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Chapter 1

Turaev Surfaces

1.1 Introduction

The two most famous knot invariants, the Alexander polynomial (1923)
and the Jones polynomial (1984), mark paradigm shifts in knot theory. After
each polynomial was discovered, associating new structures to knot diagrams
played a key role in understanding its basic properties. Using the Seifert sur-
face, Seifert showed, for example, how to obtain knots with a given Alexan-
der polynomial. For the Jones polynomial, even the simplest version of that
problem remains open: Does there exist a non-trivial knot with trivial Jones
polynomial?

Kauffman gave a state sum for the Jones polynomial, with terms for each
of the 2c states of a link diagram with c crossings. Turaev constructed a closed
orientable surface from any pair of dual states with opposite markers.

For the Jones polynomial, the Turaev surface is a rough analog to the
Seifert surface for the Alexander polynomial. For a given knot diagram, the
Seifert genus and the Turaev genus are computed by separate algorithms to
obtain each surface from the diagram. The invariants for a given knot K are
defined as the minimum genera among all the respective surfaces for K. The
Seifert genus is a topological measure of how far a given knot is from being
unknotted. The Turaev genus is a topological measure of how far a given knot
is from being alternating. (See [26], which discusses alternating distances.)
For any alternating diagram, Seifert’s algorithm produces the minimal genus
Seifert surface. For any adequate diagram, Turaev’s algorithm produces the
minimal genus Turaev surface. Extending the analogy, we can determine the
Alexander polynomial and the Jones polynomial of K from associated alge-
braic structures on the respective surfaces of K: the Seifert matrix for the
Alexander polynomial, and the A–ribbon graph on the Turaev surface for the
Jones polynomial.

The analogy is historical, as well. Like the Seifert surface for the Alexan-
der polynomial, the Turaev surface was constructed to prove a fundamental
conjecture related to the Jones polynomial. In the 1880’s, Tait conjectured
that an alternating link always has an alternating diagram that has minimal
crossing number among all diagrams for that link. A proof had to wait about
a century until the Jones polynomial led to several new ideas used to prove
Tait’s Conjecture [21, 29, 35]. Turaev’s later proof in [36] introduced Turaev
surfaces and prompted interest in studying their properties.
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FIGURE 1.1: Cobordism between sA and sB (figures from [11] and [1])

1.2 What is the Turaev surface?

Let D be the diagram of a link L drawn on S2. For any crossing , we
obtain the A–smoothing as � and the B–smoothing as �. The state s of D is
a choice of smoothing at every crossing, resulting in a disjoint union of circles
on S2. Let |s| denote the number of circles in s. Let sA be the all–A state,
for which every crossing of D has an A–smoothing. Similarly, sB is the all–B
state. We will construct the Turaev surface from the dual states sA and sB .

At every crossing of D, we put a saddle surface which bounds the A–
smoothing on the top and the B–smoothing on the bottom as shown in Fig-
ure 1.1. In this way, we get a cobordism between sA and sB , with the link
projection Γ at the level of the saddles. The Turaev surface F (D) is obtained
by attaching |sA|+ |sB | discs to all boundary circles. See Figure 1.1, and [15]
for an animation of the Turaev surface for the Borromean link.

The Turaev genus of D is the genus of F (D), given by

gT (D) = g(F (D)) = (c(D) + 2− |sA| − |sB |)/2.

The Turaev genus gT (L) of any non-split link L is the minimum of gT (D)
among all diagrams D of L. By [36, 12], L is alternating if and only if gT (L) =
0, and if D is an alternating diagram then F (D) = S2. In general, for any link
diagram D, it follows that (see [12]):

1. F (D) is a Heegaard surface of S3; i.e., an unknotted closed orientable
surface in S3.

2. D is alternating on F (D), and the faces ofD can be checkerboard colored
on F (D), with discs for sA and sB colored white and black, respectively.

3. F (D) has a Morse decomposition, with D and crossing saddles at height
zero, and the |sA| and |sB | discs as maxima and minima, respectively.

