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25.1 Introduction
The two most famous knot invariants, the Alexander polynomial (1923) and the Jones polynomial
(1984), mark paradigm shifts in knot theory. After each polynomial was discovered, associating
new structures to knot diagrams played a key role in understanding its basic properties. Using the
Seifert surface, Seifert showed, for example, how to obtain knots with a given Alexander poly-
nomial. For the Jones polynomial, even the simplest version of that problem remains open: Does
there exist a non-trivial knot with trivial Jones polynomial?

Kauffman gave a state sum for the Jones polynomial, with terms for each of the 2c states of a link
diagram with c crossings. Turaev constructed a closed orientable surface from any pair of dual
states with opposite markers.

For the Jones polynomial, the Turaev surface is a rough analog to the Seifert surface for the Alexan-
der polynomial. For a given knot diagram, the Seifert genus and the Turaev genus are computed
by separate algorithms to obtain each surface from the diagram. The invariants for a given knot
K are defined as the minimum genera among all the respective surfaces for K. The Seifert genus
is a topological measure of how far a given knot is from being unknotted. The Turaev genus is a
topological measure of how far a given knot is from being alternating. (See [26], which discusses
alternating distances.) For any alternating diagram, Seifert’s algorithm produces the minimal genus
Seifert surface. For any adequate diagram, Turaev’s algorithm produces the minimal genus Turaev
surface. Extending the analogy, we can determine the Alexander polynomial and the Jones polyno-
mial of K from associated algebraic structures on the respective surfaces of K: the Seifert matrix
for the Alexander polynomial, and the A–ribbon graph on the Turaev surface for the Jones polyno-
mial.

The analogy is historical, as well. Like the Seifert surface for the Alexander polynomial, the Turaev
surface was constructed to prove a fundamental conjecture related to the Jones polynomial. Tait
conjectured that an alternating link always has an alternating diagram that has minimal crossing
number among all diagrams for that link. A proof had to wait about a century until the Jones
polynomial led to several new ideas used to prove Tait’s Conjecture [21, 29, 35]. Turaev’s later
proof in [36] introduced Turaev surfaces and prompted interest in studying their properties.
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FIGURE 25.1: We put a saddle at each crossing of D to obtain a cobordism between the states sA

and sB.

25.2 What Is the Turaev Surface?
Let D be the diagram of a link L drawn on S 2. For any crossing , we obtain the A–smoothing as

� and the B–smoothing as �. The state s of D is a choice of smoothing at every crossing, resulting
in a disjoint union of circles on S 2. Let |s| denote the number of circles in s. Let sA be the all–A
state, for which every crossing of D has an A–smoothing. Similarly, sB is the all–B state. We will
construct the Turaev surface from the dual states sA and sB.

At every crossing of D, we put a saddle surface which bounds the A–smoothing on the top and the
B–smoothing on the bottom as shown in Figure 25.1. In this way, we get a cobordism between sA

and sB, with the link projection Γ at the level of the saddles. The Turaev surface F(D) is obtained
by attaching |sA| + |sB| discs to all boundary circles. See Figure 25.1 and [15] for an animation of
the Turaev surface for the Borromean link.

The Turaev genus of D is the genus of F(D), given by

gT (D) = g(F(D)) = (c(D) + 2 − |sA| − |sB|)/2.

The Turaev genus gT (L) of any non-split link L is the minimum of gT (D) among all diagrams D
of L. By [36, 12], L is alternating if and only if gT (L) = 0, and if D is an alternating diagram then
F(D) = S 2. In general, for any link diagram D, it follows that (see [12]):

1. F(D) is a Heegaard surface of S 3; i.e., an unknotted closed orientable surface in S 3.

2. D is alternating on F(D), and the faces of D can be checkerboard colored on F(D), with
discs for sA and sB colored white and black, respectively.

3. F(D) has a Morse decomposition, with D and crossing saddles at height zero, and the |sA|
and |sB| discs as maxima and minima, respectively.

