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Right-angled polyhedra and alternating links
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To any prime, alternating link, we associate a collection of hyperbolic right-angled
ideal polyhedra by relating geometric, topological and combinatorial methods to
decompose the link complement. The sum of the hyperbolic volumes of these
polyhedra is a new geometric link invariant, which we call the right-angled volume
of the alternating link. We give an explicit procedure to compute the right-angled
volume from any alternating link diagram, and prove that it is a new lower bound for
the hyperbolic volume of the link.

57M25, 57M27, 57M50

1 Introduction

Right-angled structures have featured in many striking results in 3–manifold geometry,
topology and group theory. Alternating knot complements decompose into pieces
with essentially the same combinatorics as the alternating diagram, so the hyperbolic
geometry of alternating knots is closely related to their diagrams. Therefore, it is
natural to ask: Which alternating links are right-angled? In other words, when does
the link complement with the complete hyperbolic structure admit a decomposition
into ideal hyperbolic right-angled polyhedra? Surprisingly, besides the Whitehead and
Borromean links, only two alternating links are known to be right-angled; see Gan [14].
In Section 5.5, we conjecture that, whether alternating or not, there does not exist a
right-angled knot.

However, we can obtain right-angled structures from alternating diagrams, which do not
give the complete hyperbolic structure, but nevertheless provide useful and computable
geometric link invariants. These turn out to be related to previous geometric construc-
tions obtained from alternating diagrams, and below we relate these constructions to
each other in new ways.
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Specifically, we associate a set of hyperbolic right-angled ideal polyhedra to any reduced,
prime, alternating link diagram. We prove that these polyhedra can be described
equivalently from the following geometric, topological and combinatorial perspectives.
This equivalence implies that such a set of right-angled polyhedra is a link invariant,
whose volume sum we call the right-angled volume vol?.K/ of the alternating link K.
We prove that this new geometric link invariant is a lower bound for the hyperbolic
volume of the link, and is asymptotically sharp for certain sequences of knots and links.

Geometry

The guts of a 3–manifold cut along an essential surface is the union of all the hyperbolic
pieces in its JSJ decomposition. Lackenby [19], building on work of Thurston [33],
Agol [1] and Menasco [22], described such a geometric decomposition of the com-
plement of any alternating link by cutting along its two checkerboard surfaces. In [8],
we determined explicitly the guts of the manifolds obtained from alternating links
with certain extra hypotheses, cut along both checkerboard surfaces. In Section 2,
we again analyze the guts of these manifolds, but we remove the extra hypotheses
on the alternating links, and we construct the associated hyperbolic right-angled guts
polyhedra.

Topology

Bonahon and Siebenmann [6], building on work of Conway [12] and Montesinos [26],
defined a characteristic splitting of any link diagram along Conway spheres into
arborescent and nonarborescent parts. In the double-branched cover of the link, the
arborsescent part is covered by a graph manifold, and the nonarborsescent part by
a hyperbolic manifold. Menasco and Thistlethwaite [23; 24; 32; 31] showed that,
up to flypes, an alternating diagram can be decomposed only in limited ways along
invariant Conway spheres into alternating tangles. Thistlethwaite [31] used such tangles
to completely describe the characteristic splitting of any alternating link diagram. In
Section 3, we use Thistlethwaite’s results to build tangle polyhedra associated with the
nonarborescent part of an alternating link.

Combinatorics

Right-angled polyhedra are natural hyperbolic “bricks” which have been used to
construct hyperbolic 3–manifolds. In 1931, Löbell [20] constructed the first example
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of a closed orientable hyperbolic 3–manifold by gluing eight copies of the right-angled
14–hedron. Andreev’s theorem (Theorem 4.7 below) implies that, up to isometry, a
hyperbolic right-angled ideal polyhedron is uniquely determined by its combinatorial
type. In Section 4, we define rational reduction of an alternating link diagram, and then
determine its diagrammatic splitting into Andreev polyhedra.

One main result of this paper is the somewhat surprising fact that the three polyhedra,
obtained from now-classic geometric, topological and combinatorial methods, actually
give the same link invariant for alternating links!

Theorem 4.11 The Andreev polyhedra are identical to the tangle polyhedra and the
guts polyhedra.

Right-angled volume

In Section 5, we define the right-angled volume vol?.K/ of an alternating link K as
the sum of the hyperbolic volumes of these right-angled polyhedra. It gives a new
geometric link invariant for alternating links.

Theorem 5.3 For any hyperbolic alternating link L with hyperbolic volume vol.L/,

vol?.L/� vol.L/:

Morover, we show the bound is asymptotically sharp: there exist many sequences of
alternating links Kn such that

lim
n!1

vol?.Kn/

vol.Kn/
D 1:

To compare vol?.L/with other volume bounds, we exhibit examples for which vol?.L/
beats the best previous lower bounds, given by Agol, Storm and Thurston [2] and
Lackenby [19], by a factor of two. However, for any Montesinos link, which may
have arbitrarily large volume, vol?.L/D 0. Thus, as a lower volume bound, vol?.L/
should be used together with other bounds. We discuss this further in Section 5.4.
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2 Geometry

2.1 Background on guts

By work of Menasco, if a link has a reduced, prime, alternating diagram that is not the
diagram of a .2; q/–torus link, then the link complement is hyperbolic. However, it
can be difficult to determine geometric information directly from a diagram.

We will cut a 3–manifold along an essential surface and consider its JSJ decomposition
[16; 17; 18], which cuts the 3–manifold into components consisting of I–bundles,
Seifert-fibered pieces and guts. To describe the guts, we need to set up some definitions
and notation. We will mainly consider 3–manifolds M that admit a finite-volume
hyperbolic structure. We may view such a manifold as the interior of a compact
manifold M with torus boundary components. The fact that M is hyperbolic means it
admits a hyperbolic structure M ŠH3=� , where � is a discrete subgroup of PSL.2;C/.
Under this structure, any closed curve in a neighborhood of @M is isotopic to a parabolic
element of � .

We view M as an open manifold without boundary, but at times it will be more
convenient to consider the compact manifold M . In the case of a link complement,
M D S3 � L, the compact manifold M is homeomorphic to S3 � N.L/, where
N.L/ denotes an open regular neighborhood of L in S3. Then @M is a collection
of tori. These form the parabolic locus of M. More generally, the parabolic locus �
of a compact 3–manifold M will consist of annuli and tori in @M. When we want to
carefully keep track of the parabolic locus, we write the manifold as a pair .M ; �/. For
our link example, we have the pair .S3�N.L/; @N.L//.

Now, we wish to cut a 3–manifold M along an essential surface S. When we view M

as an open manifold, then S will be a properly embedded open surface, homeomorphic
to the interior of a compact surface S with boundary on @M. Let M nnS denote the
closure (in M ) of the manifold obtained by removing a regular neighborhood of S

from M. The boundary of M nnS is homeomorphic to zS D @N.S/, the double cover
of S.

On the other hand, we may also express this information in terms of a pair. If M

has parabolic locus @M consisting of tori, then we express the cut manifold as a
pair .M nnS ; @.M /nn@S/. Note that the parabolic locus will now include annular
components.
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A pair .M ; �/ is called a pared acylindrical 3–manifold if M is a compact, irreducible,
atoroidal manifold with boundary (such as S3�N.L/ or M nnS ) and ��@M is a union
of incompressible annuli and tori such that every map .S1�I;S1�@I/! .M ; @M��/

that is �1–injective deforms as a map of pairs into �. Denote @M �� by @0M. Thurston
showed that a pared acylindrical 3–manifold admits a hyperbolic metric with totally
geodesic boundary @0M and parabolic locus � [27].

