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Abstract

We construct a cubical CW-complex CK(M) whose rational cohomology algebra contains Vassiliev invari-
ants of knots in the 3-manifold M . We construct CK(R3) by attaching cells to CK(R3) for every degenerate
1-singular and 2-singular knot, and we show that �1(CK(R3)) = 1 and �2(CK(R3)) =Z. We give conditions
for Vassiliev invariants to be nontrivial in cohomology. In particular, for R3 we show that v2 uniquely gen-
erates H 2(CK;D), where D is the subcomplex of degenerate singular knots. More generally, we show that
any Vassiliev invariant coming from the Conway polynomial is nontrivial in cohomology. The cup product
in H∗(CK) provides a new graded commutative algebra of Vassiliev invariants evaluated on ordered singular
knots. We show how the cup product arises naturally from a cocommutative di7erential graded Hopf algebra
of ordered chord diagrams. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In [15], Vassiliev constructed new knot invariants by a spectral sequence approximation of
H 0(M\	;Q), where M is the space of all closed curves in R3, and 	 is the space of singular
curves. In [9,8], Vassiliev invariants were extended to knots in certain 3-manifolds satisfying extra
conditions, and in [16] Vassiliev generalized his theory to all 3-manifolds. A natural question is
whether one could realize each Vassiliev invariant as a genuine cohomology class of a space in-
strinsically associated with the underlying 3-manifold M . For this purpose, we construct a cubical
CW-complex CK(M), resembling Vassiliev’s space 
 (a resolution of 
), whose rational cohomology
algebra contains Vassiliev invariants.
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Starting with an algebraic chain complex of knots with ordered double points or base point
in any oriented 3-manifold M , we geometrically realize the chain complex as the CW-complex
CK(M) (Section 2). A similar chain complex used to generalize skein modules [3] does not seem
geometrically realizable.

For R3, we give conditions for Vassiliev invariants to be nontrivial in cohomology, and a dis-
parity emerges between even and odd orders (Section 4). Vassiliev invariants from the Conway
polynomial—the best understood invariants of strictly even order—are all nontrivial in cohomology.
For example, vn2 is nontrivial in H 2n(CK(R3); D;Q), where D is the subcomplex of degenerate sin-
gular knots. In particular, v2 uniquely generates H 2(CK(R3); D). Possibly, all nontrivial cohomology
of CK=D arises from Vassiliev invariants of even order.

The cup product in H ∗(CK) provides a new graded commutative algebra of Vassiliev invariants
evaluated on ordered singular knots. In Section 5, we show how the cup product arises naturally
from a cocommutative di7erential graded Hopf algebra of ordered chord diagrams.

As a topological consequence, by a theorem of Quillen [14], Vassiliev invariants under the cup
product are the rational cohomology ring of a simply connected pointed topological space. In
Section 3, we construct CK(R3) which seems very close to such a space for even Vassiliev in-
variants. We attach cells to CK(R3) for every degenerate 1-singular and 2-singular knot, and show
that �1(CK(R3)) = 1 and �2(CK(R3)) = Z by “almost general position” arguments [9].

2. Constructing the knot complexes CK (M )

Let M be an oriented 3-manifold. Let Xn be the set of equivalence classes of oriented knots with
n double points in M , equivalent up to rigid-vertex isotopy. Let K×···× denote an element of Xn. As
M is oriented, any double point can be resolved in two canonical ways:

K - K K +

We call a singular crossing degenerate if its positive and negative resolutions determine the same
knot type. A degenerate knot is a singular knot with at least one degenerate crossing. A singular
crossing is nugatory if a separating S2 intersects the knot in only that point. Such a crossing is
degenerate, and it seems to be unknown whether there exist degenerate crossings which are not
nugatory.

Let X 0
n be the set of equivalence classes of knots in Xn with double points ordered from 1 to

n. For K1:::n ∈X 0
n and any 
∈ Sn, let K
(1:::n) denote the knot obtained by permuting the ordering of

K1:::n. In X 0
n ; K1:::n = K
(1:::n) if there exists an orientation-preserving rigid-vertex isotopy which maps

K1:::n to K
(1:::n), matching double points with the same labels. Let Cn(X 0) denote the free abelian
group with coeLcients in Q generated by K1:::n ∈X 0

n .
Let X b

n be the set of equivalence classes of knots in Xn with a base point b apart from all the
double points. (K; b) = (K ′; b′) if there exists an orientation-preserving rigid-vertex isotopy which
maps (K; b) to (K ′; b′), with the base point apart from the double points during the isotopy. As
knots are oriented, we can order double points from 1 to n around the knot starting from the base
point. Whenever possible, we will suppress notation for base points and denote based n-singular
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knots with this natural ordering by K1:::n. Let Cn(X b) denote the free abelian group with coeLcients
in Q generated by K1:::n ∈X b

n .
Let Cn(X ) be either Cn(X 0) or Cn(X b). DeMne di :Cn(X ) → Cn−1(X ) by diK1:::n = K×···+

i
···× −

K×···−
i
···×, such that each resolution has its ordering induced from K1:::n. DeMne the boundary operator

@: Cn(X ) → Cn−1(X ) by @K1:::n =
∑n

i=1 (−1)i+1diK1:::n. The boundary operator is well deMned with
respect to the equivalence relations for X 0

n and X b
n because any order-preserving isotopy from K1:::n to

K
(1:::n) induces an order-preserving isotopy between their ith resolutions with the induced ordering.
For any knot in X 0

n or X b
n , if 16 i¡ j6 n; didj = dj−1di, so @2 = 0.

