Homework 1

Topology I, Math 70800, Spring 2018
Instructor: Ilya Kofman
Due: Thursday Feb 8 before class

Reading ${ }^{1}$

1. Read Chapter 0, Section Cell Complexes pages 5-8. Read examples of cell structures on orientable and non-orientable surfaces, the spheres S^{n}, the real and complex projective space $\mathbb{R} P^{n}$ and $\mathbb{C} P^{n}$.
2. Read at least one proof of classification of surfaces, available at:
http://www.math.csi.cuny.edu/~ikofman/topology_GC_F15.html
3. Read section on "Collapsing subspaces" and Examples $0.7,0.8$ and 0.9 on pages 11-12 in Chapter 0.
4. An important ingredient in collapsing and deforming spaces is the following property: If (X, A) is a CW pair consisting of a CW complex X and a contractible subcomplex A, then the quotient map $X \rightarrow X / A$ is a homotopy equivalence. Read the proof of this in Propositions 0.16 and 0.17 on page 15-16 in Chapter 0.

Problems

1. Let X be the space obtained from S^{2} by attaching n 2-cells along any collection of n disjoint circles in S^{2}. Show that $X \simeq \bigvee_{n+1} S^{2}$.
2. Let G be a graph with v vertices and e edges. (a) Show that $G \simeq \bigvee_{n} S^{1}$ and find n in terms of v and e. (b) Show that if $G \simeq \bigvee_{m} S^{1}$, then $m=n$.

A compact surface S with boundary is a 2-manifold with boundary. Let \bar{S} be the closed surface obtained by gluing disks to the boundary of S. Then the genus of S is the genus of the closed surface \bar{S}. You can model a surface with boundary as the standard surface model with the interiors of disjoint discs deleted.
3. (a) Find the genus of the cylinder and the Mobius strip.

[^0](b) Show that the torus with a disc removed (punctured torus) is homotopic to the figure eight.
(c) Let S be a compact surface with boundary with genus g and b boundary components. Show that $S \simeq \bigvee_{n} S^{1}$ and find n in terms of g and b.
4. Identify the following surfaces from the given surface symbols.
(a) $a b c a^{-1} b^{-1} c^{-1}$
(b) $a b c a^{-1} d b^{-1} c^{-1} d^{-1}$
(c) $a e^{-1} a^{-1} b d b^{-1} c c$
5. Let X be a CW complex.
(a) Show that attaching a 2-cell to X adds a relation to $\pi_{1}(X)$.
(b) Show that attaching an n-cell to X for $n \geq 3$ does not change the fundamental group.
6. (a) Show that the space obtained by identifying the edges of a polygon in pairs is a closed surface.
(b) Show that the space obtained by identifying pairs of edges of a finite collection of disjoing 2-simplicies is a closed surface.
(c) Show that the edges in (b) can always be oriented so as to define a Δ-complex structure on the resulting surface. (harder!)
7. Find a Δ-complex structure and use it to compute the simplicial homology for the following spaces:
(a) $X=\vee_{n} S^{1}$
(b) $X=\vee_{n} S^{2}$
(c) X obtained by identifying the verticies of Δ^{2} to a point.
8. (a) Identify the surfaces given below, and (b) Compute their simplicial homology.

Hand-in: Problems 3c, 5, 7b, 8(a).

[^0]: ${ }^{1}$ All section, chapter, page and example numbers refer to the book "Algebraic Topology" by Allen Hatcher freely available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html

