby embed-
dings.

The resulting map ®:S' x D* — M is said to be in almost general position. Moreover, if ®|S! x 0D?
is already in almost general position, then the perturbation can be made relative to 0D>.
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ty

Fig. 2. ne subdivided into sets R,.
Corollary 4. If m;(M) = (M) =1, then n;(CK(M)) = 1.

Proof. Any loop y in CK is homotopic to a loop in the 1-skeleton. We will define a map ¥ :D?> —
CK, such that ¥|0D* =y. We can assume that 7 = {t, € S! :y(t,—)e@(o)} is finite, and otherwise
7(0)e CK". We can define hi:{0eS':t; <0<t} — 1 and @:5' x S' — M, such that y(0) =
Jast.oy(hi(0)), where &(S',0) is a I-singular knot for finitely many 6; €S', and is nonsingular
otherwise. Therefore, ®|gi, ¢ is in almost general position.

Because 71;(M)=my(M)=1, ® extends to S' x D? rel S! x dD*>. By Theorem 3, we can perturb
@ to be in almost general position relative to dD?, such that {4 is a graph in D? parametrizing
immersions which are 1-singular, except that each 4-valent vertex is 2-singular, and each 1-valent
vertex is a cusp. For CK,, @ can be perturbed both to be in almost general position and to preserve
base points.

Consider the following pairs {(Ry,h,)} such that D?* =UR,. Let V be the set of interior 1-valent
and 4-valent vertices of (. Let 7o be the union of a neighborhood of dD*\T and thin bands
containing {4 which are isotopic to a tubular neighborhood of (¢ N int(D?) in int(D?), and such
that 0(D*\ne) N 0D?> =T. Let {R,: vE V'} be the intersection or self-intersection of bands at every
4-valent vertex, and a disjoint rectangle at every l-valent vertex. Then g = {R,: v€ V}U{R;: 7 is
a component of {p\V'}. Let h,:R, — I be any continuous map such that 4.|(¢ = 0,%.(x) = =1 for
x € 0R, with &(S',x) =K., and h.(x) = hi(x) Vx € OR, N 0D*. Let h,:R, — I?> be any continuous
map extending /.(x) on each coordinate Vx € R, N OR,. If a is a component of Dz\%, let h, = 0.
(see Fig. 2).

We now define ¥:D?> — CK. For x€R,, Y(x)= Jast x,)(ha(x)) for some x, €R, such that
&(S!,x,) €X, with n maximal for R,. [

Theorem 5. 7,(CK(R?)) = Z.

Proof. Let y:S?> — CK. Up to homotopy, 7(S?) C CK"™ and is incident to finitely many 2-cells B;.
We can define h;: {x € S?| y(x) € B;} — I* and ¢:S'xS? — R* such that y(x)=ggs ., (hi(x)), where
@(S',x) is a 2-singular knot for finitely many x; € S?, and is 1-singular or nonsingular otherwise.
We regard @ as a 2-parameter family of maps S' — R? which determines a 2-sphere in CK®),
{4 = closure{x € S?| &(-,x):S! — Ris not an embedding} is a graph of valence 1 or 4 on S with
1-valent vertices corresponding to cusps, and 4-valent vertices to 2-singular knots. Unlike the case
for S3, there is no obstruction to extend @ to a map ®:S' x D> — R>.
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Fig. 3. 2-Complexes which appear locally in ;.

KO Xo X000

X oo —

KO o X0 /><>X>O\>O

Fig. 4. 2-Sphere which appears in (6).

We can extend the argument in Theorem 3 from a 2-parameter to a 3-parameter family of maps
S! — R3. The partitions 3=14+141, 3=2+1, 3=1+2, 3=340 give the possible ways to group
the parameters. Namely, deform three different small segments of S' by one parameter; deform two
small segments by 2 parameters and 1 parameter, or vice versa; or just deform one small segment
by several parameters. Deformations at different segments may intersect each other, resulting in the
local singular sets shown in Fig. 3. Therefore, we can perturb @ relative to 0D® such that

(i) {; = closure{x € D*| &(-,x):S' — R’is not an embedding} is a complex of dimension 2 in D>
with €43|6D3 = (s, and
(i1) locally, {3 is one of the seven 2-complexes shown in Fig. 3.

