4.1 Vectors

j adde n-
Vectors are mathematical objects that can be added, and 3.-—3‘—-8. by nur -
bers, subject to certain rules. The real numbers are the simplest nmﬁ.sﬁsr
of vectors, and the rules for sums and multiples of any vectors are just the
following properties of sums and multiples of numbers:

ut+v=v4u lu=u
ut(v+w)=(u+v)+w
u+0=u

ut(—u)=0

a(u+v)=au+av
(a+b)u=au+bu
QATEV = AQTV—-.

These rules obviously hold when a,b,1,u,v,w,0 are all numbers, and 0 is
the ordinary zero.

They also hold when u,v,w are points in the plane R?, if we interpret
0 as (0,0), + as the vector sum defined foru = (u1,up) and v = (v1,v2) by
(ur,u2) + (v +v2) = (u +vi,u2 +v2),
and au as the scalar multiple defined by

a(uy,uy) = (auy,auy).

The vector sum is geometrically interesting, because u + v is the fourth
vertex of a parallelogram formed by the points 0, u, and v (Figure 4.1).

u+v=(u+vi,up+v)

v=(vi,»2)

u=(up,u)

Figure 4.1: The parallelogram rule for vector sum

e D nil

In fact, the rule for forming the sum of two vectors is often called the
llelogram rule.”

Scalar multiplication by a is also geometrically interesting, because it

sents magnification by the factor a. It magnifies, or dilates, the whole
e by the factor a, transforming each figure into a similar copy of itself.
re 4.2 shows an example of this with ¢ = 2.5.

aw

au

av

Figure 4.2: Scalar multiplication as a dilation of the plane

I vector spaces

seems that the operations of vector addition and scalar multiplication
ture some geometrically interesting features of a space. With this in
d, we define a real vector space to be a set V of objects, called vectors,

omogno:m9°<o08amm&ao:m=amom_ma B:szommosmmnm@mcmnﬁ
owing conditions: ,

e Ifuandvare in V, then so are u + v and au for any real number a.

e There is a zero vector 0 such that u -+ 0 = u for each vector u. Each
uinV has a additive inverse —u such that u + ( —u)=0.

e Vector addition and scalar multiplication on V have the eight prop-
erties listed at the beginning of this section.




It turns out that real vector spaces are a lidean
geometry. We must introduce extra structure, wh led the inner
product, before we can talk about length and angle. But onee the inner
product is there, we can prove all theorems of Euclidean geometry, often
more efficiently than before. Also, we can uniformly extend geometry to
any number of dimensions by considering the space R" of ordered n-tuples
of real numbers (x1,x2,...,%,).

For example, we can study three-dimensional Euclidean geometry in
the space of ordered triples

R? = {(x1,%2,x3) : x1,%2,%3 € R},
where the sum of u = (uy,u,u3) and v = (v1,v2,v3) is defined by
(u1,u2,u3) + (v1,v2,v3) = (w1 +vi,u2 +v2,u3 +v3)
and the scalar multiple au is defined by

Qﬁtftmu:uv.n Aatfhtwva&mv.

Exercises

It is obvious that R? has the eight properties of a real vector space. However, it
is worth noting that R? “inherits” these eight properties from the corresponding
properties of real numbers. For example, the property u+ v = v+ u (called the
commutative law) for vector addition is inherited from the corresponding commu-
tative law for number addition, u +v = v +u, as follows:
u+v=(u,u2) +(vi+v2)
= (u1 +vi,u2 +v2)
= (vi+u,v2 +uz)
= (v1,v2) + (u1,u2) by definition of vector addition
=v+u. .

by definition of vector addition

by commutative law for numbers

4.1.1 Check that the other seven properties of a vector space for R? are inherited
from corresponding properties of R.

4.1.2 Similarly check that R" has the eight properties of a vector space.

The term “dilation” for multiplication of all vectors in R? (or R” for that
matter) by a real number a goes a little beyond the everyday meaning of the word
in the case when a is smaller than 1 or negative.

4.1.3 What is the geometric meaning of the transformation of R? when every
vector is multiplied by —17? Is it a rotation?

4.1.4 Ts it a rotation of R? when every vector is multiplied by —1?

Direction and linear independence

ectors give a concept of direction in IR? by representing lines through 0.
u is a nonzero vector, then the real multiples au of u make up the line
through 0 and u, so we call them the points “in direction u from 0.” (You
ay prefer to say that —u is in the direction opposite to u, but it is simpler
10 associate direction with a whole line, rather than a half line.)