Let Cn(D) denote the respective subgroup of Cn(X ) generated by degenerate n-singular knots,
with C0(D) = 0. If K1:::n is degenerate, then for some i; diK1:::n = 0 and @K1:::n ∈Cn−1(D). Thus, we
obtain relative chain complexes Cn(X;D) = Cn(X )=Cn(D).

Theorem 1. There exist CW-complexes CKb and CK0 such that for X = X b and X 0; respectively;
CCW∗ (CK) ∼= C∗(X ).

Proof. We construct CKb and CK0 by attaching n-cubes in one–one correspondence with n-singular
knots K1:::n ∈X b

n or X 0
n ; respectively. For n= 0; each vertex corresponds to an oriented knot K ∈X0.

Henceforth; CK will denote either CK0 or CKb; and all unspeciMed statements are valid for both
complexes.

Let CK (n) denote the n-skeleton of CK . CK (1) can be constructed immediately from the formula
@K× = K+ − K−. Let I = [ − 1; 1]. For any K×, the attaching map fK× : @I → CK (0) is given by
f(±1) = K±. Therefore, any knots which di7er by a single crossing change are connected by an
edge oriented from K− to K+. An edge joins distinct vertices if and only if K× is nondegenerate.
Only knots in the same conjugacy class of �1(M) are obtained by crossing changes, so components
of CK(M) correspond bijectively with conjugacy classes of �1(M).
Having constructed CK (1), we proceed inductively. Let I n = {̃x∈Rn : − 16 xi6 1}. Assuming

CK (n−1) is constructed, for every K1:::n we attach an n-cube by fK1:::n : �I
n → CK (n−1). Suppose

p+ q= n. We label the p-faces of I n with p-singular knots obtained by resolving q singularities as
follows (see Fig. 1):

K×···�1···�q···× ↔ {(x1; : : : ; �1; : : : ; �q; : : : ; xp): �i ∈ ± 1;−16 xj6 1}:
By assumption, for every (n − 1)-singular resolution K of K1:::n, there is a characteristic map
gK : I n−1 → CK (n−1). For x̃∈K×···�i···× ⊂ @In, we deMne

fK1:::n(x1; : : : ; �i; : : : ; xn) = gK×···�i···×
(x1; : : : ; xi−1; xi+1; : : : ; xn):

To complete the induction, we verify fK1:::n is well deMned on intersections:

fK1:::n(x1; : : : ; �i; : : : ; �j; : : : ; xn) = gK×···�i···×
(x1; : : : ; x̂i; : : : ; �j; : : : ; xn)

= gK×···�i :::�j···×
(x1; : : : ; x̂i; : : : ; x̂j; : : : ; xn)

= gK×···�j···×
(x1; : : : ; �i; : : : ; x̂j; : : : ; xn):

Let � :C∗(X ) → CCW∗ (CK) by �(K1:::n) = gK1:::n(I
n); ∀K1:::n ∈X b

n or X 0
n . Each n-cell is oriented by

gK1:::n from the standard orientation of I n ⊂ Rn. Since � maps generators bijectively, it remains to
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Fig. 1. Labelings on the 3-cube K123.

show � ◦ @= @ ◦�. Let [
: ] denote the incidence number. By construction, [�(K1:::n): ] 
=0 only if
there exists some resolution K×···�i···× of K1:::n such that �(K×···�i···×) =  

@�(K1:::n) =
∑
 

[�(K1:::n):  ] 

=
n∑

i=1

∑
�∈±1

[�(K1:::n): �(K×···�i···×)]�(K×···�i :::×)

=
n∑

i=1

∑
�∈±1

[gK1:::n(I
n): gK×···�i···×

(I n−1)]gK×···�i···×
(I n−1)

=
n∑

i=1

∑
�∈±1

((−1)i+1�i)gK×···�i···×
(I n−1)

=
n∑

i=1

(−1)i+1

(∑
�∈±1

�igK×···�i···×
(I n−1)

)

=
n∑

i=1

(−1)i+1�(diK1:::n) = �@K1:::n:

CK is not locally Mnite. For example, inMnitely many knots with unknotting number 1 are connected
by an edge to the unknot. Since a CW-complex is metrizable if and only if it is locally Mnite, the met-
ric topology on CK induced from the Gordian metric on knots [12], where every edge has length =1,
is strictly weaker than the CW topology, although the two are homotopy equivalent.
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Remark 2. Cn(X b) and Cn(X 0) have an interesting common quotient; Cn(X!); generated by elements
K1:::n; and relations K1:::n ∼! sign(
)K
(1:::n) for any 
∈ Sn; n¿ 2. Modulo this relation; @K
(1:::n) =
sign(
)@K1:::n; so the natural projections to Cn(X!) are chain maps. The geometric realization of
C∗(X!) would seem to be a natural orientable knot complex. Indeed; for CK0; if 
∈An; fK
(1:::n) �
fK1:::n : @I

n → CK (n−1)
0 . However; the construction above fails because some knots are not orientable

in this sense.
For n¿ 2, the projection (X 0

n =An) → Xn is either 2 − 1 or 1 − 1. Nonorientable knots have
exactly one preimage, and are killed by ∼!. Otherwise, K×···× is orientable and has a generator in
Cn(X!) for each coset of K1:::n mod An. InMnite families of non-orientable knots exist. For example,
K1:::6 shown below is non-orientable since K1:::6 = K
(1:::6), where 
(123456) = (456123) is an odd
permutation.