Following the proof of Corollary 4, define a subdivision of D? to be {(R,,%,)} such that D*=UR,
and h,:R, — I°. We say that a nonempty 2-complex (; in D* can be realized in CK if there exists
a map Y:D3> — CK such that ¥|,;s = 7, and a finite subdivision of D* such that for x €R,,
Y(x)= g(ﬁ(sl,xd)(h“(x)) for some x, € R, such that @(Sl,xa) € X, with n maximal for R,.

The 2-complexes (1) and (2) can be realized in CK. By extending the proof of Corollary 4, (3)
can be realized in CK U, 4;, and hence in CK.

(4) and (6) correspond to degenerate 2-singular knots. For any such K, gx (/%) contains a 2-sphere,
as shown in Fig. 4. In our construction of CK, f,, attaches a 3-cell to every such 2-sphere, so that
(4) and (6) can be realized in CK. This resembles some kind of “compactification” of CK with
respect to its 2-skeleton, as suggested in Fig. 5.

The basic model for the boundary of (7) is shown in Fig. 6. The identifications on this 2-cell
follow from the isotopy shown in Fig. 9, so its image in CK is a 2-sphere. Also shown in Fig. 6 is
the corresponding graph (¢ on the 2-sphere. In the basic model, we show only fragments of a knot
diagram because changing other crossings can be realized by a homotopy of 2-spheres in CK. Let
K be any 2-singular knot ®(S',x), such that x is the 4-valent vertex in the boundary of (7). If K’
is obtained from K by changing any nonsingular crossing, then we can find a 3-cell gg,,,(I*) in CK
with the front face of /3 mapped by gx(/?) and back face mapped by gk (I?). We may continue
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Fig. 6. Basic model for the boundary of (7) and related graph (s C S°.

Fig. 7. Two extensions of Fig. 6 to a 2-complex with associated knots.

changing crossings, gluing each 3-cell front to back, and keeping the identification of the sides of
I3. The resulting 3-cell is a homotopy in CK from the top 2-sphere gx(/?) to the bottom 2-sphere,
which can be chosen to be any representative of our basic model.

Since, up to homotopy, we can change crossings, the basic model can be realized as a 2-sphere
in CK in two different ways: (x"x() or & Up to crossing changes, these are the two distinct
classes of 2-singular knots. They correspond to the two possible extensions of the boundary of (7)
to locally different 2-complexes, as shown in Fig. 7. The first 2-complex in Fig. 7 can be realized
in CK because it is essentially like (4). Thus, the 2-sphere corresponding to (O () is trivial in
nz(ﬁ).

However, the 2-sphere corresponding to & is nontrivial in 71,(CK), and any choice of ordering
or base point is equivalent up to homotopy. The latter claim is that & is unique up to crossing
changes in X} and in X}, which can be shown by an explicit isotopy, but is obvious by its chord
diagram. We can prove nontriviality from the results of Section 4. For @:S' x I? — R? shown in
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. 2oy Uy

Fig. 8. 3 =2+ 1 model for (5).

Fig. 6, let y:5? — CK be this element in 7,(CK). By the Hurewicz theorem, Corollary 4 implies
that [y] is nontrivial in homotopy whenever it is nontrivial in homology. By the proof of Theorem 9,
v2([y]) # 0 proves our claim.

In the only remaining case, the triple point in (5) is an immersion with 3 parameters to obtain
2-singular knots. The partitions 3=1+141, 3=2+1, 3=1+2 give the possible ways to group
the parameters. The first case is three separate double points, such that each double point can be
independently perturbed to obtain a 2-singular knot, which can be realized in CK.