Nonzero vectors u and v, therefore, have different directions from 0 if
neither is a multiple of the other. It follows that such u and v are linearly
independent; that is, there are no real numbers a and b, not both zero, with

au-+bv=0.

Because, if one of a, b is not zero in this equation, we can divide by it and
hence express one of u, v as a multiple of the other.

The concept of direction has an obvious generalization: w has direction
u from v (or relative to v) if w—v is a multiple of u. We also say that “w—v
has direction u,” and there is no harm in viewing w — v as an abbreviation
for the line segment from v to w. As in coordinate geometry, we say that
line segments from v to w and from s to t are parallel if they have the same

direction; that is, if
w—v=a(t—s) forsome real number a # 0.

Figure 4.3 shows an example of parallel line segments, from v to w and
from s to t, both of which have direction u.

0

Figure 4.3: Parallel line segments with direction u

Here we have

3 1
w—v=—-u and t—s= —u,

5 3 so w—v=3(t—s).




t the-
theorem

Now let us try out the vector concept of parallel
orems from previous chapters. The first is a version of
that parallels cut a pair of lines in proportional segments.

Vector Thales theorem. Ifs and v are on one line through 0, t and w are
on another, and w — Vv is parallel to t —s, then'v = as and w = at for some
number a.

If w— v is parallel to t —s, then
w—v=a(t—s)=at—as for some real number a.

Because v is on the same line through 0 as s, we have v = bs for some b,
and similarly w = ct for some c (this is a good moment to draw a picture).
It follows that

W —vV=ct—bs =at—as,

and therefore,
(c—a)t+(a—Db)s=0.

But s and t are in different directions from 0, hence linearly independent,
o) .
c—a=a—b=0.

Thus, v = as and w = at, as required. O

As in axiomatic geometry (Exercise 1.4.3), the Pappus theorem follows
from the Thales theorem. However, “proportionality” is easier to handle
with vectors.

Vector Pappus theorem. Ifr, s, t, u, v, w lie alternately on two lines
through 0, with w— v parallel to s —r and t —s parallel to v —w, then u —t
is parallel to w —r.

Figure 4.4 shows the situation described in the theorem.

Because u — v is parallel to s —r, we have u = as and v = ar for some
number a. Because t — s is parallel to v—w, we have s = bw and t = bv
for some number b.

From these two facts, we conclude that

=as=abw and t=bv=bar,

hence,
u—t=abw — bar = ab(w—r),

w s=bw u = as — abw

Figure 4.4: The parallel Pappus configuration, labeled by vectors

and therefore, u — t is parallel to w —r. O

The last step in this proof, where we exchange ba for ab, is of course
a trifle, because ab = ba for any real numbers a and b. But it is a big step
in Chapter 6, where we try to develop geometry without numbers. There
we have to build an arithmetic of line segments, and the Pappus theorem is
crucial in getting multiplication to behave properly.

Exercises

In Chapter 1, we mentioned that a second theorem about parallels, the Desargues
theorem, often appears alongside the Pappus theorem in the foundations of ge-
ometry. This situation certainly holds in vector geometry, where the appropriate
Desargues theorem likewise follows from the vector Thales theorem.

4.2.1 Following the setup explained in Exercise 1.4.4, and the formulation of the
vector Pappus theorem above, formulate a “vector Desargues theorem.”

4.2.2 Prove your vector Desargues theorem with the help of the vector Thales
theorem.

4.3 Midpoints and centroids

The definition of a real vector space does not include a definition of dis-
tance, but we can speak of the midpoint of the line segment from u to v
and, more generally, of the point that divides this segment in a given ratio.



To see why, first observe that v is obtained v-u,
the vector that represents the position of v relative 1o nerally,
adding any scalar multiple a(v — u) to u produces a point whose direction
relative to u is the same as that of v. Thus, the points u + a(v —u) are
precisely those on the line through u and v.- In particular, the midpoint
of the segment between u and v is obtained by adding w? —u) to u, and
hence,

— ; 1 1

midpoint of line segment between u and v =u+ 5 (v—u)= > (u+v).
One might describe this result by saying that the midpoint of the line seg-
ment between u and v is the vector average of u and v.