Conversely, in [4] conditions were given for a Heegaard surface with cellu-
larly embedded alternating diagram on it to be a Turaev surface.
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1.3 The Turaev surface and the Jones polynomial

A diagram D is A–adequate if at each crossing, the two arcs of sA from that
crossing are in different state circles. In other words, |sA| > |s| for any state
s with exactly one B–smoothing. Similarly, we define a B–adequate diagram
by reversing the roles of A and B above. If D is both A–adequate and B–
adequate it is called adequate. If D is neither A–adequate nor B–adequate
it is called inadequate. A link L is adequate if it has an adequate diagram,
and is inadequate if all its diagrams are inadequate. Any reduced alternating
diagram is adequate, hence every alternating link is adequate.

Adequacy implies that sA and sB contribute the extreme terms ±tα and
±tβ of the Jones polynomial VL(t), which determine the span VL(t) = |α−β|,
which is a link invariant. Let c(L) be the minimal crossing number among all
diagrams for L. In [36], Turaev proved

spanVL(t) ≤ c(L)− gT (L)

with equality if L is adequate. If D is a prime non-alternating diagram, then
gT (D) > 0. Thus, span VL(t) = c(L) if and only if L is alternating, from which
Tait’s Conjecture follows.

Therefore, for any adequate link L with an adequate diagram D (see [1]),

gT (L) = gT (D) =
1

2
(c(D)− |sA(D)| − |sB(D)|) + 1 = c(L)− spanVL(t).

So for the connect sum L#L′ of adequate links, gT (L#L′) = gT (L) + gT (L′).

Turaev genus and knot homology. Khovanov homology and knot Floer
homology categorify the Jones polynomial and the Alexander polynomial, re-
spectively. The width of each bigraded knot homology, wKH(K) and wHF (K),
is the number of diagonals with non-zero homology. The Turaev genus bounds
the width of both knot homologies [9, 27]:

wKH(K)− 2 ≤ gT (K) and wHF (K)− 1 ≤ gT (K). (1.1)

For adequate knots, wKH(K) − 2 = gT (K) [1]. These inequalities have been
used to obtain families of knots with unbounded Turaev genus (see [7]).

Ribbon graph invariants. Like the Seifert surface, the Turaev surface pro-
vides much more information than its genus. An oriented ribbon graph is a
graph with an embedding in an oriented surface, such that its faces are discs.
Turaev’s construction determines an oriented ribbon graph GA on F (D): We
add an edge for every crossing in sA, and collapse each state circle of sA to a
vertex of GA, preserving the cyclic order of edges given by the checkerboard
coloring (see [7]).
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FIGURE 1.2: Ribbon graph GA for an inadequate diagram of the trefoil

If L is alternating, then VL(t) = TG(−t,−1/t), where TG(x, y) is the Tutte
polynomial [35]. For any L, VL(t) is a specialization of the Bollobás–Riordan–
Tutte polynomial of GA [12]. These ideas extend to virtual links and non-
orientable ribbon graphs [10]. In [13], a unified description is given for all
these knot and ribbon graph polynomial invariants.

1.4 Turaev genus one links

The Seifert genus is directly computable for alternating and positive links,
and has been related to many classical invariants. Moreover, knot Floer ho-
mology detects the Seifert genus of knots. In contrast, for most non-adequate
links, computing the Turaev genus is an open problem.

The Turaev genus of a link can be computed when the upper bounds in
the inequalities (1.1) or those in [26] match the Turaev genus of a particular
diagram, which gives a lower bound. So it is useful to know which diagrams
realize a given Turaev genus. Link diagrams with Turaev genus one and two
were classified in [5, 23].

This classification uses the decomposition of any
prime, connected link diagram D ⊂ S2 into alternat-
ing tangles. An edge in D is non-alternating when
it joins two overpasses or two underpasses. If D is
non-alternating, we can isotope the state circles in
sA and sB to intersect exactly at the midpoints of
all non-alternating edges of D. In the figure to the
right from [23], α ∈ sA, β ∈ sB . The arc δ joining
the points in α ∩ β is called a cutting arc of D.

A cutting arc is the intersection of S2 with a compressing disc of the Turaev
surface F (D), which intersects D at the endpoints of δ. The boundary γ of
this compressing disc is called a cutting loop. Every cutting arc of D has a
corresponding cutting loop on F (D), and surgery of D along a cutting arc
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corresponds to surgery of F (D) along a compressing disc, as shown in the
following figure from [23].