=
1

2

3 4

52

1

4
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3

6
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3. Homotopy of CK (R3)

Let CK be CK with a 2-cell attached to every 1-cell corresponding to a degenerate 1-singular
knot, and a 3-cell attached to every 2-sphere corresponding to a degenerate 2-singular knot. To be
precise, for i=1; 2, let Di denote the corresponding degenerate subset of X b

i or X 0
i . Let A=A1∪A2,

where A1=∪#1∈D1 D
2
#1 and A2=∪#2∈D2 D

3
#2 . Then CK=CK ∪f A, where f#1 : @D

2
#1 → g#1(I) ∀#1 ∈D1,

and f#2 : @D
3
#2 → g#2(I

2) ∀#2 ∈D2. The map f#2 will be explained below.
Let � : S1 × D2 → M be a family of piecewise linear maps {$x : S1 → M |x∈D2}, and let

%� = closure{x∈D2|$x is not an embedding}.

Theorem 3 (Lin [9, Proposition 2.1]). A map � : S1 × D2 → M can be perturbed so that %� is a
one-dimensional subpolyhedron of D2 which intersects @D2 in only :nitely many boundary vertices.
Moreover;

(1) if x; x′ ∈D2 belong to the same component of (D2\%�) or (%�\{interior vertices}); then $x and
$x′ are ambient isotopic;

(2) interior vertices of %� are of valence 4 or 1;
(3) if x∈ %� lies in an edge or is a boundary vertex; $x has exactly one transverse double point;
(4) if x∈ %� is an interior 4-valent vertex; $x has exactly two transverse double points;
(5) if x∈ %� is an interior 1-valent vertex; $x is an embedding ambient isotopic to nearby embed-

dings.

The resulting map � : S1×D2 → M is said to be in almost general position. Moreover; if �|S1×@D2

is already in almost general position; then the perturbation can be made relative to @D2.



88 I. Kofman, X.-S. Lin / Topology 42 (2003) 83–101

t

1t

2t 3

Fig. 2. ,� subdivided into sets R#.

Corollary 4. If �1(M) = �2(M) = 1; then �1(CK(M)) = 1:

Proof. Any loop . in CK is homotopic to a loop in the 1-skeleton. We will deMne a map / :D2 →
CK; such that /|@D2 = .. We can assume that T = {ti ∈ S1 : .(ti)∈CK

(0)} is Mnite; and otherwise
.(1)∈CK

(1)
. We can deMne hi : {1∈ S1 : ti6 16 ti+1} → I and � : S1 × S1 → M; such that .(1) =

g�(S1 ; 1i)(hi(1)); where �(S1; 1) is a 1-singular knot for Mnitely many 1i ∈ S1; and is nonsingular
otherwise. Therefore; �|S1×S1 is in almost general position.
Because �1(M) = �2(M) = 1, � extends to S1 ×D2 rel S1 × @D2. By Theorem 3, we can perturb

� to be in almost general position relative to @D2, such that %� is a graph in D2 parametrizing
immersions which are 1-singular, except that each 4-valent vertex is 2-singular, and each 1-valent
vertex is a cusp. For CKb; � can be perturbed both to be in almost general position and to preserve
base points.

Consider the following pairs {(R#; h#)} such that D2 = ∪R#. Let V be the set of interior 1-valent
and 4-valent vertices of %�. Let ,� be the union of a neighborhood of @D2\T and thin bands
containing %� which are isotopic to a tubular neighborhood of %� ∩ int(D2) in int(D2), and such
that 9(D2\,�) ∩ @D2 = T . Let {R4: 4∈V} be the intersection or self-intersection of bands at every
4-valent vertex, and a disjoint rectangle at every 1-valent vertex. Then ,� = {R4: 4∈V} ∪ {R :  is
a component of %�\V}. Let h :R → I be any continuous map such that h |%� = 0; h (x) =±1 for
x∈ @R with �(S1; x) = K±, and h (x) = hi(x) ∀x∈ @R ∩ @D2. Let h4 :R4 → I 2 be any continuous
map extending h (x) on each coordinate ∀x∈ @R4 ∩ @R . If # is a component of D2\,�, let h# = 0.
(see Fig. 2).

We now deMne / :D2 → CK . For x∈R#, /(x) = g�(S1 ; x#)(h#(x)) for some x# ∈R# such that
�(S1; x#)∈Xn with n maximal for R#.

Theorem 5. �2(CK(R3)) = Z.

Proof. Let . : S2 → CK . Up to homotopy; .(S2) ⊂ CK
(2)

and is incident to Mnitely many 2-cells Bi.
We can deMne hi: {x∈ S2| .(x)∈Bi} → I 2 and � : S1×S2 → R3 such that .(x)=g�(S1 ; xi)(hi(x)); where
�(S1; x) is a 2-singular knot for Mnitely many xi ∈ S2; and is 1-singular or nonsingular otherwise.
We regard � as a 2-parameter family of maps S1 → R3 which determines a 2-sphere in CK (2).
%� = closure{x∈ S2| �(·; x) : S1 → R3is not an embedding} is a graph of valence 1 or 4 on S2 with
1-valent vertices corresponding to cusps; and 4-valent vertices to 2-singular knots. Unlike the case
for S3; there is no obstruction to extend � to a map �̃ : S1 × D3 → R3.
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Fig. 3. 2-Complexes which appear locally in %�̃.

Fig. 4. 2-Sphere which appears in (6).

We can extend the argument in Theorem 3 from a 2-parameter to a 3-parameter family of maps
S1 → R3. The partitions 3=1+1+1; 3=2+1; 3=1+2; 3=3+0 give the possible ways to group
the parameters. Namely, deform three di7erent small segments of S1 by one parameter; deform two
small segments by 2 parameters and 1 parameter, or vice versa; or just deform one small segment
by several parameters. Deformations at di7erent segments may intersect each other, resulting in the
local singular sets shown in Fig. 3. Therefore, we can perturb �̃ relative to @D3 such that

(i) %�̃ = closure{x∈D3| �̃(·; x) : S1 → R3is not an embedding} is a complex of dimension 2 in D3

with %�̃|@D3 = %�, and
(ii) locally, %�̃ is one of the seven 2-complexes shown in Fig. 3.

