Homework 2

Topology I, Math 70800, Spring 2018
Instructor: Ilya Kofman
Due: Thursday Feb 22 before class

Reading ${ }^{1}$

1. Read about the idea and motivation for homology, pages 97-101.
2. Proof of Proposition 2.9 on page 111, Section 2.1.
3. Proof of the Five-Lemma on page 129.
4. Read about Barycentric Subdivision of Simplices from pages 119-120, and Iterated Barycentric Subdivision from page 123.
5. Read about the Naturality of Exact sequences on page 127.

Problems

1. (a) For an exact sequence $A \xrightarrow{f} B \rightarrow C \rightarrow D \xrightarrow{g} E$ show that $C=0$ iff f is surjective and g is injective.
(b) Using this prove that the inclusion $A \xrightarrow{i} X$ induces isomorphisms on all homology groups iff $H_{n}(X, A)=0$ for all n.
2. Let $r: X \rightarrow A$ be a retraction and let $i: A \rightarrow X$ be the inclusion map. Show that $i_{*}: H_{*}(A) \rightarrow H_{*}(X)$ is a monomorphism onto a direct summand.
3. Show that chain homotopy of chain maps is an equivalence relation.
4. If $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ is exact, then f is surjective if and only if h is surjective.
5. (a) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of vector spaces and linear maps, then show that $\operatorname{dim} \mathrm{B}=\operatorname{dim} \mathrm{A}+\operatorname{dim} \mathrm{C}$.
(b) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of finitely generated abelian groups, then show that rank $B=\operatorname{rank} A+\operatorname{rank} C$. (Hint: Extend a maximally independent subset of A to a maximally independent subet of B).

[^0](c) If $0 \rightarrow A_{n} \rightarrow A_{n-1} \rightarrow \ldots \rightarrow A_{1} \rightarrow A_{0} \rightarrow 0$ is an exact squence of finitely generated abelian groups, then $\sum_{i=0}^{n}(-1)^{i}$ rank $\mathrm{A}_{\mathrm{i}}=0$.
6. For each of the following exact sequences say as much as possible about the abelian group G and / or the unknown homomorphism α.
(a) $0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} \rightarrow 0$
(e) $0 \rightarrow \mathbb{Z}_{p^{m}} \rightarrow G \rightarrow \mathbb{Z}_{p^{n}} \rightarrow 0$
(b) $0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z}_{2} \rightarrow 0$
(f) $0 \rightarrow \mathbb{Z}_{3} \rightarrow G \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \rightarrow 0$
(c) $0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z}_{n} \rightarrow 0$
(g) $0 \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}_{2} \rightarrow 0$
(d) $0 \rightarrow \mathbb{Z}_{4} \rightarrow G \rightarrow \mathbb{Z}_{2} \rightarrow 0$
(h) $0 \rightarrow G \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0$
7. Show that $H_{0}(X, A)=0$ iff A meets eah path-component of X.
8. Compute the relative homology groups for the following pairs (X, A).
(a) $X=S^{2}$ and $A=\left\{a_{1}, \ldots, a_{n}\right\}$
(b) $X=T^{2}$ and $A=$ meridian.
(c) $X=\mathbb{R}$ and $A=\mathbb{Q}$.
(d) $X=T^{2}$ and $A=$ meridian and longitude.
9. Compute the homology of space X gives below, by finding a homotopy equivalent space (usually a deformation retract) Y whose homology you have computed. Justify the homotopy equivalence (or deformation retract).
(a) X is orientable surface of genus g with b boundary components.
(b) X is non-orientable surface of genus g with b boundary components.
(c) $X=\mathbb{R}^{3}-\{(0,0, z) \mid z \in \mathbb{R}\}$
(d) $X=\mathbb{R}^{3}-\left(\bigcup_{i=0}^{n}\{(i, 0, z) \mid z \in \mathbb{R}\}\right)$
(e) $X=\mathbb{R}^{3}-\left\{(x, y, 0) \mid x^{2}+y^{2}=1\right\}$
(f) X is a torus with n meridional disks attached (a meridional disk a disk which bounds a meridian inside the torus).
(g) $X=\mathbb{R}^{3}-\left(\{(0,0, z) \mid z \in \mathbb{R}\} \cup\left\{(x, y, 0) \mid x^{2}+y^{2}=1\right\}\right)$

Hand-in: 2, 5c, 8ad, 9 fg

[^0]: ${ }^{1}$ Algebraic Topology by Allen Hatcher, at http://www.math. cornell. edu/~hatcher/AT/ATpage.html