If D′ is obtained by surgery from D, the surgered surface is its Turaev
surface F (D′) with genus gT (D′) = gT (D) − 1. So if gT (D) = 1, then γ is a
meridian of the torus F (D), and surgery along all cutting arcs of D cuts the
diagram into alternating 2-tangles [23]. Hence, if gT (D) = 1, then D is a cycle
of alternating 2-tangles:

This also implies that for any alternating dia-
gram D on its Turaev surface F (D), if gT (D) ≥ 1
there is an essential simple loop γ on F which in-
tersects D twice and bounds a disc in a handlebody
bounded by F . Thus, the link on the surface in Ex-
ample 1.3.1 of [26] cannot come from Turaev’s con-
struction. However, this condition is not sufficient;
for example, the diagram at right satisfies the condition, but cannot be a Tu-
raev surface because any planar diagram D for this link has more than four
crossings, which would remain as crossings on F (D).

Hayashi [16] and Ozawa [30] considered more general ways to quantify the
complexity of the pair (F,D), which has prompted recent interest in repre-
sentativity of knots (see, e.g., [3, 6, 18, 24, 31, 32, 33]).

1.5 Open problems

Below, we consider open problems in two broad categories:
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Question 1 How do you determine the Turaev genus of a knot or link?

Does the Turaev genus always equal the dealternating number of a link?
This is true in many cases, and no lower bounds are known to distinguish
these invariants (see [26]).

The lower bounds (1.1) vanish for quasi-alternating links. For any g > 1,
does there exist a quasi-alternating link with Turaev genus g?

The Turaev genus is additive under connect sum for adequate knots, and
invariant under mutation if the diagram is adequate [1]. In general, for any K
and K ′, is gT (K#K ′) = gT (K) + gT (K ′)? If K and K ′ are mutant knots, is
gT (K) = gT (K ′)? The latter question is open even for adequate knots; if D is
a non-adequate diagram of an adequate knot K, then for a mutant D′ of D,
it might be possible that gT (K) < gT (D) = gT (D′) = gT (K ′).

If K is a positive knot with Seifert genus g(K), then gT (K) ≤ g(K). Is
this inequality strict; i.e., is gT (K) < g(K) for a positive knot? It is known to
be strict for g(K) = 1, 2 [20, 34] and for adequate positive knots [25].

In general, how do you compute the Turaev genus, which is a link invariant,
without using link diagrams? Is it determined by some other link invariants?

Question 2 How do you characterize the Turaev surface?

From the construction in Section 1.2, it is hard to tell whether a given pair
(F,D) is a Turaev surface. The existence of a cutting loop implies that the
alternating diagram D on F must have minimal complexity; i.e., there exists
an essential simple loop on F which intersects D twice. But this condition is
not sufficient. What are the sufficient conditions for a given pair (F,D) to be
a Turaev surface?

Alternating, almost alternating and toroidally alternating knots have been
characterized topologically using a pair of spanning surfaces in the knot com-
plement [14, 17, 19, 22]. Turaev genus one knots are toroidally alternating, and
they contain almost-alternating knots, but they have not been characterized
topologically as a separate class of knots. What is a topological characteriza-
tion of Turaev genus one knots, or generally, of knots with any given Turaev
genus?

Any non-split, prime, alternating link in S3 is hyperbolic, unless it is a
closed 2–braid [28]. This result was recently generalized to links in a thickened
surface F×I. If the link L in F×I admits a diagram on F which is alternating,
cellularly embedded, and satisfies an appropriate generalization of “prime,”
then (F×I)−L is hyperbolic [2, 8, 18]. Now, for a given Turaev surface F (D),
let L be a link in F (D)× I which projects to the alternating diagram on F . It
follows that typically the complement (F (D)× I)−L is hyperbolic, assuming
there are no essential annuli. If gT (D) = 1 then (F (D) × I) − L has finite
hyperbolic volume. If gT (D) > 1 then there is a well-defined finite volume if
the two boundaries are totally geodesic. How do the geometric invariants of
(F (D)× I)− L depend on the original diagram D in S2?
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