Following the proof of Corollary 4, deMne a subdivision of D3 to be {(R#; h#)} such that D3=∪R#

and h# :R# → I 3. We say that a nonempty 2-complex %�̃ in D3 can be realized in CK if there exists
a map / :D3 → CK such that /|@D3 = ., and a Mnite subdivision of D3 such that for x∈R#,
/(x) = g�̃(S1 ; x#)(h#(x)) for some x# ∈R# such that �̃(S1; x#)∈Xn with n maximal for R#.

The 2-complexes (1) and (2) can be realized in CK . By extending the proof of Corollary 4, (3)
can be realized in CK ∪f A1, and hence in CK .

(4) and (6) correspond to degenerate 2-singular knots. For any such K; gK(I 2) contains a 2-sphere,
as shown in Fig. 4. In our construction of CK , f#2 attaches a 3-cell to every such 2-sphere, so that
(4) and (6) can be realized in CK . This resembles some kind of “compactiMcation” of CK with
respect to its 2-skeleton, as suggested in Fig. 5.

The basic model for the boundary of (7) is shown in Fig. 6. The identiMcations on this 2-cell
follow from the isotopy shown in Fig. 9, so its image in CK is a 2-sphere. Also shown in Fig. 6 is
the corresponding graph %� on the 2-sphere. In the basic model, we show only fragments of a knot
diagram because changing other crossings can be realized by a homotopy of 2-spheres in CK . Let
K be any 2-singular knot �(S1; x), such that x is the 4-valent vertex in the boundary of (7). If K ′
is obtained from K by changing any nonsingular crossing, then we can Mnd a 3-cell gK123(I

3) in CK
with the front face of I 3 mapped by gK(I 2) and back face mapped by gK ′(I 2). We may continue
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Fig. 5. Another view of (4) and (6).

Fig. 6. Basic model for the boundary of (7) and related graph %� ⊂ S2.

Fig. 7. Two extensions of Fig. 6 to a 2-complex with associated knots.

changing crossings, gluing each 3-cell front to back, and keeping the identiMcation of the sides of
I 3. The resulting 3-cell is a homotopy in CK from the top 2-sphere gK(I 2) to the bottom 2-sphere,
which can be chosen to be any representative of our basic model.

Since, up to homotopy, we can change crossings, the basic model can be realized as a 2-sphere
in CK in two di7erent ways: or . Up to crossing changes, these are the two distinct
classes of 2-singular knots. They correspond to the two possible extensions of the boundary of (7)
to locally di7erent 2-complexes, as shown in Fig. 7. The Mrst 2-complex in Fig. 7 can be realized
in CK because it is essentially like (4). Thus, the 2-sphere corresponding to is trivial in
�2(CK).

However, the 2-sphere corresponding to is nontrivial in �2(CK), and any choice of ordering
or base point is equivalent up to homotopy. The latter claim is that is unique up to crossing
changes in X b

2 and in X 0
2 , which can be shown by an explicit isotopy, but is obvious by its chord

diagram. We can prove nontriviality from the results of Section 4. For � : S1 × I 2 → R3 shown in
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x

y
z

Fig. 8. 3 = 2 + 1 model for (5).

Fig. 6, let . : S2 → CK be this element in �2(CK). By the Hurewicz theorem, Corollary 4 implies
that [.] is nontrivial in homotopy whenever it is nontrivial in homology. By the proof of Theorem 9,
v2([.]) 
=0 proves our claim.

In the only remaining case, the triple point in (5) is an immersion with 3 parameters to obtain
2-singular knots. The partitions 3 = 1+ 1+ 1; 3 = 2+ 1; 3 = 1+ 2 give the possible ways to group
the parameters. The Mrst case is three separate double points, such that each double point can be
independently perturbed to obtain a 2-singular knot, which can be realized in CK .
The other two cases, equivalent by symmetry, arise from a triple point on a singular knot. The

model, shown in Fig. 8, is to perturb the z-strand by 2 parameters, and the x-strand by 1 parameter
to obtain 2-singular knots. (Fig. 36 in [15] is similar.) The boundary of the cube can be mapped
to a 2-sphere in CK by any realization of the six 2-singular diagram fragments shown. As above,
changing crossings can be realized by a homotopy along 3-cells in CK , so the boundary of the
cube is homotopic to the boundary of the cube formed by 3 and 3 . Since the latter is
trivial in homotopy, the boundary of the cube is a multiple of . Therefore, �2(CK) ∼= Z,
generated by .

4. Vassiliev invariants and cohomology of CK

Any knot invariant $ :X0 → Q can be extended to singular knots inductively by the following
skein relation:

$(K×) = $(K+)− $(K−); $(K×···×···×) = $(K×···+···×)− $(K×···−···×): (1)

De)nition 6. A knot invariant is of :nite type or a Vassiliev invariant if there exists n∈N such
that its extension to singular knots vanishes on knots with more than n double points. The smallest
such n is the order of the invariant. Let Vn(M) be the vector space of invariants of knots in M of
order 6 n.

Any invariant $ :Xn → Q extends to a cochain $∈Cn(CK) by forgetting the ordering or base
point: $(K1:::n)=$(K×···×). In particular, VN |Cn is a subspace of the cochain complex {Cn(CK;D;Q);
�n} in this way. For any v; w∈VN if v|Cn =w|Cn then on the space of knots, v=w up to invariants
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of order n − 1. Therefore, VN =Vn−1 ,→ Cn(CK;D) is an embedding. We only consider rational
coeLcients, and adopt the standard notation, Hn(CK;D) = Zn(CK;D)=Bn(CK;D).