For M an open 3–manifold and S an essential surface, the guts of M nnS, denoted
by guts.M nnS/, is the union of all components in the JSJ decomposition of M nnS

that admit a hyperbolic structure. In terms of the notation of pared manifolds, let
.M ; @M / denote the pair corresponding to M. Let A denote the union of essential
annuli in M nnS. Let M1 be a hyperbolic component of .M nnS/nnA, so M1 is a
component of guts.M nnS/. It is associated to a pair .M 1; �1/, where M 1 is the union
of M1 along with its boundary as a subset of M, and �1 consists of @M \ @M1 as
well as any component of zA\M1. That is, when we take the JSJ decomposition of a
3–manifold, all essential annuli that we cut along to form the decomposition become
part of the parabolic locus of the guts.

2.2 Checkerboard decomposition

Suppose L is a link that admits a reduced, prime, alternating diagram. Its two checker-
board surfaces are essential [5; 19], and so we may follow the procedure outlined above
and cut along a checkerboard surface S, obtaining the guts of .S3�L/nnS. Indeed, we
will use a doubling procedure to cut along both checkerboard surfaces.

Let L be a link with reduced, prime, alternating diagram, and associated checkerboard
surfaces B and R. It is well known that cutting S3 �L along both B and R simul-
taneously decomposes it into two identical (topological) ideal polyhedra [22]. For
an alternating link, each of the two ideal polyhedra is obtained by taking edges and
ideal vertices corresponding to the diagram graph of the link. Call one of these ideal
polyhedra the checkerboard polyhedron associated to the link diagram.

Instead of cutting along both surfaces simultaneously, we cut along the two surfaces
separately and consider the guts. Let MB denote the 3–manifold consisting of the guts
of .S3�L/nnB, and MR the guts of .S3�L/nnR; ie

MB D guts..S3
�L/nnB/; MR D guts..S3

�L/nnR/:
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The boundary @0MB consists of MB \
zB, and similarly @0MR consists of MR \

zR.
The parabolic locus of each consists of remnants of the link and essential annuli that
we cut along to form the guts.

Let D.MB/ denote the double of MB along the surface @0MB . This manifold admits
a hyperbolic structure in which @0MB is totally geodesic, and similarly for D.MR/.

In [8, Lemma 4.8], we showed that the surface R\MB doubles to give an essential
surface DR in D.MB/. Similarly, B \MR doubles to give an essential surface DB

in D.MR/. Thus, we may cut along these surfaces, and find the guts of the resulting
pieces. That is, consider the manifold guts.D.MB/nnDR/. This is a 3–manifold with
boundary consisting of fDR\ guts.D.MB/nnDR/. Its double D

�
guts.D.MB/nnDR/

�
therefore admits a hyperbolic structure in which fDR\ guts.D.MB/nnDR/ is totally
geodesic.

In [8], we showed that, under certain hypotheses on L, guts.D.MB/nnDR/ is the entire
manifold D.MB/nnDR. In this case, the double D

�
guts.D.MB/nnDR/

�
is built by

gluing eight copies of the original checkerboard polyhedron obtained by cutting S3�L

along B and R. We now drop the restrictions on L from [8].

Let D
�
D..S3�L/nnB/nnDR

�
denote the manifold obtained first by cutting along B,

then doubling, then cutting along DR and doubling. We will show:

Proposition 2.1 The manifold D
�
guts.D.MB/nnDR/

�
is homeomorphic to

� the guts of the manifold D
�
D..S3�L/nnB/nnDR

�
,

� the guts of the manifold D
�
D..S3�L/nnR/nnDB

�
,

� D
�
guts.D.MR/nnDB/

�
.

Moreover , all four manifolds are built by gluing eight copies of a collection of polyhedra ,
obtained by cutting the checkerboard polyhedron along normal squares and collapsing
each normal square boundary to an ideal vertex.

A normal square is a disk properly embedded in the checkerboard polyhedron that
meets exactly four faces of the polyhedron in normal form — basically transversely
and without backtracking; see for example [19], or [13, Definition 3.15] for a precise
definition of normal form, or Lemma 2.5 below for a description of normal squares in
a checkerboard polyhedron. Note that we will use the term square below to refer to
(normal) squares in a polyhedron as well as to corresponding curves in a diagram, ie
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curves that meet the diagram exactly four times, using the correspondance between the
diagram and the checkerboard polyhedra noted above.

Definition 2.2 (guts polyhedra) Let L be a link with a reduced, prime, alternating
diagram. The guts polyhedra associated to the diagram are the ideal polyhedra obtained
from Proposition 2.1 by taking one of the eight copies of polyhedra making up the guts
of

D
�
D..S3

�L/nnB/nnDR
�
:

Alternatively, it is obtained by cutting the checkerboard polyhedron along normal
squares required for that proposition, and discarding Seifert-fibered or I–bundle com-
ponents.

Our main interest in studying the guts polyhedra is the following result:

Theorem 2.3 The unique hyperbolic structure on D
�
guts.D.MB/nnDR/

�
induces a

hyperbolic structure on the guts polyhedra in which the red and blue faces are totally
geodesic , with red faces meeting blue at right angles.

The rest of this section gives the proofs of Proposition 2.1 and Theorem 2.3.

We will prove a sequence of results that will help us understand the form of the guts
polyhedra, and how to identify them in a given link complement. First, we present an
example.

Example 2.4 (Borromean rings) When L is the standard reduced alternating diagram
of the Borromean rings, Thurston showed that the checkerboard polyhedron associated
with S3�L is a regular ideal octahedron [33]. Checkerboard color the faces blue and
red. In this case, .S3�L/nnB is obtained by cutting two copies of the regular ideal
octahedron along blue faces. The result is hyperbolic with geodesic boundary, and so
its guts, MB , is built of two copies of the regular ideal octahedron. When we double,
D.MB/ is made of four copies of the regular ideal octahedron. Now cut along DR.
This cuts along red faces, but again the manifold, built of four regular ideal octahedra,
is hyperbolic with geodesic boundary. Hence, its guts is a manifold made up of the
four octahedra, and its double is made up of eight octahedra. Tracing back through
the definition, in this case the guts polyhedra is the single regular ideal octahedron. It
agrees with the checkerboard polyhedron.

Algebraic & Geometric Topology, Volume 22 (2022)



746 Abhijit Champanerkar, Ilya Kofman and Jessica S Purcell

In order to identify guts polyhedra, we need to identify the guts of manifolds obtained
from the original link complement. In order to identify guts, we need to identify tori
and annuli of the JSJ decomposition of the cut manifold. Because we are assuming we
begin with a hyperbolic link, in fact there will be no essential tori, and we need only to
identify essential annuli. The following lemma gives the relationship of the essential
annuli to the normal squares of Proposition 2.1.

Lemma 2.5 Let M be an irreducible , boundary irreducible 3–manifold and S an
essential surface properly embedded in M such that M nnS can be decomposed into a
finite number of 4–valent checkerboard polyhedra with red and blue faces , where blue
faces map to zS. Let A be an essential annulus in M nnS with boundary components
@A � zS. Then A can be isotoped into normal form with respect to the checkerboard
polyhedra; ie:

� A meets the polyhedra in disks.

� Each such disk is a square: it has exactly four sides running through four faces ,
with opposite sides in faces of the same color , and it meets four edges and no
vertices of the polyhedron.

� Each side of a square is an arc in a face of the polyhedron with endpoints on
distinct edges.

Proof The fact that such an essential surface can be put into normal form is well
known; for example it is noted in [19; 13]. By an Euler characteristic argument, such
an annulus decomposes into normal squares.