The other two cases, equivalent by symmetry, arise from a triple point on a singular knot. The
model, shown in Fig. 8, is to perturb the z-strand by 2 parameters, and the x-strand by 1 parameter
to obtain 2-singular knots. (Fig. 36 in [15] is similar.) The boundary of the cube can be mapped
to a 2-sphere in CK by any realization of the six 2-singular diagram fragments shown. As above,
changing crossings can be realized by a homotopy along 3-cells in CK, so the boundary of the
cube is homotopic to the boundary of the cube formed by 3 &) and 3 A Since the latter is
trivial in homotopy, the boundary of the cube is a multiple of . Therefore, m,(CK) = Z,
generated by &X7>. O

4. Vassiliev invariants and cohomology of CK

Any knot invariant ¢: Xy, — Q can be extended to singular knots inductively by the following
skein relation:

P(Kx)=P(Ki) — P(K-),  P(Kxxox) = QKo ) — G(Kxooomox) (1)

Definition 6. A knot invariant is of finite type or a Vassiliev invariant if there exists n € N such
that its extension to singular knots vanishes on knots with more than » double points. The smallest
such n is the order of the invariant. Let V(M) be the vector space of invariants of knots in M of
order < n.

Any invariant ¢ :X, — Q extends to a cochain ¢ € C"(CK) by forgetting the ordering or base
point: ¢(K;_,)=¢(Kx...x ). In particular, V|, is a subspace of the cochain complex {C"(CK, D; Q),
0"} in this way. For any v,w € Vy if v|c, = w|c, then on the space of knots, v =w up to invariants
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of order n — 1. Therefore, Vy/V,_; — C"(CK,D) is an embedding. We only consider rational
coefficients, and adopt the standard notation, H"(CK,D) = Z"(CK, D)/B"(CK, D).

Proposition 7. For any ¢ €V, §"p=0. i.e., V,/V,_; — Z"(CK).
Proof. For any K .1, p(d;Ki_,11) =0 Vi, so ¢(0K;. ,4+1)=0. O

From the exact sequence of the pair (CK,D), we obtain

H"Y(D; Q) — H"(CK, D;Q) -~ H"(CK;Q) -2~ H"(D; Q)

T | T @

Vn |Cn

Since V,

¢, C ker f =Imo, there is an induced map y:V, — H*(CK, D).
Theorem 8. For ¢ € V,(R?), 0#[¢] € H*(CK(R?)).

Proof. For any nondegenerate 7 € X>(R?), V,(R?) is generated by ¢ such that ¢(T)=1. If T' € X; is
obtained from T by crossing changes, then ¢(7’)=¢(T), so we may assume 7= ‘b, By Proposition
7, 8¢ = 0. Suppose by contradiction ¢ = &y for some y € C'(CK). For any corresponding element
TeX)(RY) or X)(R*), 1= (T) = oY(T) = Y(a(T)) = Y(diT — daT) = y(0) =0 =<. [

Recall CK = CK Uy A. Extend v€ Vy to C*(CK) by v|, =v

o0 =0, Yo eA.
Theorem 9. V,(R%)|c, = H*(CK(R?)).

Proof. Since CK is a CW-subcomplex of CK,
H'(CK,CK)= H (CK/CK)=H" [ \/ $2\/ 5]
a€Dy  PED;

From the exact sequence of the pair (CK,CK), we obtain

H2(V 82V S8) — H2(CK) > H2(CK) —>H3(V S2V 53)

S|

Vale,

Since v|, =0, Yo € 4,V;|c, C kerd = Ima. Thus, there is an induced map §:V,|c, — ﬁz(CT),
which is nontrivial by Theorem 8. By the Hurewicz theorem, Corollary 4 and Theorem 5 imply that
H?*(CK(R3); Z) = Z. Therefore, V, uniquely generates H*(CK(R?)). O

Many arguments for Vassiliev invariants rely on augmented Reidemeister moves on projections of
links and graphs. Such arguments are available only in R* or S3, so Theorem 8 holds only for R? or
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S3. In [9], these concepts were extended to more general 3-manifolds by studying Map(S' x D*, M)
in almost general position. In particular, Theorem 10 generalizes an important result proved by
Stanford for R*, and extended further by Kalfagianni (Theorem 4.1 [8]).