Proposition 7. For any $∈Vn; �n$= 0: i.e.; Vn=Vn−1 ,→ Zn(CK).

Proof. For any K1:::n+1; $(diK1:::n+1) = 0 ∀i; so $(@K1:::n+1) = 0.

From the exact sequence of the pair (CK;D), we obtain

(2)

Since Vn|Cn ⊂ ker < = Im #, there is an induced map . :V∗ → H ∗(CK;D).

Theorem 8. For $∈V2(R3); 0 
= [$]∈H 2(CK(R3)).

Proof. For any nondegenerate T ∈X2(R3);V2(R3) is generated by $ such that $(T )=1. If T ′ ∈X2 is
obtained from T by crossing changes; then $(T ′)=$(T ); so we may assume T= . By Proposition
7; �$= 0. Suppose by contradiction $= � for some  ∈C1(CK). For any corresponding element
T ∈X 0

2 (R3) or X b
2 (R3); 1 = $(T ) = � (T ) =  (@(T )) =  (d1T − d2T ) =  (0) = 0 ⇒⇐.

Recall CK = CK ∪f A. Extend v∈VN to C∗(CK) by v|
 = v|@
 = 0; ∀
∈A.

Theorem 9. V2(R3)|C2
∼= H 2(CK(R3)).

Proof. Since CK is a CW-subcomplex of CK;

H̃
∗
(CK; CK) ∼= H̃

∗
(CK=CK) ∼= H̃

∗
∨

#∈D1

S2
#

∨
<∈D2

S3
<

 :

From the exact sequence of the pair (CK; CK); we obtain

(3)

Since v|
 = 0; ∀
∈A;V2|C2 ⊂ ker � = Im #. Thus; there is an induced map .̃ :V2|C2 → H̃
2
(CK);

which is nontrivial by Theorem 8. By the Hurewicz theorem; Corollary 4 and Theorem 5 imply that
H 2(CK(R3);Z) = Z. Therefore; V2 uniquely generates H 2(CK(R3)).

Many arguments for Vassiliev invariants rely on augmented Reidemeister moves on projections of
links and graphs. Such arguments are available only in R3 or S3, so Theorem 8 holds only for R3 or
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S3. In [9], these concepts were extended to more general 3-manifolds by studying Map(S1 ×D2; M)
in almost general position. In particular, Theorem 10 generalizes an important result proved by
Stanford for R3, and extended further by Kalfagianni (Theorem 4.1 [8]).

We say $ is di>erentiable if $(diK1:::n) = $(djK1:::n) ∀i; j. In fact, if we forget the ordering,
$ :Xn → Q extends to Xn+1 satisfying the skein relation (1) if and only if $ is di7erentiable. We
say $ :Xn → Q is integrable if ∃ :Xn−1 → Q such that, for any ordering, $(K1:::n)= ◦di(K1:::n) ∀i.
In this case, we write

∫
$=  . We will say $∈Cn(CK) is integrable if $ is an integrable invariant

of Xn, invariant under changes of ordering or base point.

Theorem 10 (Lin [9]). Suppose �1(M)=�2(M)=1: Then $ :Xn(M) → Q is integrable if and only
if it satis:es: (i) the 1-term relation; (ii) the 4-term relation; (iii) $ is di>erentiable.

Corollary 11. If �1(M) = �2(M) = 1; then H 1(CK(M); D) = 0.

Proof. If $∈Z1(CK;D); we can Mnd  ∈C0(CK) such that $= � . (i) $|D1 = 0; so $ satisMes the
1-term relation. (ii) The 4-term relation is trivially satisMed for X1. (iii) �$= 0 implies $(d1K12) =
$(d2K12) so $ is di7erentiable. For CK0; Theorem 10 implies that $ is integrable; so ∃ with
$(K×)=  (dK×)= � (K×). For CKb; we must also show that $ is invariant under changes of base
point; so the result follows from the following lemma.

Lemma 12. Suppose �1(M) = 1: If $∈C1(CKb(M)) is di>erentiable; then $ is invariant under
changes of base point.

Proof. Since $ is di7erentiable; the following identity holds:

DeMne = − . Clearly; $ is invariant under changes of base point if and only
if $̃= 0.

As $̃ is invariant under crossing changes and �1(M) = 1; for all K ∈X b
1 ; $̃(K) = = 0.
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Lemma 13. If �1(M) = �2(M) = 1; then the natural restriction map ? :H 1(CK) → H 1(D) is an
isomorphism.

Proof. From the exact sequence of the pair (CK;D) and Corollary 11; it suLces to show that ? is
surjective.

Z1(CK) = {$∈C1(CK): �$= 0}= {$∈C1(CK): $ is di7erentiable};
B1(CK) = {$∈C1(CK): $= � }= {$∈C1(CK): $ is integrable}:

By Theorem 10; H 1(CK) = {$∈Z1(CK): $ does not satisfy 1-term relations}. Let Dn denote de-
generate n-singular knots. For K12 ∈D2; @K12 = (−1)i+1diK12 for i = 1 or 2; so if $|@D2 = 0 then $
is invariant under crossing changes; and therefore constant.

Z1(D) = {$∈C1(D): $|@D2 = 0}= {$∈C1(D): $ is constant};
B1(D) = {$∈C1(D): $= � |D1 = 0}:

Extend any map in H 1(D) = Z1(D) to a constant map in Z1(CK).

Theorem 14. For M = R3; V2|C2
∼= H 2(CK;D).