Conversely, in [5], conditions were given for a Heegaard surface with cellularly embedded alter-
nating diagram on it to be a Turaev surface.
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25.3 The Turaev Surface and the Jones Polynomial
A diagram D is A–adequate if at each crossing, the two arcs of sA from that crossing are in different
state circles. In other words, |sA| > |s| for any state s with exactly one B–smoothing. Similarly, we
define a B–adequate diagram by reversing the roles of A and B above. If D is both A–adequate
and B–adequate it is called adequate. If D is neither A–adequate nor B–adequate it is called inad-
equate. A link L is adequate if it has an adequate diagram, and is inadequate if all its diagrams
are inadequate. Any reduced alternating diagram is adequate, hence every alternating link is ade-
quate.

Adequacy implies that sA and sB contribute the extreme terms ±tα and ±tβ of the Jones polynomial
VL(t), which determine the span VL(t) = |α − β|, which is a link invariant. Let c(L) be the minimal
crossing number among all diagrams for L. In [36], Turaev proved

span VL(t) ≤ c(L) − gT (L)

with equality if L is adequate. If D is a prime non-alternating diagram, then gT (D) > 0. Thus,
span VL(t) = c(L) if and only if L is alternating, from which Tait’s Conjecture follows.

Therefore, for any adequate link L with an adequate diagram D (see [1]),

gT (L) = gT (D) =
1
2

(c(D) − |sA(D)| − |sB(D)|) + 1 = c(L) − span VL(t).

So for the connect sum L#L′ of adequate links, gT (L#L′) = gT (L) + gT (L′).

Turaev genus and knot homology. Khovanov homology and knot Floer homology categorify the
Jones polynomial and the Alexander polynomial, respectively. The width of each bigraded knot
homology, wKH(K) and wHF(K), is the number of diagonals with non-zero homology. The Turaev
genus bounds the width of both knot homologies [10, 27]:

wKH(K) − 2 ≤ gT (K) and wHF(K) − 1 ≤ gT (K). (25.1)

For adequate knots, wKH(K) − 2 = gT (K) [1]. These inequalities have been used to obtain families
of knots with unbounded Turaev genus (see [8]).

Ribbon graph invariants. Like the Seifert surface, the Turaev surface provides much more in-
formation than its genus. An oriented ribbon graph is a graph with an embedding in an oriented
surface, such that its faces are discs. Turaev’s construction determines an oriented ribbon graph GA

on F(D): We add an edge for every crossing in sA, and collapse each state circle of sA to a vertex
of GA, preserving the cyclic order of edges given by the checkerboard coloring (see [8]).
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FIGURE 25.2: Ribbon graph GA for an inadequate diagram of the trefoil.

If L is alternating, then VL(t) = TG(−t,−1/t), where TG(x, y) is the Tutte polynomial [35]. For
any L, VL(t) is a specialization of the Bollobás–Riordan–Tutte polynomial of GA [12]. These ideas
extend to virtual links and non-orientable ribbon graphs [11]. In [13], a unified description is given
for all these knot and ribbon graph polynomial invariants.

25.4 Turaev Genus One Links
The Seifert genus is directly computable for alternating and positive links, and has been related
to many classical invariants. Moreover, knot Floer homology detects the Seifert genus of knots. In
contrast, for most non-adequate links, computing the Turaev genus is an open problem.

The Turaev genus of a link can be computed when the upper bounds in the inequalities (25.1) or
those in [26] match the Turaev genus of a particular diagram, which gives a lower bound. So it is
useful to know which diagrams realize a given Turaev genus. Link diagrams with Turaev genus
one and two were classified in [6, 22].

This classification uses the decomposition of any prime, connected
link diagram D ⊂ S 2 into alternating tangles. As in [22], an edge
in D is non-alternating when it joins two overpasses or two under-
passes. If D is non-alternating, we can isotope the state circles in
sA and sB to intersect exactly at the midpoints of all non-alternating
edges of D. In the figure shown to the right, α ∈ sA, β ∈ sB.
The arc δ joining the points in α ∩ β is called a cutting arc of
D ([22]).