We say ¢ is differentiable if ¢(d;K; ) = ¢(d;K; ) Vi,j. In fact, if we forget the ordering,
¢:X, — Q extends to X, satisfying the skein relation (1) if and only if ¢ is differentiable. We
say ¢:X, — Q is integrable if Ay :X,_; — Q such that, for any ordering, ¢(K;_,)=tod(K;._,) Vi.
In this case, we write [ ¢ =y. We will say ¢ € C"(CK) is integrable if ¢ is an integrable invariant
of X,, invariant under changes of ordering or base point.

Theorem 10 (Lin [9]). Suppose mi(M)=my(M)=1. Then ¢:X, (M) — Q is integrable if and only
if it satisfies: (i) the 1-term relation, (i1) the 4-term relation, (iii) ¢ is differentiable.

Corollary 11. If n(M) = (M) =1, then H'(CK(M),D) = 0.

Proof. If ¢ € Z'(CK, D), we can find € C°(CK) such that ¢ = . (i) ¢|p, =0, so ¢ satisfies the
1-term relation. (ii) The 4-term relation is trivially satisfied for X;. (iii) d¢p =0 implies ¢(d1K;z) =
¢(d2K12) so ¢ is differentiable. For CKy, Theorem 10 implies that ¢ is integrable, so 3y with
P(Kx)=y(dK« )= 0y(Kx). For CK;, we must also show that ¢ is invariant under changes of base

point, so the result follows from the following lemma. [

Lemma 12. Suppose m(M) = 1. If ¢ € C'(CKy(M)) is differentiable, then ¢ is invariant under
changes of base point.

Proof. Since ¢ is differentiable, the following identity holds:
(X ) = o3 X=X X =63 X)
= (X K= (X Ky =X K =X X

Define (ZB(Y) = ¢(><) — ¢(‘><() Clearly, ¢ is invariant under changes of base point if and only
if ¢ =0.

s Ay =g X)) =
o CER SR ) B CE RS ET Cae)
= (43 2 =003 D) = (a0 2 =90 X)) =0

As ¢ is invariant under crossing changes and 7,(M) = 1, for all K ext, HK) = ¢(<>@) =0.
U
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Lemma 13. If n;(M) = no(M) = 1, then the natural restriction map p:H'(CK) — H'(D) is an
isomorphism.

Proof. From the exact sequence of the pair (CK,D) and Corollary 11, it suffices to show that p is
surjective.

ZN(CK)={¢pc C'(CK): 6¢ =0} = {¢p € C'(CK): ¢ is differentiable},
BY(CK)={¢pc C'(CK): ¢p =y} = {¢ € C'(CK): ¢ is integrable}.

By Theorem 10, H'(CK) = {¢ € Z'(CK): ¢ does not satisfy 1-term relations}. Let D, denote de-
generate n-singular knots. For K, € D,, 0K, = (—1)*1d;K}, for i =1 or 2, so if ¢|s;p, =0 then ¢
is invariant under crossing changes, and therefore constant.

Z'(D)={¢ € C(D): ¢|op, =0} = {p € C'(D): ¢ is constant},

BY(D)={¢€C'(D): ¢=3Y|p, =0}.
Extend any map in H'(D)=Z'(D) to a constant map in Z'(CK). O

Theorem 14. For M = R3, V,|c, = H*(CK, D).