Proof. From Lemma 13; we obtain

By Corollary 4; H 1(CK) = 0. By Theorem 9 we obtain

We can relate these diagrams by the following commutative diagram; where the verticals are restric-
tion maps; and the isomorphism is by excision

Thus; #= 0; and consequently .̃ :V2
∼=→H 2(CK;D ∪f A) ∼= H 2(CK;D).

In higher dimensional cohomology, we consider even and odd cases separately.
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Theorem 15. Suppose �1(M)=�2(M)=1. For any Vassiliev invariant $∈VN ; [$]=0∈H 2k+1(CK;D)
∀N; k¿ 0.

Proof. Every Vassiliev invariant $∈VN is integrable:
∫
($|C2k+1) = $|C2k ; so by Lemma 16; [$] =

0∈H 2k+1(CK) ∀k¿ 0. Therefore; from (2); .($)∈ ker #. Since V∗ → H ∗(D) is always zero;
[$] = 0∈H 2k+1(CK;D) ∀k¿ 0.

We note that Lemma 16 has appeared earlier (Lemma 7.2 [4]).

Lemma 16. For n odd; if $∈Cn(CK) is integrable; then [$] = 0∈Hn(CK).

Proof. Let
∫
$= . As $ is integrable; it is di7erentiable so $∈Zn(CK) because the Mrst alternating

sum has an even number of equal terms:

�$(K1:::n+1) =$(@K1:::n+1) =
n+1∑
i=1

(−1)i+1$(diK1:::n+1) = 0;

� (K1:::n) =
n∑

i=1

(−1)i+1 (diK1:::n) =
n∑

i=1

(−1)i+1$(K1:::n) = $(K1:::n):

Theorem 17. Suppose �1(M)=�2(M)=1: For any n=2k;Vn(M)={$∈Zn(CK;D): $ is integrable}.

Proof. Every Vassiliev invariant is an integrable cocycle by Proposition 7. Conversely; let $ be an
integrable cocycle. If $ is both integrable and invariant under crossing changes; then $ is a weight
system. Since �1(M) = 1; Vn(M) contains a vector subspace isomorphic to Vn(R3) (Theorem 0.1
[8]). Over Q; any weight system can be integrated all the way to a knot invariant by the Kontsevich
integral; so $∈Vn(M). The result follows from Lemma 18.

Lemma 18. For n even; suppose $∈Cn(CK) is di>erentiable. Then �$ = 0 if and only if $ is
invariant under crossing changes.

Proof. �$(K1:::n+1) =
∑n+1

i=1 (−1)i+1$(diK1:::n+1) =$(dn+1K1:::n+1) because the alternating sum has an
odd number of equal terms; with the Mrst and last terms positive. Therefore; �$ = 0 if and only if
$(K+)− $(K−) = $(dn+1K×) = 0.

Any knot invariant $∈C0(CK) can be extended to an invariant of singular knots by the skein
relation (1). Then $ is integrable, but may not be of Mnite type. The proofs of Theorems 15 and 17
imply that if $ is not of Mnite type, then [$] = 0∈Hn(CK;D); ∀n¿ 0. We do not know whether
H 2k+1(CK;D) is nontrivial for any k¿ 1.

Corollary 19. If $∈VN\VN−1 and [$]∈Hn(CK;D) is nontrivial; then N = n= 2k.

Proof. By hypothesis; $∈VN |Cn . As [$] 
=0; n6N; and n = 2k by Theorem 15. By Theorem 17;
$∈Vn|Cn ; so N6 n. Therefore; N = n= 2k.
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Fig. 9. An isotopy.

We do not know whether the converse to Corollary 19 holds. Namely, if $∈Vn\Vn−1 for even
n, is [$]∈Hn(CK;D) nontrivial? After considering this problem together, Akira Yasuhara proved
the following partial aLrmative result for R3, generalizing Theorem 8.

Theorem 20 (Yasuhara). For any n¿ 1; there exist Vassiliev invariants in V2n(R3) which are non-
trivial in H 2n(CK(R3); D).

Proof. Fix n¿ 1. For any n-chord diagram Dn; let D2n be obtained by replacing each chord of Dn

with an adjacent pair of chords; allowing either ‖ or × for each of these pairs. Any n-singular knot
which represents Dn can be perturbed to a 2n-singular knot representing D2n by this local change:

Let K1:::2n represent D2n; such that every perturbed pair of double points is ordered consecutively
modulo 2n (e.g.; an ordering from any base point). By the isotopy in Fig. 9; ∀i∈{1; 3; : : : ; 2n− 1},

Therefore, @K1:::2n = 0. Any v∈V2n(R3) which is nonzero on K1:::2n is not a coboundary, and rep-
resents a nontrivial cohomology class in H 2n(CK(R3)). By (2), v lifts to a nontrivial class in
H 2n(CK(R3); D).

Corollary 21. For any v∈V2n(R3) coming from the Conway polynomial; v is nontrivial in
H 2n(CK(R3); D).

Proof. Let WC be the Conway weight system. For any n-chord diagram D; let D′ be the perturbed
chord diagram obtained by replacing each chord of D by an adjacent pair of intersecting chords. By
Theorem 2 of [2]; WC(D′)=WC(©)= 1, where © denotes the chord diagram with zero chords. Let
K1:::2n represent D′ as in the proof of Theorem 20; so @K1:::2n = 0. Since v(K1:::2n) =WC(D′) = 1; v is
not a coboundary.

For example, if v2 ∈V2(R3) then vn2 is nontrivial in H 2n(CK(R3); D) because vn2 is nonzero on
K1:::2n shown below with @K1:::2n = 0.
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Remark 22. Using some auxiliary geometric object to characterize the automorphisms of a space
has a long history. In surface theory; every automorphism of the curve complex is induced by a
surface di7eomorphism; and a bijection on vertices is induced if and only if it preserves edges in
the curve complex [7;11]. In our case; the group of isotopy classes of di7eomorphisms of M acts
naturally on CK(M). For R3; the only two classes are the identity and reTection; K1:::n �→ K∗

1:::n. By
analogy with the curve complex; we propose Conjecture 23.