Lemma 2.6 For L a link with a reduced , prime , alternating diagram , and notation as
above , both the manifolds D.MB/ and D

�
guts.D.MB/nnDR/

�
have a decomposition

into a finite collection of 4–valent ideal polyhedra that admit a checkerboard coloring ,
red and blue. Each polyhedron in the collection can be identified with a subset of the
checkerboard polyhedron of the diagram of L, obtained by cutting the checkerboard
polyhedron along a normal square , and then collapsing the normal square to a new
ideal vertex. Each red (blue) face is a subset of a red (blue) face of the checkerboard
polyhedron. Finally , D

�
guts.D.MB/nnDR/

�
is made up of eight copies of a finite

collection of such polyhedra.

Proof We apply Lemma 2.5 twice. If A is an essential annulus in .S3�L/nnB, then
A meets the checkerboard polyhedra of S3�L in a collection of normal squares, by
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that lemma. Thus, when we cut along A, we split the checkerboard polyhedra into new
polyhedra, each a subset of the checkerboard polyhedra. Because A becomes part of the
parabolic locus in MB , we then collapse the squares that came from A into ideal vertices.
Thus, after the first step of taking the guts, we have split checkerboard polyhedra into
new ideal polyhedra with a red–blue checkerboard coloring as described. Discard
polyhedra that give I–bundle or Seifert-fibered pieces, and double the result along the
blue faces. This doubles the number of polyhedra, and gives the manifold D.MB/. So
D.MB/ is built of 4–valent polyhedra that satisfy the conclusions of the first part of
the lemma. The surface DR is the image of the red faces of these polyhedra under the
gluing.

For the second step, we cut along DR\D.MB/, which is equivalent to cutting the
4–valent polyhedra of D.MB/ along red faces. Then we find essential annuli in
D.MB/nnDR. Any such annulus can be put into normal form with respect to the
polyhedra for D.MB/, and by Lemma 2.5 it meets the polyhedra of D.MB/ in squares.
Again these cut the polyhedra into new checkerboard colored polyhedra, and after
collapsing the squares to ideal vertices we have 4–valent ideal polyhedra as claimed.

For the final statement, we count the number of copies of polyhedra. Cutting along
normal squares to obtain MB and then doubling gives four copies of polyhedra obtained
by cutting the original checkerboard polyhedron along normal squares. Cutting these
along normal squares and then doubling gives eight copies of new polyhedra obtained
from the original by cutting along normal squares.

2.3 Identifying the guts

In the process of proving the rest of Proposition 2.1 and Theorem 2.3, we will explicitly
determine the guts from a reduced, prime, alternating diagram of the link L. This
will allow us to explicitly find the guts polyhedra. In particular, not every polyhedron
obtained by cutting the checkerboard polyhedron along a normal square will be part of
the guts. First, not every normal square is necessarily a square in the decomposition
of an essential annulus into normal form as in Lemma 2.5. Second, some polyhedra
resulting may be part of the I–bundle or Seifert-fibered components of the cut manifold,
not the guts.

The next lemma addresses the first point for the manifold .S3�L/nnB. We will call a
normal square a nontrivial square if it bounds more than one vertex on each side.
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Lemma 2.7 Let L be a link with a reduced , prime , alternating diagram. The following
nontrivial squares in the checkerboard polyhedra of S3�L give essential annuli in the
manifold .S3�L/nnB:

(1) a square bounding a string of red bigons , or

(2) a cycle of fused units , ie a string of squares , each bounding a fused unit , as in
Figure 1.

Conversely, any essential annulus for .S3�L/nnB in normal form with respect to the
checkerboard polyhedra decomposes into squares with one of the above two forms. A
similar statement holds for .S3�L/nnR, with red and blue surfaces swapped.

Proof This is essentially due to Lackenby, with the proof contained in [19, Section 5].
We step through the argument.

The first case, of a square bounding a string of red bigons, is dealt with in the first two
paragraphs of [19, Section 5]. Each red bigon is a disc with boundary consisting of
four edges: two edges lie on blue faces, and two edges lie on vertices of the polyhedron.
Each of these can be given a product structure I �.arc of zB/. The parabolic locus P of
.S3�L/nnB also has a product structure of the form I � .arc of zB/, with the product
structure of the red bigon matching that of the parabolic locus. Thus, a neighborhood
of the union of the parabolic locus and red bigon faces cuts off an I–bundle component
of .S3 � L/nnB. Its boundary is an essential annulus in .S3 � L/nnB. In normal
form, this essential annulus will be made up exactly of squares bounding a string
of red bigons (the boundary of a neighborhood of red bigons) and trivial squares
parallel to vertices. Each nontrivial square bounding red bigons appears in an essential
annulus.

In the second case, consider the dashed squares shown in Figure 1, left, or more
generally any number of these in a cycle. The gluing on the checkerboard polyhedra
glues these along their red faces to the dashed squares shown second from left in
Figure 1, and the two collections of squares form an annulus. Together, these cut off
a Seifert-fibered solid torus, as shown in Figure 1, right. Thus, this is an essential
annulus.

Conversely, in the proof of [19, Theorem 14], Lackenby shows that if there are no red
bigons in the diagram, and thus no essential annuli arising from an I–bundle determined
by bigons as in case (1), then an essential annulus will be made up of fused units as in
Figure 1, left; see also [19, Figures 12 and 13].
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Figure 1: Left: A cycle of three fused units, with dashed squares in each
polyhedron. Right: A Seifert-fibered solid torus is built by gluing top faces to
top faces and bottom to bottom (ie gluing red faces), with a half-turn on one
side.

Lemma 2.8 Let L be a link with a reduced , prime , alternating diagram and associated
checkerboard polyhedra. Then any square in the original checkerboard polyhedra for
the link complement S3�L gives rise to an embedded annulus in D.MB/nnDR, and
this annulus is essential in D.MB/nnDR if and only if it is a nontrivial square.

Conversely, any embedded essential annulus in D.MB/nnDR is obtained by a sequence
of an even number of nontrivial squares in the original checkerboard polyhedra.

Proof We prove the “conversely” statement first. It is basically contained in the
proof of [8, Lemma 4.10], but we repeat the argument here. By Lemma 2.5, an
essential annulus is made up of squares that meet red and blue faces of the polyhedra
of D.MB/nnDR. Since we glue by the identity on blue faces, the squares must glue
together as shown in Figure 2, left, which is modified from [8]. In that figure, dashed
lines indicate squares that lie in one copy of the polyhedron, while straight lines indicate

Figure 2: Left: the form of an essential annulus in D.MB/nnDR. Right: if
the square encircles a single vertex, the corresponding annulus is inessential.
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squares in a second copy, glued to the first by the identity map on blue faces. Note the
dashed squares and straight squares glue into an annulus. If there are only two squares
and each bounds a region containing a single ideal vertex as in the right figure, then
each square making up the annulus is parallel to the ideal vertex shown. After gluing
blue faces by the identity, the single ideal vertex becomes an annulus in the parabolic
locus. The two squares parallel to that vertex will be parallel to the annulus, and hence
not essential.

To prove the first statement, given any square in the polyhedron that encircles more than
one ideal vertex on each side, build an annulus in D.MB/nnDR by taking one copy
of the square in each of the two polyhedra that are glued, and gluing by the identity
map on blue sides. If the square encircles a single ideal vertex, then the pair of squares
glued in D.MB/nnDR encircle the annulus in the parabolic locus P that comes from
the vertex, in particular by gluing the blue faces adjacent to the vertex by the identity
map. This is not an essential annulus.