A cutting arc is the intersection of S 2 with a compressing disc of
the Turaev surface F(D), which intersects D at the endpoints of δ.
The boundary γ of this compressing disc is called a cutting loop. Every cutting arc of D has a
corresponding cutting loop on F(D), and surgery of D along a cutting arc corresponds to surgery
of F(D) along a compressing disc, as shown in the following figure.
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If D′ is obtained by surgery from D, the surgered surface is its Turaev surface F(D′) with genus
gT (D′) = gT (D) − 1. So if gT (D) = 1, then γ is a meridian of the torus F(D), and surgery along all
cutting arcs of D cuts the diagram into alternating 2-tangles [22]. Hence, if gT (D) = 1, then D is a
cycle of alternating 2-tangles:

This also implies that for any alternating diagram D on its Turaev
surface F(D), if gT (D) ≥ 1 there is an essential simple loop γ
on F which intersects D twice and bounds a disc in a handlebody
bounded by F. Thus, the link on the surface in Example 1.3.1 of
[26] cannot come from Turaev’s construction. However, this con-
dition is not sufficient; for example, the diagram at right satisfies
the condition, but cannot be a Turaev surface because any pla-
nar diagram D for this link has more than four crossings, which would remain as crossings on
F(D).

Hayashi [16] and Ozawa [30] considered more general ways to quantify the complexity of the pair
(F,D), which has prompted recent interest in representativity of knots (see, e.g., [4, 7, 18, 24, 31,
32, 33]).

25.5 Open Problems
Below, we consider open problems in two broad categories:

Question 1. How do you determine the Turaev genus of a knot or link?

Does the Turaev genus always equal the dealternating number of a link? This is true in many cases,
and no lower bounds are known to distinguish these invariants (see [26]).
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The lower bounds (25.1) vanish for quasi-alternating links. For any g > 1, does there exist a quasi-
alternating link with Turaev genus g?

The Turaev genus is additive under connect sum for adequate knots, and invariant under mutation
if the diagram is adequate [1]. In general, for any K and K′, is gT (K#K′) = gT (K) + gT (K′)? If K
and K′ are mutant knots, is gT (K) = gT (K′)? The latter question is open even for adequate knots; if
D is a non-adequate diagram of an adequate knot K, then for a mutant D′ of D, it might be possible
that gT (K) < gT (D) = gT (D′) = gT (K′).

If K is a positive knot with Seifert genus g(K), then gT (K) ≤ g(K). Is this inequality strict; i.e., is
gT (K) < g(K) for a positive knot? It is known to be strict for g(K) = 1, 2 [20, 34] and for adequate
positive knots [25].

In general, how do you compute the Turaev genus, which is a link invariant, without using link
diagrams? Is it determined by some other link invariants?

Question 2. How do you characterize the Turaev surface?

From the construction in Section 25.2, it is hard to tell whether a given pair (F,D) is a Turaev
surface. The existence of a cutting loop implies that the alternating diagram D on F must have
minimal complexity; i.e., there exists an essential simple loop on F which intersects D twice. But
this condition is not sufficient. What are the sufficient conditions for a given pair (F,D) to be a
Turaev surface?

Alternating, almost alternating, and toroidally alternating knots have been characterized topologi-
cally using a pair of spanning surfaces in the knot complement [14, 17, 19, 23]. Turaev genus one
knots are toroidally alternating, and they contain almost-alternating knots, but they have not been
characterized topologically as a separate class of knots. What is a topological characterization of
Turaev genus one knots, or generally, of knots with any given Turaev genus?

Any non-split, prime, alternating link in S 3 is hyperbolic, unless it is a closed 2–braid [28]. This
result was recently generalized to links in a thickened surface F × I. If the link L in F × I admits a
diagram on F which is alternating, cellularly embedded, and satisfies an appropriate generalization
of “prime,” then (F × I) − L is hyperbolic [2, 9, 18]. Now, for a given Turaev surface F(D), let L
be a link in F(D) × I which projects to the alternating diagram on F. It follows that typically the
complement (F(D) × I) − L is hyperbolic, assuming there are no essential annuli. If gT (D) = 1
then (F(D) × I) − L has finite hyperbolic volume. If gT (D) > 1, then there is a well-defined finite
volume if the two boundaries are totally geodesic (see [3]). How do the geometric invariants of
(F(D) × I) − L depend on the original diagram D in S 2?
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