DeMne F :CK(R3) → CK(R3) by F ◦ gK1:::n(x) = gK∗
1:::n
(−x) for any x∈ I n. For the induced map

F :Cn(X ) → Cn(X ), F(K1:::n) = [F ◦ gK1:::n(I
n)] = (−1)n[gK∗

1:::n
(I n)] = (−1)nK∗

1:::n. Since (di(K1:::n))∗ =
−diK∗

1:::n, it follows that F is a chain map, and induces F∗ on H ∗(CK). Whenever K1:::n is degen-
erate, so is K∗

1:::n, so F induces a map on H ∗(CK;D). If vn ∈Vn is canonical in the sense of [2],
vn(K∗) = (−1)nvn(K).

vn ◦ F(K1:::m) = (−1)mvn(K∗
1:::m) = (−1)n+2mvn(K1:::m) = (−1)nvn(K1:::m):

By Corollary 19, if vn is nontrivial in Hm(CK;D), then n = m = 2k. Thus, F∗ acts as the identity
on the subgroup of Vassiliev invariants in H ∗(CK;D). Geometrically, F is a bijection on n-cells of
CK . Gillete and Van Buskirk [5] presented a minimal knot diagram with a crossing which can be
switched to obtain the mirror image knot. F maps this edge to itself, but with reversed orientation.

Conjecture 23. If � is a self-homeomorphism of CK(R3) which is a bijection on vertices; such that
both � and �−1 preserve edges; then � is homotopic to the identity or to the map F .

We now consider the cup product in H ∗(CK), following Section 9.3 of [6]. Let H =(h1 : : : hp) ⊂
{1 : : : n} be any subset (possibly empty) with the natural order on its elements, and let K be the
complementary subset with the natural order on its elements. Let ?(HK) denote the sign of 
∈ Sn,
where 
(HK) = (1 : : : n). For � = ±1, let A�

H (u1; : : : ; up) = (v1; : : : ; vn), where vi = � if i 
∈ H and
vhr = ur; r = 1; : : : ; p: Thus, A−1

H is an isometry of Ip onto a particular back p-face of I n, and A+1
H

maps onto the parallel front p-face of I n. DeMne C :Cn(CK) → (C∗(CK)⊗ C∗(CK))n by

C(gK1:::n) =
∑

H⊂{1:::n}
?(HK)gK1:::n ◦ A−1

H ⊗ gK1:::n ◦ A+1
K =

∑
H⊂{1:::n}

?(HK)gd−K K1:::n
⊗ gd+HK1:::n

:

In our notation, d+H takes the positive resolution of double points with labels in H , and similarly for
d−K . We can simply refer to the singular knots:

C(K1:::n) =
∑

H⊂{1:::n}
?(HK)d−K K1:::n ⊗ d+HK1:::n: (4)

If u; v∈H ∗(CK); u∪ v(K1:::n)=
∑

H⊂{1:::n} ?(HK)u(d−K K1:::n) · v(d+HK1:::n). In Vn, u · v(K1:::n) is the same
expression without ?(HK) [17]. For example,

v2 ∪ v2(K1234)

=v2(K××−−)v2(K++××)− v2(K×−×−)v2(K+×+×) + v2(K×−−×)v2(K+××+)

+ v2(K−××−)v2(K×++×)− v2(K−×−×)v2(K×+×+) + v2(K−−××)v2(K××++):

On p. 210 of [14], Quillen showed that if A=⊕n¿0 An is a graded commutative algebra over Q
with An Mnite dimensional for all n, and A0 = Q; A1 = 0, then A is the rational cohomology ring
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of a simply connected pointed topological space. The algebra of Vassiliev invariants under the cup
product, V = (⊕n¿0Vn;∪), satisMes these conditions. Therefore, there exists a simply connected
pointed space X such that H ∗(X;Q) =V. For even Vassiliev invariants, the simply connected knot
complex CK(R3) seems very close to such a space since by Theorem 9, V2

∼= H 2(CK), and by (3),
Hp(CK) ∼= Hp(CK) ∀p¿ 4.

5. Hopf algebra of ordered chord diagrams

We show the cup product in H ∗(CK0) for Vassiliev invariants arises naturally from a cocommu-
tative di7erential graded Hopf algebra A0 of ordered chord diagrams.

Let D =⊕Dn denote the free abelian group over Q generated by chord diagrams with boundary
oriented counterclockwise, graded by the number of chords. An ordered chord diagram has its
chords ordered from 1 to n, equivalent up to rotation. Let D0 denote the free abelian group over Q
generated by equivalence classes of ordered chord diagrams.

Let A be the usual Hopf algebra of chord diagrams modulo the 4T relation [1]. The commutative
product D1 ·D2 corresponds to the direct sum of knots and is well deMned due to the 4T relation. The
cocommutative coproduct is deMned as follows: For D∈Dn, choose any ordering of its chords from
1 to n. Let H;K ⊂ {1 : : : n} be complementary subsets (possibly empty). Let DH denote the chord
diagram obtained from D by removing chords with labels in H . DeMne C(D)=

∑
H⊂{1:::n} DK ⊗DH .