Proof. From Lemma 13, we obtain

HY(CK)—=>H'(D)—% H*(CK, D)—> H*(CK)—> H%(D)

=

V2|Cz
By Corollary 4, H'(CK) = 0. By Theorem 9 we obtain

0—=HYDU; A)—=%H*CK,D U; A)— H*(CK)—% H*(D Uy A)

3 ET /

Vale,

We can relate these diagrams by the following commutative diagram, where the verticals are restric-
tion maps, and the isomorphism is by excision

HY(D) > H*CK, D)

C

HY(DU; A)—%H*(CK,D Uy A)

Thus, o =0, and consequently 7:V, in(@,D Uy A) 2 H*(CK,D). 0

In higher dimensional cohomology, we consider even and odd cases separately.
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Theorem 15. Suppose m\(M)=n,(M)=1. For any Vassiliev invariant ¢ €\ y, [¢p]=0€ H*+(CK,D)
VN, k = 0.

Proof. Every Vassiliev invariant ¢ € Vy is integrable: [(¢|c,.,,) = ¢|cy. so by Lemma 16, [¢] =
0€ H*+Y(CK) Vk = 0. Therefore, from (2), y(¢)Ekera. Since V. — H*(D) is always zero,
[¢] =0 € H**+(CK,D) Vk = 0. O

We note that Lemma 16 has appeared earlier (Lemma 7.2 [4]).
Lemma 16. For n odd, if ¢ € C"(CK) is integrable, then [¢] =0¢€ H"(CK).

Proof. Let [ ¢p=y. As ¢ is integrable, it is differentiable so ¢ € Z"(CK) because the first alternating
sum has an even number of equal terms:

n+1

OP(K1.ni1) = P(OKy 1) = Z (=)™ ¢(diK_ni1) =0,

i=1

SY(Ky )= (= (K ) =D (=K ) = (Kia). O
i=1

i=1
Theorem 17. Suppose m\(M)=ny(M)=1. For any n=2k,V,(M)={¢ € Z"(CK,D): ¢ is integrable}.

Proof. Every Vassiliev invariant is an integrable cocycle by Proposition 7. Conversely, let ¢ be an
integrable cocycle. If ¢ is both integrable and invariant under crossing changes, then ¢ is a weight
system. Since (M) =1, V,(M) contains a vector subspace isomorphic to V,(R?) (Theorem 0.1
[8]). Over Q, any weight system can be integrated all the way to a knot invariant by the Kontsevich
integral, so ¢ € V,(M). The result follows from Lemma 18.

Lemma 18. For n even, suppose ¢ € C"(CK) is differentiable. Then ¢ = 0 if and only if ¢ is
invariant under crossing changes.

Proof. 6¢(Ki_ 1) =31 (—1)*'¢(diKi _ni1) = ¢(dys 1Ky _nr1) because the alternating sum has an
odd number of equal terms, with the first and last terms positive. Therefore, d¢p = 0 if and only if

d(Ky) — p(K-) = ¢(dps1Kx) =0. [

Any knot invariant ¢ € C°(CK) can be extended to an invariant of singular knots by the skein
relation (1). Then ¢ is integrable, but may not be of finite type. The proofs of Theorems 15 and 17
imply that if ¢ is not of finite type, then [¢] =0€ H"(CK,D), VYn = 0. We do not know whether
H?**+(CK, D) is nontrivial for any k > 1.

Corollary 19. If ¢ € Vy\Vy_ and [¢] € H'(CK, D) is nontrivial, then N = n = 2k.

Proof. By hypothesis, ¢ € Vy|c,. As [¢]#0,n < N, and n =2k by Theorem 15. By Theorem 17,
¢ €V,|c,, so N < n. Therefore, N=n=2k. O
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S e

Fig. 9. An isotopy.

We do not know whether the converse to Corollary 19 holds. Namely, if ¢ € V,\V,_; for even
n, is [¢p] € H"(CK,D) nontrivial? After considering this problem together, Akira Yasuhara proved
the following partial affirmative result for R3, generalizing Theorem 8.

Theorem 20 (Yasuhara). For any n > 1, there exist Vassiliev invariants in \/5,(R*) which are non-
trivial in H*'(CK(R?), D).