This description of the midpoint gives a very short proof of the theorem
from Exercise 2.2.1, that the diagonals of a parallelogram bisect each other.
By choosing one of the vertices of the parallelogram at 0, we can assume
that the other vertices are at u, v, and u + v (Figure 4.5).

u+v

0

Figure 4.5: Diagonals of a parallelogram

Then the midpoint of the diagonal from 0 to u+v is 5 (u-+v). And, by
the result just proved, this is also the midpoint of the other diagonal—the
line segment between u and v. O

The vector average of two or more points is physically significant be-
cause it is the barycenter or center of mass of the system obtained by plac-
ing equal masses at the given points. The geometric name for this vector
average point is the centroid.

In the case of a triangle, the centroid has an alternative geometric de-
scription, given by the following classical theorem about medians: the lines
from the vertices of a triangle to the midpoints of the respective opposite
sides.

of medians, ﬁ of any triangle pass through the
e point, the centroid of the triangle.

To prove this theorem, suppose that the vertices of the triangle are u, v,
d w. Then the median from u goes to the midpoint w? +w), and so on,
shown in Figure 4.6.

¥

Figure 4.6: The medians of a triangle

Looking at this figure, it seems likely that the medians meet at the point

2/3 of the way from u to 5(v-+ W), that is, at the point
2 (1 1 2, 1
= —u|=u+z —-u=z v+ wW).
=+MANA<+SV u =+u?+5 3u w?+ )

Voila! This is the centroid, and a similar argument shows that it lies 2/3
of the way between v and w? +w) and 2/3 of the way between W and
W? +v). That is, the centroid is the common point of all three medians.[]

You can of course check by calculation that w? +v+w) lies 2/3 of
' the way between v and w? +w) and also 2/3 of the way between € and
W? +v). But the smart thing is not to do the calculation but to predict the
result. We know that calculating the point 2/3 of the way between u and

2(v+w) gives

1

3 (u+v+w),

a result that is unchanged when we permute the letters u, v, and w. The

other two calculations are the same, except for the ordering of the letters u,
v, and w. Hence, they lead to the same result.



Exercises

1 [ K.
4.3.1 Show that a square with vertices t, u, v, w has center :. +utviw).

The theorem about concurrence of medians generalizes beautifully to three di-
mensions, where the figure corresponding to a triangle is a tetrahedron: a solid
with four vertices joined by six lines that bound the tetrahedron’s four triangular
faces (Figure 4.7).

Figure 4.7: A tetrahedron

4.3.2 Suppose that the tetrahedron has vertices t, u, v, and w. Show that the cen-

troid of the face opposite to t is w? +Vv+w), and write down the centroids
of the other three faces.

4.3.3 Now consider each line joining a vertex to the centroid of the opposite face.
In particular, show that the point 3/4 of the way from t to the centroid of
the opposite face is m (t+u+ v+ w)—the centroid of the tetrahedron.

4.3.4 Explain why the point wﬁ +u+v+w) lies on the other three lines from a
vertex to the centroid of the opposite face.

4.3.5 Deduce that the four lines from vertex to centroid of opposite face meet at
the centroid of the tetrahedron.

4.4 The inner product

If w = (u;,up) and v = (v1,v;) are vectors in R?, we define their inner
product u-v to be u1vy +uyv,. Thus, the inner product of two vectors is
not another vector, but a real number or “scalar.”” For this reason, w-v is
also called the scalar product of w and v.

R
- It is easy to check, from the definition, that the inner product has the

ebraic properties
uv=v-u,
u-(v+w)=u-v+u-w,

(au)-v=u-(av) =a(u-v),
hich immediately give information about length and angle:
e The length |u] is the distance of u = (u;,uy) from 0, which is y/u? + u3
by the definition of distance in R2 (Section 3.3). Hence,
_=_.N = tui=u-u
It follows that the square of the distance |v —u| from u to v is

v—ul?=(v—u)-(v—u) = [u® +|v[*-2u-v.

e Vectors u and v are perpendicular if and only if u-v = 0. Because
u has slope u, /u1 and v has slope v, /vy, and we know from Section
3.5 that they are perpendicular if and only the product of their slopes
is —1. That means

U Vi

Ui V2

and hence wurvy = —uyvy,

multiplying both sides by u;v,. This equation holds if and only if

O=ujvi+uvy, =u-v.

We will see in the next section how to extract more information about
gle from the inner product. The formula above for [v —u| 2 turns out to be
e “cosine rule” or “law of cosines” from high-school trigonometry. But
ven the criterion for perpendicularity gives a simple proof of a far-from-
bvious theorem:

oncurrence of altitudes. In any triangle, the perpendiculars from the
vertices to opposite sides (the altitudes) have a common point.