If v∈Vm and D∈Dm, then Wm(v)(D) = v(KD) deMnes a weight system. The following relations are
well known (see, e.g., [1,17]). If v1 ∈Vp and v2 ∈Vq, let n= p+ q

v1 · v2(K1:::n) =
∑

H⊂{1:::n}
v1(d−K K1:::n) · v2(d+HK1:::n);

Wn(v1 · v2) = (Wp(v1)⊗Wq(v2)) ◦ C:

The fact that the algebra of Vassiliev invariants is a commutative and cocommutative Hopf algebra
was obtained via weight systems on chord diagrams [1]. This fact can be proved directly via the
dual bialgebra of singular knots modulo the skein relation (1) [13,10]. Take knots as group-like
elements, C(K) = K ⊗ K , and extend C to singular knots by the skein relation (1) to obtain the
expression analogous to (4): C(K1:::n) =

∑
H⊂{1:::n} d−K K1:::n ⊗ d+HK1:::n modK× = K+ − K−.

We now deMne a bialgebra of ordered chord diagrams which is compatible with the cup product
for Vassiliev invariants:

v1 ∪ v2(K1:::n) =
∑

H⊂{1:::n}
?(HK)v1(d−K K1:::n) · v2(d+HK1:::n):

The 4T relation is given by four diagrams, which are the same except for one “Mxed” chord and
one “moving” chord. The ordered 4T relation on D0 is given by the same expression, where the
Mxed chord and the moving chord have the same label in all four diagrams (see Fig. 10). Thus, for
each 4T relation on Dn; n¿ 2, we obtain n(n− 1) ordered 4T relations on D0

n.
Let A0 be the quotient of D0 by all ordered 4T relations. If D1 ∈D0

p and D2 ∈D0
q, the product

D1 ∪ D2 is deMned to be the chord diagram D1 · D2 with its ordering given by the same labels
for chords from D1 and by labeling the ith chord of D2 by p + i. By the same argument as in
Proposition 4.4 [17], the cup product is well deMned on D0 modulo the ordered 4T relation.
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Fig. 10. Ordered 4T relation.

For any D∈D0, let DH be obtained by removing the chords with labels in H , with its or-
dering induced from D. Let ?(HK) be deMned as in (4). DeMne C0 :D0

n → D0
n ⊗ D0

n by C0(D) =∑
H⊂{1:::n} ?(HK)DK ⊗DH . Then C0 descends to a coproduct on A0

n :C
0(ordered 4T)=(ordered 4T)⊗

©+©⊗ (ordered 4T), where © denotes any chord diagram in the ordered 4T relation with chords
i and j removed. To show C0 is cocommutative, apply T (a ⊗ b) = (−1)|a| |b|b ⊗ a. T ◦ C0(D) =∑

|H |=p (−1)pq?(HK)DH ⊗ DK =
∑

H ?(KH)DH ⊗ DK = C0(D).

Proposition 24. For D1; D2 ∈A0; C0(D1 ∪ D2) = C0(D1) ∪ C0(D2).

Proof. If D1 ∈A0
p and D2 ∈A0

q; let n= p+ q.

C0(D1) ∪ C0(D2)

=

 ∑
H1⊂{1:::p}

?(H1K1)D
1
K1

⊗ D1
H1

 ∪
 ∑

H2⊂{1:::q}
?(H2K2)D

2
K2

⊗ D2
H2


=
∑
H1 ;H2

?(H1K1)?(H2K2)(−1)|D
1
H1
‖D2

K2
|D1

K1
∪ D2

K2
⊗ D1

H1
∪ D2

H2

=
∑

H⊂{1:::n}
?(HK)(D1 ∪ D2)K ⊗ (D1 ∪ D2)H = C0(D1 ∪ D2)

as H = (H1; H2); K = (K1; K2) implies ?(H1K1)?(H2K2)(−1)|K1‖H2| = ?(HK).

If v∈Vn;Wn(v)(D1:::n)= v(K1:::n) is a weight system in (A0
n)

∗. Since Wn :Vn → (A0
n)

∗ is a graded
map, (Wp ⊗Wq)(v1 ⊗ v2) = (−1)pqWp(v1)⊗Wq(v2).

Theorem 25. If v1 ∈Vp and v2 ∈Vq then

Wp+q(v1 ∪ v2) = (−1)pq(Wp(v1)⊗Wq(v2)) ◦ C0:

Proof. Let n= p+ q. For D1:::n ∈D0
n; let K1:::n be any representative knot

Wn(v1 ∪ v2)(D1:::n) = v1 ∪ v2(K1:::n)

=
∑
|H |=p

?(HK)v1(d−K K1:::n) · v2(d+HK1:::n)
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=
∑
|H |=p

?(HK)Wp(v1)(DK) ·Wq(v2)(DH )

= (−1)pq(Wp(v1)⊗Wq(v2)) ◦ C0(D1:::n):

We now deMne the di7erential on A0. For D1:::n ∈D0, let diD1:::n = D1:::n\{ith chord} with the
induced ordering. DeMne @D1:::n =

∑n
i=1 (−1)i+1diD1:::n.

Proposition 26. @ (ordered 4T)=0.

Proof. S; E;W; N in Fig. 10 are the same except for the chords shown. We claim @(S−E+W−N )=0.
For k 
= i; j; dk(S − E +W − N ) = 0 by the ordered 4T relation. Therefore;

@S = (−1)idiS + (−1)jdjS = (−1)idiN + (−1)jdjN = @N;

@E= (−1)idiE + (−1)jdjE = (−1)idiW + (−1)jdjW = @W:

If 16 i¡ j6 n; didj = dj−1di, so @2 = 0. Also, @ is a derivation with respect to the cup product.
By the proof of Theorem 20, given D∈Dn, if D′ is any perturbation of D, then some KD′ ∈X 0

2n
represents D′, with @KD′ = 0. Now, with the same ordering, @D′ = 0.
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