Proof. Fix n > 1. For any n-chord diagram D,, let D,, be obtained by replacing each chord of D,
with an adjacent pair of chords, allowing either || or x for each of these pairs. Any n-singular knot
which represents D, can be perturbed to a 2n-singular knot representing D,, by this local change:

R 98 =X

Let K, 5, represent D,,, such that every perturbed pair of double points is ordered consecutively
modulo 2n (e.g., an ordering from any base point). By the isotopy in Fig. 9, Vi€ {1,3,...,2n — 1},

(di — disr) (Qf) _ (% ¥ - +@> ~0

Therefore, 0K, 5, = 0. Any v € V,,(R*) which is nonzero on K, ,, is not a coboundary, and rep-
resents a nontrivial cohomology class in H*'(CK(R?)). By (2), v lifts to a nontrivial class in
H>(CK(R3*),D). O

Corollary 21. For any vEV,,(R*) coming from the Conway polynomial, v is nontrivial in
H>"(CK(R3),D).

Proof. Let W be the Conway weight system. For any n-chord diagram D, let D’ be the perturbed
chord diagram obtained by replacing each chord of D by an adjacent pair of intersecting chords. By
Theorem 2 of [2], Wc(D') = We((O) =1, where ) denotes the chord diagram with zero chords. Let
K5, represent D' as in the proof of Theorem 20, so K| 5, =0. Since v(K; 5,)=Wc(D')=1, v is
not a coboundary. [J

For example, if v; € V,(R?) then ¢} is nontrivial in H*"(CK(R*),D) because v} is nonzero on
K., shown below with 0K;_,, = 0.

¥ W
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Remark 22. Using some auxiliary geometric object to characterize the automorphisms of a space
has a long history. In surface theory, every automorphism of the curve complex is induced by a
surface diffeomorphism, and a bijection on vertices is induced if and only if it preserves edges in
the curve complex [7,11]. In our case, the group of isotopy classes of diffeomorphisms of M acts
naturally on CK(M). For R?, the only two classes are the identity and reflection, K;_, +— Ky ,. By
analogy with the curve complex, we propose Conjecture 23.

Define F: CK(R*) — CK(R?) by F o gk, ,(x) = gk: (—x) for any x €/". For the induced map
F:Cy(X) = Cu(X), F(Ky.) = [F 0 gie,, ()] = (~1)'[gx: ("] = (—1Y'K}.,. Since (d(K1..))" =
—d;K{ ,, it follows that F' is a chain map, and induces F'* on H*(CK). Whenever K, , is degen-
erate, so is K| ,, so F induces a map on H*(CK,D). If v, €V, is canonical in the sense of [2],
Un(K*) = (= 1)"va(K).

Uy 0 F(Ki_m) = (—1)"0,(K7 ) = (= 1" 0,(K1 ) = (—1)"0a(K1_m)-

1..m

By Corollary 19, if v, is nontrivial in H™(CK, D), then n = m = 2k. Thus, F'* acts as the identity
on the subgroup of Vassiliev invariants in H*(CK, D). Geometrically, F' is a bijection on n-cells of
CK. Gillete and Van Buskirk [5] presented a minimal knot diagram with a crossing which can be
switched to obtain the mirror image knot. /' maps this edge to itself, but with reversed orientation.

Conjecture 23. If @ is a self-homeomorphism of CK(R3) which is a bijection on vertices, such that
both ® and ®~' preserve edges, then ® is homotopic to the identity or to the map F.