To prove this theorem, take 0 at the intersection of two altitudes, say
those through the vertices u and v (Figure 4.8). Then it remains to show
that the line from 0 to the third vertex w is perpendicular to the side v — u.



Figure 4.8: Altitudes of a triangle

Because u is perpendicular to the opposite side w — v, we have
u-(w—v)=0, thatis, u-w—u-v=0.
Because v is perpendicular to the opposite side u — w, we have
v-(u—w)=0, thatis, v.u—v-w=0.
Adding these two equations, and vomawsm in mind thatu-v = v-u, we get
u-w—v-w=0, thatis, w-(v—u)=0.

Thus, w is perpendicular to v — u, as required. ]

Exercises

The inner product criterion for directions to be perpendicular, namely that their
inner product is zero, gives a neat way to prove the theorem in Exercise 2.2.2
about the diagonals of a rhombus.

4.4.1 Suppose that a parallelogram has vertices at 0, u, v, and u+ v. Show that
its diagonals have directions u+v and u —v.

4.4.2 Deduce from Exercise 4.4.1 that the inner product of these directions is
lu|?> —|v|?, and explain why this is zero for a rhombus.

The inner product also gives a concise way to show that the equidistant line of
two points is the perpendicular bisector of the line connecting them (thus proving
more than we did in Section 3.3).

LT T
The condition for w to be equidistant from u and v is
(w=u)(w=u)=(w-v): (w-v).
Explain why, and show that this condition is equivalent to
luf? —2w-u=|v|? —2w-v.

Show that the condition found in Exercise 4.4.3 is equivalent to

ASI_TNINV -(u—v) =0,

and explain why this says that w is on the perpendicular bisector of the line
fromutov.

ing established that the line equidistant from u and v is the perpendicular
tor, we conclude that the perpendicular bisectors of the sides of a triangle are
current—because this is obviously true of the equidistant lines of its vertices.

Inner product and cosine

inner product of vectors u and v depends not only on their lengths
and |v| but also on the angle 6 between them. The simplest way to
press its dependence on angle is with the help of the cosine function. We
ite the cosine as a function of angle 6, cos 6. But, as usual, we avoid
asuring angles and instead define cos 0 as the ratio of sides of a right-
led triangle. For simplicity, we assume that the triangle has vertices 0,
and v as shown in Figure 4.9.

0 u
Figure 4.9: Cosine as a ratio of lengths

Then the side v is the hypotenuse, 6 is the angle between the side u
d the hypotenuse, and its cosine is defined by

cosf = —.
M .



We can now use the inner product criterion
rive the following formula for inner product.

ty to de-

Inner product formula. If 6 is the angle between vectors w and v, then
u-v=u||v|cos.

This formula follows because the side v —u of the triangle is perpen-

dicular to side u; hence,
O=u-(v—u)=u-v—u-u

Therefore, u-v=u-u= [u> = _=__<_ﬂ = O

This formula gives a convenient way to calculate the angle (or at least
its cosine) between any two lines, because we know from Section 4.4 how

to calculate |u| and |v|. It also gives us the “cosine rule” of trigonometry
directly from the calculation of (u—v)- (u—v).

|u||v|cos 6.

Cosine rule. In any triangle, with sides u, v, and w —v, and angle 6
opposite to the side u — v,

lu—v[? = |u?+|v|* —2|ul|v|cos 6.

Figure 4.10 shows the triangle and the relevant sides and angle, but the
proof is a purely algebraic consequence of the inner product formula.

\4

0

Figure 4.10: Quantities mentioned in the cosine rule

The algebra is simply the following:
u—vf>=@u-v) (u—v)
=u-u—2u0-v+v-v
= [u2+|v?—2u-v

= [u]? +|v|*> — 2|u|v|cos 6.

A nice way to close this ? is to consider the special case
which u and v are the sides of a right-angled triangle and u — v is the
tenuse. In this case, u is perpendicular to v, so u-v = 0, and the cosine
¢ becomes

hypotenuse” = [u —v|* = [u|?+|v|?
which is the Pythagorean theorem. This result should not be a surprise,

wever, because we have already seen how the Pythagorean theorem is
ilt into the definition of distance in R? and hence into the inner product.

e Pythagorean theorem can also be proved directly, by choosing 0 at the right
gle of a right-angled triangle whose other two vertices are u and V.

.1 Show that |v—u|? = [u|? + |v|? under these conditions, and explain why
this is the Pythagorean theorem.