Suppose the annulus is boundary compressible. Then a boundary compression disk has
one arc of the boundary on the annulus, and another arc on the red surface. We may cut
along the squares, shrink them to ideal vertices and put the boundary compression disk
into normal form with respect to these new polyhedra. If the boundary compression
disk meets a blue face, then an outermost arc of intersection of the blue face and
the compression disk must run from the ideal vertex corresponding to the square to
an adjacent edge of the diagram. This contradicts the definition of normal. Thus,
the boundary compression disk does not meet a blue face, and thus lies in a single
polyhedron. But this means a single arc of the boundary of the compression disk
connects opposite sides of the square, red to red. This is impossible because the red
faces on opposite sides are not connected (because the diagram is prime). Thus, any
such annulus is boundary incompressible. If not boundary parallel, then it is essential.

In light of Lemma 2.7 and especially Lemma 2.8, determining the guts is analogous
to examining squares in the polyhedral decomposition of each manifold. Because
the polyhedral decomposition comes from cutting the checkerboard polyhedra of an
alternating diagram along squares, finding the guts amounts to analyzing squares in the
diagram graph of the alternating link.

The essential annuli that are most important in determining the guts are those that
separate hyperbolic pieces from other hyperbolic pieces, or separate hyperbolic pieces
from I–bundle or Seifert-fibered pieces. By uniqueness of the JSJ decomposition, these
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annuli are unique up to isotopy and pairwise disjoint. There may be additional essential
annuli embedded in the Seifert-fibered and I–bundle components of the cut manifolds,
and these may not be disjoint from each other. Because we choose to keep the guts
only, they do not affect our results. However, we do need to be able to recognize them
and discard them.

Lemma 2.9 Suppose L is a link with reduced , prime , alternating diagram and
corresponding checkerboard polyhedra. Let A denote a maximal collection of dis-
joint essential annuli in D.MB/nnDR. Let C be a component of the polyhedra of
.D.MB/nnDR/nnA. Then C gives rise to an I–bundle or Seifert-fibered piece of
.D.MB/nnDR/ if and only if C has the combinatorics of the standard diagram of a
.2; q/–torus link. That is , C is not part of guts.D.MB/nnDR/ exactly when the red or
blue faces of C form a chain of bigons.

By “maximal” we mean a collection of disjoint essential annuli that is maximal in the
sense that there is no other essential annulus that is pairwise disjoint from those already
in the collection.

Proof Suppose C has the combinatorics of a .2; q/–torus link. Suppose first that
the bigon faces of C are all colored red. Then C can be given the structure of an
I–bundle: it is homeomorphic to I �B1, where B1 is one of the two blue faces of C,
with each red face of the form I � .arc of @B1/. The parabolic locus is also of the
form I � .arc of @B1/. To form D.MB/nnDR, double along the two blue faces. The
I–bundle is doubled along @I �B1, forming a Seifert-fibered solid torus S1 �B1.

Now suppose that the bigon faces of C are colored blue. Again C can be given the
structure of an I–bundle, this time of the form I �R1, where R1 is one of the two red
faces of C. To form D.MB/nnDR, double along the blue bigon faces. This glues the
I–bundle C to an identical I–bundle along blue faces of the form I � .arc of @R1/,
preserving the I–bundle structure. Thus, C yields a component that is not part of the
guts.

To prove the converse statement, suppose that C is an ideal polyhedron obtained from
cutting one of the ideal polyhedra making up D.MB/nnDR along a square that forms
a larger annulus. Suppose C is not part of guts.D.MB/nnDR/. Then C belongs to an
I–bundle or Seifert-fibered piece of D.MB/nnDR. Suppose C is an I–subbundle of a
larger I–bundle Y. The vertical boundary components of the I–bundle Y are vertical
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annuli with both boundary components on fDR in D.MB/nnDR, and similarly for C.
Because the annuli decompose into squares by Lemma 2.5, the fibers must run parallel
to an arc of the blue faces. Because the blue faces glue up to form an essential surface,
parallel to one fiber, the blue faces must be a vertical surface, and so each blue face of
each annulus is fibered. It follows that each blue face must be of the form I � arc, and
therefore each blue face is a bigon. Now C is an I–subbundle of Y, homeomorphic to
a ball with boundary made up of red faces and blue bigons. It follows that C has the
combinatorics of a .2; q/–torus link made up of a string of blue bigons.

Finally, suppose C belongs to a Seifert-fibered piece Z of D.MB/nnDR. The Seifert-
fibering induces a fibering of fDR\Z. The boundary @Z is a torus, and the vertical
boundary of C is an annulus that is broken into squares when put into normal form. It
follows that, in this case, the red faces of fDR\Z are fibered, and hence they form
bigons. Then, again, C has the combinatorics of a .2; q/–torus link, this time with red
bigons.

We still wish to identify exactly the guts from a diagram. It becomes slightly easier if
we consider the manifold

MBR WDD
�
D..S3

�L/nnB/nnDR
�

of Proposition 2.1.

Lemma 2.10 Let L be a link with a reduced , prime , alternating diagram , and associ-
ated checkerboard surfaces B and R. The manifold MBRDD

�
D..S3�L/nnB/nnDR

�
has the following properties:

(1) Any maximal disjoint collection of nontrivial squares in the diagram induces a
torus decomposition of MBR, which contains the tori of the JSJ decomposition.

(2) Each component of the torus decomposition is built of ideal polyhedra obtained
from the original checkerboard polyhedra by cutting along squares.

(3) The Seifert-fibered pieces of the decomposition are exactly those obtained by glu-
ing polyhedra with the combinatorics of a .2; q/–torus link. All other polyhedra
give hyperbolic pieces.

Proof Note that MBR is obtained by starting with the checkerboard polyhedra of
S3 � L, doubling along blue faces, then doubling along red faces. Thus, it has a
decomposition into ideal polyhedra with a checkerboard coloring.
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For (1), note first that any essential torus can be put into normal form with respect
to the polyhedral decomposition. By an Euler characteristic argument, each normal
disk making up the torus must be a square. Because the polyhedra have the same
combinatorics as the diagram of the alternating link, any collection of essential tori
gives a collection of squares.

On the other hand, a nontrivial square in the diagram determines a nontrivial square in
the checkerboard polyhedra. When we double across blue and then red faces, the square
becomes a torus in MBR . We may cut the checkerboard polyhedra along these squares
and collapse the squares to ideal vertices, obtaining new ideal polyhedra. If the torus is
compressible, a compressing disk can be put into normal form with respect to these
new polyhedra. But, as in the proof of Lemma 2.8, this leads to a contradiction if the
square is nontrivial. Also as in the proof of Lemma 2.8, the torus is boundary parallel
if and only if the square cuts off a single ideal vertex. Thus, a maximal collection of
disjoint nontrivial squares in the diagram bounding more than one crossing on each
side gives a maximal collection of embedded essential tori in MBR . By the uniqueness
of the JSJ decomposition, this contains the tori of the JSJ decomposition.

Item (2) now follows immediately from (1). Cut along the squares and collapse each
square to an ideal vertex to obtain the new polyhedral decomposition.

For (3), note first that if a polyhedron has the combinatorics of a .2; q/–torus link, then
it has an I–bundle structure of the form F1�I, where F1 is one of the two faces that is
not a bigon. When we double and then double, the I–bundle becomes an S1–bundle,
which is doubled across annuli on its boundary in a way that preserves the fiber. Hence,
it is Seifert-fibered.

Now suppose a polyhedron C in the complement of the torus decomposition of MBR

glues to give a Seifert-fibered component S. Note first that each ideal vertex of C

glues under the doubling to a torus in the parabolic locus; hence, the Seifert-fibered
component S has infinite fundamental group. Note next that the component admits
two involutions: reflection through its intersection with the blue surface and reflection
through its intersection with the red surface. It follows from work of Meeks and Scott
that the involutions preserve the Seifert fibering [21].