We now consider the cup product in H*(CK), following Section 9.3 of [6]. Let H =(h;...h,) C
{1...n} be any subset (possibly empty) with the natural order on its elements, and let K be the
complementary subset with the natural order on its elements. Let pux) denote the sign of o €S,
where ¢(HK) = (1...n). For ¢ = £1, let Ay(ui,...,u,) = (vy,...,v,), where v; =¢ if i ¢ H and
Oy, = Uy, ¥=1,..., p. Thus, i,;l is an isometry of /7 onto a particular back p-face of /", and )v;l
maps onto the parallel front p-face of /. Define 4:C,(CK) — (Cy(CK) ® C(CK)), by

Mgk, )= D pumigk., © ' @ gk, 0 = Y PEHK)d K, @ Ik
HC{l..n} HC{l..n}

In our notation, dj; takes the positive resolution of double points with labels in H, and similarly for
d;. We can simply refer to the singular knots:

AKi)= Y pux)dgKia @ djKi . (4)
HC{l..n}

If u,ve H*(CK),uUv(K;_,)= ZHC{I...n} paxyu(dg Ky o) - v(d5 Ky ). In V,, u-0(K; ) is the same
expression without p(x) [17]. For example,

02 U 12(K1234)
=02 (K x—— )02(K i xx ) — 2(Kx— 5= J02(Ky x4 ) + 02(Kx—— 5 )02 (K4 5 x+)

F (K s J02(K x4y x ) — 02(K_x — 5 )02 (K x4 ) + 02(K- s Y02 (K x4 )-

On p. 210 of [14], Quillen showed that if 4 =&,>¢4, is a graded commutative algebra over Q
with A4, finite dimensional for all n, and 4y = @,4; = 0, then A is the rational cohomology ring
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of a simply connected pointed topological space. The algebra of Vassiliev invariants under the cup
product, V = (@, V,,U), satisfies these conditions. Therefore, there exists a simply connected
pointed space X such that H*(X,Q) = V. For even Vassiliev invariants, the simply connected knot
complex CK(R?) seems very close to such a space since by Theorem 9, V, = H?(CK), and by (3),
HP(CK)= HP(CK)Vp = 4.

5. Hopf algebra of ordered chord diagrams

We show the cup product in H*(CKj) for Vassiliev invariants arises naturally from a cocommu-
tative differential graded Hopf algebra .«7° of ordered chord diagrams.

Let ® = &9, denote the free abelian group over () generated by chord diagrams with boundary
oriented counterclockwise, graded by the number of chords. An ordered chord diagram has its
chords ordered from 1 to n, equivalent up to rotation. Let D° denote the free abelian group over @
generated by equivalence classes of ordered chord diagrams.

Let o7 be the usual Hopf algebra of chord diagrams modulo the 4T relation [1]. The commutative
product D'-D? corresponds to the direct sum of knots and is well defined due to the 4T relation. The
cocommutative coproduct is defined as follows: For D € ©,, choose any ordering of its chords from
1 to n. Let H,K C {l...n} be complementary subsets (possibly empty). Let Dy denote the chord
diagram obtained from D by removing chords with labels in H. Define 4(D)=3",, - {1} Dy ® Dy.
IfveV,, and D€ D, then W,,(v)(D)=uv(Kp) defines a weight system. The following relations are
well known (see, e.g., [1,17]). If vy €V, and 1, €V, let n=p +¢q

v - 02(Kya) = Z v1(dg Ki.0) - 02(dg K0,
HC{l..n}

Wa(v1 - v2) = (Wy(v1) @ Wy(v2)) o 4.

The fact that the algebra of Vassiliev invariants is a commutative and cocommutative Hopf algebra
was obtained via weight systems on chord diagrams [1]. This fact can be proved directly via the
dual bialgebra of singular knots modulo the skein relation (1) [13,10]. Take knots as group-like
elements, 4(K) =K ® K, and extend 4 to singular knots by the skein relation (1) to obtain the
expression analogous to (4): A(K,.,) = ZHC{L_H} dg K1, ® d;Klm,, modKy, =K, —K_.