While on the subject of right-angled triangles, we mention a useful formula
r studying them.

5.2 Show that (v+u)-(v—u)=|v]*— lul?.

is formula gives a neat proof of the theorem from Section 2.7 about the angle
a semicircle. Take a circle with center 0 and a diameter with ends u and —u as
own in Figure 4.11. Also, let v be any other point on the circle.

0

Figure 4.11: Points on a semicircle

5.3 Show that the sides of the triangle meeting at v have directions v+ u and
v — u and hence show that they are perpendicular.




4.6 The triangle inequality

In vector geometry, the triangle inequality |u+ v| < |u| 4 |v| of Exercises

3.3.1 to 3.3.3 is usually derived from the fact that
u-v| < |u|v].

This result, known as the Cauchy—Schwarz inequality, follows easily from
the formula in the previous section. The inner product formula says

u-v=u||v|cos®,
and therefore,

u-v| < |ul|v]|cos 6|

< |u||v| because |cosf|<1.

Now, to get the triangle inequality, it suffices to show that |u+ v|? -
(lu] 4 |v|)2, which we do as follows:

la+v]>=(u+v)-(u+v)
= uf+2u-v+ _<_~‘. “because u-u = |u|? and v-v = |v|?
< [u[*+2|u||v|+|v|* by Cauchy—Schwarz
= (Jul+|v])? O

The reason for the fuss about the Cauchy—Schwarz inequality is that it
holds in spaces more complicated than R?, with more complicated inner
products. Because the triangle inequality follows from Cauchy—Schwarz,
it too holds in these complicated spaces. We are mainly concerned with the
geometry of the plane, so we do not need complicated spaces. However, it
is worth saying a few words about R", because linear algebra works just as
well there as it does in R?.

Higher dimensional Euclidean spaces

R" is the set of ordered n-tuples (x1,x2,...,x,) of real numbers x;,x,, ..., x,.

These ordered n-tuples are called n-dimensional vectors. If w and v are in
R", then we define the vector sum u+v by

u+v=(u;+vi,u2+va,...,Un+vn),

B e
the scalar multiple au for a real number a by

au = (auy,aua, . ..,auy).

easy to check that R” has the properties enumerated at the beginning
ection 4.1. Hence, R” is a real vector space under the vector sum and
ar multiplication operations just described.

" R” becomes a Euclidean space when we give it the extra structure of
jnner product with the properties enumerated in Section 4.4. These
rties hold if we define the inner product u-v by

U-vV=uivi+upvy+---+uyvu,

s easy to check. This inner product enables us to define distance in R"

the formula
u?=u-u

ich gives the distance |u| of u from the origin. This result is compatible
the concept of distance in R2 or R? given by the Pythagorean theorem.
example, the distance of (uy,u2,u3) from 0 in R3 is

lu| = ¢/u} +u3+ui,

Figure 4.12 shows.

Figure 4.12: Distance in R




use of a

. ,\:m +=WV is the distance from 0 of (u),us,

right-angled triangle with sides u; and u>),

o \/u}+u3+uj is the distance from O of (u,us,u3) (the hypotenuse
of a right-angled triangle with sides y/u? +u3 and u3).

All theorems proved in this chapter for vectors in the plane R? hold in
R". This fact is clear if we take the plane in R” to consist of vectors of
the form (x,x2,0,...,0), because such vectors behave exactly the same as
vectors (x1,xp) in R%. But in fact any given plane in R” behaves the same
as the special plane of vectors (x1,x2,0,...,0). We skip the details, but it
can be proved by constructing an isometry of R” mapping the given plane
onto the special plane. As in R?, any isometry is a product of reflections.
In R", at most n + 1 reflections are required, and the proof is similar to the
one given in Section 3.7. ‘

Exercises

A proof of Cauchy—Schwarz using only general properties of the inner product can
be obtained by an algebraic trick with quadratic equations. The general properties
involved are the four listed at the beginning of Section 4.4 and the assumption
that w-w = |w|?> > 0 for any vector w (an inner product with the latter property is
called positive definite). )

4.6.1 The Euclidean inner product for R” defined above is positive definite. Why?

4.6.2 For any real number x, and any vectors u and v, show that

(u+xv) - (u+xv) = [u]* +2x(u-v) +x%|v|?,
and hence that [u|? 4 2x(u-v) 4 x%|v|? > 0 for any real number x.