Consider the intersections of the blue and red surfaces with S. These are incompressible
surfaces, and hence either vertical or horizontal in S. Suppose first that a component
of the blue surface is vertical. Then it is parallel to the fibers of the Seifert fibering.
Its intersection with C must have corresponding blue faces also parallel to the fibers.
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Because all faces of C are disks, it follows that these blue faces are of the form .arc/�I,
or bigon faces. The red meeting the blue cannot also be bigons, else C is formed
of four bigons and two ideal vertices, contradicting the fact that the squares in the
decomposition were chosen to bound at least two ideal vertices on each side. So the
red face must be horizontal in this case. Reflection in the red surface preserves MBR,
taking blue surfaces to blue. Hence, C has the combinatorics of a .2; q/–torus link
with blue bigon faces.

Suppose instead that each component of the blue surface meeting C is horizontal. Note
that the torus boundary components of S are fibered. It follows that the (truncated)
ideal vertices of C are fibered of the form ˇ � I, where ˇ is an arc in the blue face.
Then @ˇ � I lies in a red face of C. It follows that the red surface must be vertical.
Then an argument identical to that above implies that red faces in C are bigons, and
again C has the combinatorics of a .2; q/–torus link.

Lemma 2.11 The manifold D
�
guts.D.MB/nnDR/

�
is homeomorphic to

� guts.MBR/, ie the hyperbolic part of MBR,

� guts.MRB/D guts D
�
D..S3�L/nnR/nnDB

�
, and

� D
�
guts.D.MR/nnDB/

�
.

Proof We show first that guts.MBR/, the manifold consisting of the hyperbolic
components of MBR under the JSJ decomposition, is homeomorphic to guts.MRB/.
This is straightforward: the manifolds MBR and MRB are both obtained from eight
copies of one of the checkerboard polyhedra of the link L, by doubling along red and
blue faces, although in different orders. We obtain a homeomorphism MBR ŠMRB

by taking a homeomorphism of polyhedra, and then gluing by the identity across faces.
Then guts.MBR/Š guts.MRB/ by the uniqueness of the JSJ decomposition.

Next we show D
�
guts.D.MB/nnDR/

�
is homeomorphic to guts.MBR/. The argu-

ment that D
�
guts.D.MR/nnDB/

�
is homeomorphic to guts.MRB/ is symmetric. By

Lemma 2.10, we obtain guts.MBR/ by taking a maximal collection of disjointly
embedded nontrivial squares, which bound at least two crossings on both sides, cutting
along them and discarding components with the combinatorics of a .2; q/–torus link.
Then double remaining polyhedra across their red and blue faces. By Lemmas 2.7
and 2.8, we obtain D

�
guts.D.MB/nnDR/

�
by first cutting along a collection of squares

corresponding to red bigons and cycles of fused units, then cutting along remaining
nontrivial squares that are not parallel to one of these squares, nor parallel to a single
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ideal vertex, and again discarding components with the combinatorics of a .2; q/–torus
link by Lemma 2.9.

If there are no fused units in the diagram, then a maximal collection of squares used
to create D

�
guts.D.MB/nnDR/

�
is a maximal collection of squares used to create

guts.MBR/, by Lemmas 2.7 and 2.8. To build the guts in both cases, we decompose
along these squares and throw away components with the combinatorics of a .2; q/–
torus link, by Lemmas 2.9 and 2.10. Then we obtain the manifolds by doubling along
blue and red faces. These are homeomorphic.

In the case that there is a cycle of fused units, note in the first step of the decomposition
of MB we cut along distinct collections of squares in the two checkerboard polyhedra,
and these squares intersect each other; see Figure 1. Hence, we must choose one
collection of squares to complete to a maximal collection to form MBR. However,
in both polyhedra the exterior of the cycle of fused units has the combinatorics of a
.2; q/–torus link, so is discarded. And, in both, in the second step of the decomposition
there will be two squares within each fused unit that decompose the fused unit into
two “units” and a .2; 3/–torus link. Thus, only the units remain in the decomposition
of guts.D.MB/nnDR/. Similarly, in the decomposition of guts.MBR/, choose squares
from the fused units and build a maximal collection of disjoint squares. After discarding
.2; q/–torus links, at most the units remain in the guts decomposition. Again there is a
homeomorphism of polyhedra, and these are identified in both manifolds by doubling
along blue and red faces, so the manifolds are homeomorphic.

Proof of Proposition 2.1 The homeomorphism result of the proposition is by Lemma
2.11. The fact that the manifolds are obtained by eight copies of polyhedra as claimed
follows from Lemma 2.6.

Proof of Theorem 2.3 In the hyperbolic structure on D
�
guts.D.MB/nnDR/

�
, the red

surface is preserved by a reflection; thus, as a consequence of Mostow–Prasad rigidity,
it must be totally geodesic. Similarly, the blue surface in D

�
guts.D.MR/nnDB/

�
is

totally geodesic. By Lemma 2.11, these manifolds are homeomorphic, and hence
isometric again by Mostow–Prasad rigidity. It follows that red and blue surfaces are
totally geodesic in both.

Finally, reflection in the red fixes the red surface pointwise, and takes the blue surface
to a totally geodesic surface intersecting the red. Similarly, reflection in the blue fixes
the blue pointwise and takes the red to a totally geodesic surface. This is possible only
if the two surfaces meet at right angles.
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3 Topology

The next part of the story is topological. In the previous section, we identified guts by
considering squares in the diagram graph. Topologically, cutting along a square can
be seen as pulling a tangle out of the diagram. We review here some of the literature
on tangle decompositions of alternating links. We will see that the decomposition
into guts polyhedra above is related to decompositions into algebraic parts of an
alternating link, due in part to Conway [12], Bonahon and Siebenmann [6] and especially
Thistlethwaite [31]. However, there are some subtle differences. In this section, we
review many of the results discovered by Thistlethwaite, and use them to build ideal
polyhedra associated with an alternating link.

Following Thistlethwaite, we define a tangle to be a pair .X;T /, where X is homeo-
morphic to S3 with a finite number of balls removed and the set T �X is a 1–manifold,
properly embedded in X, such that, for every 2–sphere component F of @X, @T \F

consists of four points. This generalizes the typical definition of a 2–tangle, in which
X is a ball and T is a 1–manifold inside the ball meeting @X in four points. Figure 3
shows three different examples of tangles using this more general definition.

A tangle .X;T / is trivial either if X has one boundary component (is a ball) and .X;T /
is homeomorphic by a homeomorphisim of pairs to the tangle .B3; two unknotted arcs/,
or if X has two boundary components and .X;T / is homeomorphic by a homeomor-
phism of pairs to the tangle .S2 � I; four unknotted arcs/ where the endpoints of each
arc lie on different boundary components of S2 � I. A homeomorphism of a tangle
with one boundary component to a trivial tangle is well known to be determined by a
rational number [12], and thus such a tangle is also called a rational tangle.

The hollow elementary tangle is homeomorphic to the tangle .X;T / where X has three
boundary components and T consists of six unknotted arcs with a pair of arcs between
each pair of boundary components of X. Figure 3 shows two trivial tangles and the

Figure 3: Left to right: a trivial tangle with one boundary component, a trivial
tangle with two boundary components, a hollow elementary tangle.
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hollow elementary tangle. An elementary tangle is obtained from the hollow elementary
tangle by gluing a trivial tangle into zero, one or two of its boundary components.