We now define a bialgebra of ordered chord diagrams which is compatible with the cup product
for Vassiliev invariants:

v Uop(Ky.n) = Z PV (dg Ky ) - 02(d Ky ).
HC{l..n}

The 4T relation is given by four diagrams, which are the same except for one “fixed” chord and
one “moving” chord. The ordered 4T relation on ®° is given by the same expression, where the
fixed chord and the moving chord have the same label in all four diagrams (see Fig. 10). Thus, for
each 4T relation on ®,, n > 2, we obtain n(n — 1) ordered 4T relations on @2.

Let .7 be the quotient of D° by all ordered 4T relations. If D' € 33(1)] and D? 6@2, the product
D' U D? is defined to be the chord diagram D' - D? with its ordering given by the same labels
for chords from D! and by labeling the ith chord of D?* by p + i. By the same argument as in
Proposition 4.4 [17], the cup product is well defined on D° modulo the ordered 4T relation.
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i i i i
S E " N
Fig. 10. Ordered 4T relation.

For any Dc® let Dy be obtained by removing the chords with labels in H, with its or-
dering induced from D. Let p(uk) be defined as in (4). Define 4°:D) — D9 ® DY by 4%D) =
> {1.ny PuikyDk @Dy Then A° descends to a coproduct on .7} : 4%(ordered 4T)=(ordered 4T)®
O+ O ®(ordered 4T), where () denotes any chord diagram in the ordered 4T relation with chords
i and j removed. To show A° is cocommutative, apply T(a ® b) = (—1)llltlp @ a. T o A%D) =
2 oii)=p (D pax)Dy @ Dg = 32y pkinyDr @ Dy = A%(D).

Proposition 24. For D', D?> ¢ o/°, A%(D' U D?) = A%D") U 4°(D?).
Proof. If D' € .«/% and D* € .o/}, let n=p +q.

A°(D")Y U A°(D?)

= Z p(HlKl)D11<1 ®D]1‘11 U Z p(HZKZ)D%(Z ®D%'12

HiC{l..p} H,C{l..q}
Dl DZ
=" pungnpani(—1"P1PRIDL U DL, @ D}, LD},
Hy ,H,

= > pux (D' UD)k ® (D' UD*)y = A°(D' UD?)
HC{l..n}

as H = (Hy,H,),K = (K1,K>) implies pgr k)0, (— DK = poe). O

If veV,, W(v)(D;_,)=uv(K;_,) is a weight system in (.=/%)*. Since W, :V, — (2/%)* is a graded
map, (W, @ Wy)(v1 @ v2) = (=1)PWp(v1) @ Wy(v2).

Theorem 25. If v, €V, and v, €V, then
Wyq(01 Uva) = (= 1P, (01) @ Wy(0)) 0 A°.

Proof. Let n= p+¢q. For D;_, € ’DS, let K;_, be any representative knot
Wa(v1 U 02)(Dy.n) =01 U 02(Ki.n)

= Z paix)v1(dg Ky ) - v2(d5 Ky 0)
|H|=p
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= > puiyWp(v1) (D) - Wy(v2)(Dir)
|H|=p

= (=DP(Wy(01) @ Wy(12)) 0 4%(D1.). T

We now define the differential on .o#°. For D,_, €®°, let d;D;_, = D;_,\{ith chord} with the
induced ordering. Define Dy , = > ., (—=1)"'d;Dy .

Proposition 26. ¢ (ordered 4T)=0.

Proof. S,E, W,N in Fig. 10 are the same except for the chords shown. We claim o(S—E+W —N)=0.
For k#1i,j, di(S — E+ W — N) =0 by the ordered 4T relation. Therefore,

0S = (—1)'diS + (—1Yd;S = (—=1)diN + (=1Yd;N = N,
OE = (=1)'diE + (=1Y4E = (1) dW + (=1Yd;W =ow. O

If1<i<j<ndd;=d;_d;, so 0> =0. Also, 0 is a derivation with respect to the cup product.
By the proof of Theorem 20, given D€ ®,, if D' is any perturbation of D, then some Kp EXZOn
represents D', with 0Kp = 0. Now, with the same ordering, 6D’ = 0.
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