4.6.3 If A, B, and C are real numbers and A + Bx + Cx? > 0 for any real number
x, explain why B? —4AC < 0.

4.6.4 By applying Exercise 4.6.3 to the inequality [u|> + 2x(u-v) +x2|v|> > 0,
show that

(u-v)? < [ul*|v|*>, andhence |u-v|< [u]|v|.

TEE— G
Rotations, matrices, and complex numbe

tion matrices

tion 3.6, we defined a rotation of R? as a function re,s, Where ¢ and s
two real numbers such that ¢ + s = 1. We described re,s as the function
sends (x,y) to (cx — sy,sx+cy), but it is also described by the matrix
oefficients of x and y, namely

c —s ,
where ¢ = cos 0 and s = sin 6.

’
A\ c

ause most readers will already have seen matrices, it may be useful to
slate some previous statements about functions into matrix language,
re they may be more familiar. (Readers not yet familiar with matrices
| find an introduction in Section 7.2.)

Matrix notation allows us to rewrite (x,y) — (cx — sy,sx+cy) as

c" 'k X
s y

cx— Sy
sx+cy

us, the function r s is applied to the variables x and y by multiplying the

X c —S5

) on the left by the matrix s .
reby separated from their variables, so they can be composed without
variables becoming involved—simply by multiplying matrices.

This idea gives proofs of the formulas for cos(8; + 6,) and sin(6; +6,),
ilar to Exercises 3.5.3 and 3.5.4, but with the variables x and y filtered

Jlumn vector . Functions are

B!
. .. . cosB; —sinB;
e Rotation through angle 6; is given by the matrix siaf « . 2aRl
. a1 : cosB, —sinb,
e Rotation through angle 6, is given by the matrix kil )00l

e Hence, rotation through 6; + 6, is given by the product of these two
matrices. That is,



4.7.5 Explain why any u with |u| = | can be written in
for some angle 6, and conclude that multiplication by &
(hence the whole plane) through angle 6.

+isin6
the point |

It follows, in particular, that multiplication by i = (0, 1) sends (1,0) to (0, 1)
and hence rotates the plane through 7£/2. This result in turn implies i = — 1,
because multiplication by i* then rotates the plane through 7, which is also the
effect of multiplication by —1.

4.8 Discussion

Because the geometric content of a vector space with an inner product is
much the same as Euclidean geometry, it is interesting to see how many
axioms it takes to describe a vector space. Remember from Section 2.9
that it takes 17 Hilbert axioms to describe the Euclidean plane, or 16 if we
are willing to drop completeness of the line.
To define a vector space, we began in Section 4.1 with eight axioms for
vector addition and scalar multiplication:
ut+v=v+u lu=u
u+(v+w)=(utv)+w
u+0=u
u+(—u)=0

a(u+v) =au+av
(a+Db)u=au+bu
a(bu) = (ab)u.

Then, in Section 4.4, we added three (or four, depending on how you
count) axioms for the inner product:

u-v=v-u,
u-(v+w)=u-v+u-w,

(au)-v=u-(av) =a(u-v),

We also need relations among inner product, length, and angle—at a
minimum the cosine formula,

u-v=ul[v|cos8,

so this is 12 or 13 axioms so far.
But we have also assumed that the scalars a, b, . .. are real numbers, so
there remains the problem of writing down axioms for them. At the very

..o__o:o&:x_ca:sw..anﬁlss-ou_wa%:m?:._oanuQE_ozo..

culation, the so-called field axioms (this is usual when defining a vector
ce):

a+b=>b+a, ab = ba (commutative laws)
a+(b+c)=(a+b)+c, a(bc) = (ab)c  (associative laws)
a+0=a, al =a (identity laws)
a+(—a)=0, aa ' =1 (inverse laws)

a(b+c) =ab+ac (distributive law)

Thus, the usual definition of a vector space, with an inner product suit-
le for Euclidean geometry, takes more than 20 axioms! Admittedly, the
Id axioms and the vector space axioms are useful in many other parts of
athematics, whereas most of the Hilbert axioms seem meaningful only
geometry. And, by varying the inner product slightly, one can change
e geometry of the vector space in interesting ways. For example, one can
tain the geometry of Minkowski space used in Einstein’s special theory
relativity. To learn more about the vector space approach to geometry,
ee Linear Algebra and Geometry, a Second Course by 1. Kaplansky and
etric Affine Geometry by E. Snapper and R. J. Troyer.

Still, one can dream of building geometry on a much simpler set of
ioms. In Chapter 6, we will realize this dream with projective geometry,
hich we begin studying in Chapter 5.