For our purposes here, we define a Conway sphere in a tangle .X;T / or link .S3;L/ to
be a 2–sphere F in the interior of X meeting T transversely in four points. This differs
from Thistlethwaite’s definition in [31]: he requires his Conway spheres to be such that
neither component of .X;T /� .F;F \T / is a trivial tangle with one or two boundary
components, forcing the 4–punctured sphere to be essential in X �T. We will refer to
Thistlethwaite’s spheres as essential Conway spheres, and use the term Conway sphere
to refer to the much more general situation. In any case, we say two Conway spheres
are parallel if they cobound a trivial tangle with two boundary components.

A note on historical definitions that we will compare to ours: Thistlethwaite defines
a link or tangle to be algebraic if it is elementary, or if it can be cut along a collec-
tion of essential Conway spheres into elementary tangles. For a tangle .X;T / (or a
link .S3;L/), Bonahon and Siebenmann consider the double cover zX of X branched
over T [6]. Any essential Conway sphere lifts to an essential torus, and any algebraic
tangle lifts to a graph manifold.

It follows by [23; 31] that .S3;L/ contains a maximal finite collection of pairwise
disjoint and nonparallel essential Conway spheres F1; : : : ;Fn, and this collection
is unique outside of elementary tangles. The algebraic part of .S3;L/, defined by
Thistlethwaite in [31], is the union of the closure of components of S3�

S
Fi that are

elementary.

In [23], Menasco showed that, within an alternating link diagram, essential Conway
spheres can have one of two forms, visible or hidden, corresponding to Figure 4.

Definition 3.1 For a given alternating link diagram, a visible Conway sphere intersects
the plane of projection in a simple closed curve meeting the link diagram transversely in
four points. We also require that a visible Conway sphere bounds at least two crossings
on each side.

In the case of a hidden essential Conway sphere, the diagram of the link always
resembles that of the Borromean rings, with four tangles added, and the hidden Conway
sphere meets the plane of projection in two curves. By [31, Proposition 5.1], a visible
essential Conway sphere is visible in any alternating diagram of the link. Consequently,
a hidden essential Conway sphere is hidden in any alternating diagram of the link;
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Figure 4: Left: the dashed line shows the intersection of a visible Conway
sphere with the link diagram. Right: a hidden Conway sphere intersects the
projection plane in two concentric circles, and has two saddles where the two
overstrands cross.

see also [15]. For purposes of this paper, we may completely ignore hidden essential
Conway spheres. However, we will need to consider visible ones, both essential and
inessential. For example, by Definition 3.1, the boundary sphere of a trivial tangle
(rational tangle) with at least two crossings in a link diagram is a visible Conway
sphere.

Definition 3.2 Let F1; : : : ;Fn be a maximal, pairwise disjoint and nonparallel collec-
tion of visible Conway spheres in a reduced, prime, alternating diagram D. The visible
algebraic part of D is the union of components of S3�

S
Fi that are elementary. The

diagram D is visibly algebraic if all components of S3�
S

Fi are elementary.

Note that the visible algebraic part differs from Thistlethwaite’s algebraic part in two
important ways. First, the two differ on diagrams that resemble the Borromean rings.
The visible algebraic part will not contain tangles as shown in Figure 4, right, but
Thistlethwaite’s algebraic part will contain such tangles. Second, the two differ in the
presence of a visible inessential Conway sphere that bounds a rational tangle that is

Figure 5: Left: an inessential crossing. Right: the crossing can be removed.
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T

Figure 6: The crossing closure of tangle T.

not a subset of a larger algebraic tangle. Thistlethwaite will completely ignore these
rational tangles, but we include them in our visible algebraic part.

A tangle diagram .X;T / is a regular projection of a tangle onto a plane of projection
(a 2–sphere), with over- and under-crossing information added to the projection of T.
A crossing x in a tangle diagram is inessential if there exists an arc ˛ on the plane
of projection with @˛ lying on the same component of @X and such that ˛ meets T

exactly in the point x; see Figure 5, which is adapted from [31]. Note that we may
perform a flype to move the crossing to be adjacent to @X, then isotope two points
of @T on @X to remove the crossing as in Figure 5, right. A tangle diagram is reduced
if it contains no inessential crossings.

Definition 3.3 Let .X;T / be a tangle with a reduced, prime, alternating diagram.
Attach to each component of @X the trivial tangle with one boundary component whose
diagram has a single crossing, as in Figure 6. Since T is an alternating tangle diagram,
the four points in T \ @X alternate as endpoints of over-crossing and under-crossing
arcs of T. Thus, for each added crossing as in Figure 6, we can choose its sign so that
the diagram of the resulting link is alternating. Such an alternating link is called the
crossing closure of the tangle .X;T /.

Definition 3.4 (tangle polyhedra) Let L be a link with a reduced, prime, alternating
diagram D. Define the tangle polyhedra associated with L as follows:

If D is visibly algebraic, then define the tangle polyhedra to be the empty set.

If D admits no visible Conway sphere, then define the tangle polyhedron to be the
checkerboard polyhedron for D.

Otherwise, cut D along a maximal collection of pairwise disjoint, nonparallel, visible
Conway spheres F1; : : : ;Fn. Remove the visible algebraic part. What remains consists
of a nonempty collection of tangles. For each, reduce the tangle diagram to remove
all inessential crossings. Next, form the crossing closure of each tangle, giving a
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new collection of alternating link diagrams that are tangle closures of nonalgebraic
tangles. Finally, the tangle polyhedra are the checkerboard polyhedra of the new
reduced alternating link diagrams, taking one checkerboard polyhedron from each pair.

Example 3.5 We provide here a few examples of tangle polyhedra for different
diagrams:

(1) By definition, the tangle polyhedra of any visibly algebraic link is the empty set.
This includes 2–bridge knots, Montesinos knots and more complicated algebraic
links. The polyhedra of this paper do not give useful information for these links;
see the discussion in Section 5.4.

(2) The usual diagram of the Borromean rings admits no visible Conway spheres.
Thus, the tangle polyhedra consist of an ideal octahedron, which agrees with the
checkerboard polyhedron, as described in Thurston’s notes [33].

(3) A weaving knot W .p; q/ is the alternating knot or link with the same projection
as the standard closed p–braid .�1 : : : �p�1/

q diagram of the torus knot or
link T .p; q/. See Section 5.2 for more details on weaving knots. For p; q � 3,
W .p; q/ admits no visible Conway spheres; thus, again, their tangle polyhedra
consist of an ideal polyhedron with the same combinatorics as the diagram of
the weaving knot.

(4) Take a weaving knot diagram, as above, but replace one crossing by a rational
tangle with at least two crossings. By Thistlethwaite’s definition of the algebraic
part of an alternating link, the resulting link has no algebraic part. However, the
visible algebraic part of this link, as in Definition 3.2, consists of that rational
tangle. Removing it and taking the crossing closure of the result gives back the
original weaving knot diagram. Thus, the tangle polyhedra of the weaving knot
with a crossing replaced by a rational tangle agree with the tangle polyhedra of
the original weaving knot.

In general, replacing any crossing of a diagram by a rational or algebraic tangle does
not affect the tangle polyhedra of the result.

Theorem 3.6 Let L be a link with a reduced , prime , alternating diagram. The tangle
polyhedra associated with a given diagram of L are well defined and independent of
choice of alternating diagram of L. Therefore , they are a link invariant.

Proof By the proof of the Tait flyping conjecture [24], any two alternating diagrams
of L differ by a finite sequence of flypes. We will show that a single flype does not
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affect the tangle polyhedra. It follows that any finite sequence of flypes does not affect
the tangle polyhedra of L.

We consider the cases in Definition 3.4 for the reduced, prime, alternating diagram D

of L. If D admits no visible Conway sphere, then D does not admit flypes. Suppose
D admits a flype along a visible Conway sphere F at a crossing c. We can assume that
F is part of the maximal collection of pairwise disjoint, nonparallel, visible Conway
spheres for D, as F can be chosen first. If D is visibly algebraic, then, by definition, it
remains so after the flype. Before the flype, c is removed in one of two ways: either it
lies in the visible algebraic part of D, or it is removed as an inessential crossing with
respect to the tangle inside F. After the flype, c is again removed in one of these ways.
Thus, following Definition 3.4, we obtain the same collection of nonalgebraic tangles
before and after the flype.

So a flype does not change any of the diagrams of the alternating links used to construct
the tangle polyhedra. Therefore, the tangle polyhedra form a link invariant.

Theorem 3.7 Let L be a link with a reduced , prime , alternating diagram. Any choice
of a maximal collection of disjoint squares determines visible Conway spheres and
tangle polyhedra on the one hand , and guts polyhedra on the other. Then the associated
tangle polyhedra and guts polyhedra are identical.

Proof By Definition 2.2, the guts polyhedra are obtained by cutting the checkerboard
polyhedra associated with the diagram of L along a maximal collection of disjoint
squares. The squares that have been cut become ideal vertices. By Lemma 2.9,
any component with the combinatorial form of a .2; q/–torus link is discarded. The
remaining components are the guts polyhedra.

On the other hand, we claim that the tangle polyhedra are also obtained by considering
a maximal collection of disjoint squares. For a prime, alternating link, the projection
graph of the reduced, alternating diagram and the checkerboard polyhedral graph are the
same. Hence, by separating the diagram of L into tangles along a maximal collection of
disjoint squares, we get reduced, alternating tangle diagrams that do not admit a visible
Conway disk, as defined in [31; 32]. By the classification of alternating tangles in [32],
these are exactly the tangles obtained by separating the diagram of L along visible
Conway spheres. Hence, separating the diagram of L along squares as in Definition 2.2
or along visible Conway spheres as in Definition 3.4 results in the same set of reduced
alternating tangle diagrams.

Algebraic & Geometric Topology, Volume 22 (2022)



762 Abhijit Champanerkar, Ilya Kofman and Jessica S Purcell

The visible algebraic part consists of the union of tangles that are either trivial or
elementary. Note in Figure 3 that the elementary tangles have a diagram with the
combinatorics of a .2; q/–torus link. It follows that we remove exactly the same portion
of the diagram to form guts polyhedra and tangle polyhedra. In the case of the tangle
polyhedra, we take the crossing closure, inserting a crossing into each square. This
causes the associated checkerboard polyhedra to have an ideal vertex exactly in the
location of the square, which is exactly where the guts polyhedra have an ideal vertex.
Thus, the combinatorial polyhedra are identical.

Corollary 3.8 For a prime , alternating link L:

� The guts polyhedra for L give a link invariant.

� The tangle polyhedra admit a right-angled ideal hyperbolic structure.

4 Combinatorics

The third part of the story is the combinatorics of the diagram graph, which has already
played a role in establishing the correspondence between guts polyhedra and tangle
polyhedra.

Start with a reduced, twist-reduced, prime, alternating diagram of a link L. This
has a 4–valent projection graph �.L/, which may have bigons, and a planar dual
graph ��.L/. A k–circuit is a simple closed curve composed of k edges of a graph.
Here we will consider only 4–circuits on ��.L/ arising from a reduced, twist-reduced,
prime, alternating link diagram. We say that a 4–circuit of ��.L/ is trivial if it bounds
a single crossing of L on either side, and otherwise it is nontrivial.

To avoid ambiguity, we will refer to the diagram of a trivial tangle with either one or
two boundary components as a rational tangle diagram.

Definition 4.1 Two 4–circuits are crossing-parallel if they differ only by passing on
opposite sides of a single crossing, as in Figure 7. Two 4–circuits A and B are parallel
if there is a sequence of 4–circuits A1DA, A2; : : : , AnDB, with Aj crossing-parallel
to AjC1 for j D 1; : : : ; n� 1.

We will consider a nontrivial 4–circuit on the projection plane for �.L/. Capping
off by disks on either side of the projection plane, the 4–circuit gives an embedded
4–punctured sphere, which is a visible Conway sphere.
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Figure 7: Two crossing-parallel 4–circuits, shown as dashed lines. Although
the 4–circuits share two edges, we sketch one pushed slightly inside the other.

Lemma 4.2 Let A and B be 4–circuits in ��.L/ with corresponding 4–punctured
spheres xA and B. Then the following are equivalent :

(1) A and B are parallel.

(2) xA and B are ambient isotopic in S3�L.

(3) A and B cobound a rational tangle diagram.

Proof If A and B are parallel, then there exists a sequence of crossing-parallel 4–
circuits between them. These determine a sequence of embedded 4–punctured spheres,
each pair of which encloses a single crossing of the diagram. The region enclosed is
homeomorphic to S4 � I, where S4 denotes the 4–punctured sphere. Thus, we have an
ambient isotopy from one side of the crossing to the other. Putting these together gives
the ambient isotopy from xA to B. Hence, (1) implies (2).

If xA and B are ambient isotopic, then they cobound a trivial tangle with two boundary
components. We can represent this isotopy by a rational tangle diagram, as pointed out
in the remark after [31, Corollary 3.2]. Thus, (2) implies (3).

By [31, Corollary 3.2], if A and B cobound a rational tangle diagram, then it is either
unreduced or has no crossings. Thus, the original unreduced alternating diagram is
obtained by adding one crossing at a time, adjacent to the 4–circuit A (or B), and so A

and B are parallel. Hence, (3) implies (1).

If a 4–circuit gives a visible Conway sphere that bounds a rational tangle diagram, then
that 4–circuit is parallel to a trivial 4–circuit, which bounds one crossing. However,
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the trivial 4–circuit inside a rational tangle diagram is not uniquely determined. Thus,
by Lemma 4.2, 4–circuits A and B are parallel if and only if they cobound a rational
tangle diagram, but such a pair may not be uniquely determined by the tangle diagram.

Definition 4.3 A pair of parallel 4–circuits A and B is called a maximal bounding
pair if A and B cobound a rational tangle diagram � , and there do not exist parallel
4–circuits A0 and B0 that cobound a rational tangle diagram � 0 which contains � as
a subtangle. Two maximal bounding pairs fA;Bg and fA0;B0g are disjoint if they
cobound disjoint rational tangle diagrams.

Definition 4.4 Let L be a link with a reduced, twist-reduced, prime, alternating
diagram. For all pairwise disjoint maximal bounding pairs of 4–circuits in L, remove
all crossings between each pair by a corresponding homeomorphism of each rational
tangle. Thus, each rational tangle diagram with one boundary component is replaced
by a single crossing, and all crossings are removed in every rational tangle diagram
with two boundary components. In the resulting diagram, some 4–circuits that were
not parallel before may now be parallel. In that case, repeat the process, removing all
crossings between pairwise disjoint maximal bounding pairs of 4–circuits. Because
each move reduces the number of crossings, the process eventually terminates. We call
this rational reduction of the diagram L. The final diagram is rationally reduced.

In Figure 8, left, two disjoint maximal bounding pairs of 4–circuits are shown in blue,
and two 4–circuits that are not in a maximal bounding pair are shown in red. We use

Figure 8: Left: Two disjoint maximal bounding pairs of 4–circuits are shown
(long dashed lines, in blue). Two additional 4–circuits that are not in a
maximal bounding pair are shown (short dotted lines, in red). Right: Rational
reduction eliminates all crossings between both maximal bounding pairs of
4–circuits.
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these two maximal bounding pairs to obtain a rationally reduced diagram in Figure 8,
right.

Definition 4.5 A prismatic 4–circuit is a 4–circuit 
 such that no two edges of �.K/
that meet 
 share a vertex in �.K/.

It follows from this definition that a prismatic 4–circuit is nontrivial. Conversely, we
have the following:

Lemma 4.6 Each nontrivial 4–circuit of a rationally reduced diagram is a prismatic
4–circuit.

Proof If not, the 4–circuit meets edges that share a vertex, so the 4–circuit is adjacent
to a crossing. But then the diagram is not rationally reduced because there exists a pair
of crossing-parallel 4–circuits.

A combinatorial polyhedron P is a cell complex on S2 that can be realized as a 3–
dimensional convex polyhedron. Steinitz proved that a graph can be realized as the
1–skeleton of such a convex polyhedron if and only if the graph is a 3–connected
simple planar graph [30]. A combinatorial polyhedron is realizable as a right-angled
hyperbolic polyhedron if there exists an ideal hyperbolic polyhedron with the same
combinatorial structure as P and with all dihedral angles �

2
.

Theorem 4.7 (Andreev’s theorem for 4–valent right-angled ideal polyhedra) A 4–
valent combinatorial polyhedron admits a realization as a right-angled ideal hyperbolic
polyhedron if and only if it has no nontrivial 4–circuits. The realization is unique up to
isometry of H3.

Proof This special case follows almost immediately from the version of Andreev’s
theorem given by Atkinson [3, Theorem 2.1]. Let P be a 4–valent combinatorial
polyhedron and let � denote its 1–skeleton. We step through the necessary and sufficient
conditions of that theorem:

(1) P has at least six faces.

(2) Every vertex has degree 3 or 4.

(3) For any triple of faces of P, .Fi ;Fj ;Fk/, such that Fi \Fj and Fj \Fk are
edges of P with distinct endpoints, Fi \Fk D∅.

(4) P has no prismatic 4–circuits.
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Figure 9: The case that Fi and Fk intersect in an edge.

Since P is a combinatorial polyhedron, Steinitz’s theorem implies that � is a 3–
connected simple planar graph. Since � is also 4–valent, it follows from the census
of knots and links by crossing number (see eg [29]) that � has at least six vertices.
An Euler characteristic argument implies P must have at least eight faces; hence,
conditions (1) and (2) always hold.

Now, if P has no nontrivial 4–circuits then (4) holds by Lemma 4.6. We only need to
show that (3) is always satisfied.

Let .Fi ;Fj ;Fk/ be a triple of faces such that Fi\Fj and Fj \Fk are edges of P with
disjoint endpoints, and suppose by way of contradiction that Fi \Fk is nonempty.

Case 1 (Fi \Fk contains an edge) Then there exists a simple closed curve C that
intersects exactly these three edges of P, as shown in Figure 9. Let G be the portion of
the graph of P in a disk bounded by C, and let G0 DG [C be a new graph obtained
by adding three edges and three vertices lying on C. Then G0 has three vertices of
degree 3 and all other vertices of degree 4. This implies that the sum of all degrees of
vertices of G0 is an odd number. But the sum of all degrees of vertices equals twice the
number of edges, which is even: a contradiction.

Case 2 (Fi\Fk contains a vertex) In this case we can construct a nontrivial 4–circuit
taking the dual edges near the crossing, contradicting the assumption.

The contradictions in both cases imply that P satisfies condition (3) above, and the
result follows from [3, Theorem 2.1].

Conversely, suppose P admits a realization as a right-angled ideal hyperbolic poly-
hedron, and hence satisfies the four conditions above. If P has a nontrivial 4–circuit
which is not prismatic, then, using an argument similar to that in Lemma 4.6, this
would contradict condition (3). Hence, all nontrivial 4–circuits in P are prismatic, so
then condition (4) implies that there are no nontrivial 4–circuits.
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Lemma 4.8 Let � be the 4–valent planar projection graph of a reduced , twist-reduced ,
prime , alternating link diagram K. Then � admits a realization as a right-angled ideal
hyperbolic polyhedron if and only if it has no nontrivial 4–circuits. The realization is
unique up to isometry of H3.

Proof If � is a polyhedral graph, then Theorem 4.7 implies it is realized as a right-
angled ideal hyperbolic polyhedron if and only if it has no nontrivial 4–circuits. It
remains to show that if � is not a polyhedral graph, then it has a nontrivial 4–circuit.

By Steinitz’s theorem, � is a polyhedral graph if and only if it is a 3–connected simple
planar graph. Suppose � is not simple. The projection graph of a reduced, twist-
reduced, prime, alternating link diagram is simple if and only if it has no bigons. If �
has a bigon, then � has a nontrivial 4–circuit encircling the bigon.

Suppose � is not 3–connected. Then a curve running through the two vertices that
disconnect � can be pushed slightly off those vertices to give a nontrivial 4–circuit,
using the fact that the diagram is prime.

Definition 4.9 (compare to Atkinson [4, Section 3.1]) Let P be a 4–valent planar
graph with no bigon regions. If 
 is a prismatic 4–circuit for the dual graph P�, we
define P split along 
 , denoted by P nn 
 , as follows: Choose a planar embedding
of P. Form two new graphs Pint and Pext, where Pint (respectively Pext) consists of
all edges and vertices of P in the bounded (respectively unbounded) component of
R2� 
 , such that Pint and Pext each have four 1–valent vertices which were incident
to 
 . Let Pint (respectively Pext) be the 4–valent graph obtained by taking the edges

Figure 10: A polyhedron P is split along a prismatic 4–circuit 
 (whose dual
4–circuit is shown in the center, in red) to obtain P nn 
 , as in Definition 4.9.
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from each of the 1–valent vertices, and attaching them to a single vertex chosen to lie
in the unbounded (respectively bounded) region of R2 � 
 . Then P nn 
 consists of
the disjoint union of Pint and Pext. See Figure 10.

Definition 4.10 (Andreev polyhedra) Start with a reduced, twist-reduced, prime,
alternating link diagram L. Let �.L/ be the projection graph of its rationally reduced
diagram. Split �.L/ iteratively along nontrivial 4–circuits into graphs that either

(i) have exactly one vertex,

(ii) have nontrivial 4–circuits, or

(iii) have no nontrivial 4–circuits.

We discard all graphs in case (i). For graphs in case (ii), we repeat this process as
needed: rationally reduce the corresponding link diagram, and then split along nontrivial
4–circuits as above. Because each move reduces the number of vertices, the process
eventually terminates. Finally, the only remaining graphs have no nontrivial 4–circuits.
By Lemma 4.8, each such graph admits the structure of a right-angled ideal hyperbolic
polyhedron. The resulting set of right-angled ideal hyperbolic polyhedra are called the
Andreev polyhedra associated to L.

Theorem 4.11 The Andreev polyhedra are identical to the tangle polyhedra and the
guts polyhedra.

Proof Let D be a reduced, twist-reduced, prime, alternating link diagram. We will
prove that Definitions 3.4 and 4.10 agree for D. Rational reduction, as in Definition 4.4,
repeatedly replaces all rational tangle diagrams with one boundary component with
a single crossing, and removes all crossings in a rational tangle diagram with two
boundary components. A visibly algebraic link diagram D is rationally reduced to a
1–crossing diagram, which is discarded in both cases.

We proceed by induction on nontrivial 4–circuits in �.D/. By Lemma 4.2, every set of
parallel nontrivial 4–circuits corresponds to a visible Conway sphere. Hence, D admits
no visible Conway sphere if and only if �.D/ has no nontrivial 4–circuits. In this case,
the two checkerboard polyhedra for D are both its Andreev polyhedra and its tangle
polyhedra.

Proceeding inductively, for Andreev polyhedra, we split �.D/ along a nontrivial 4–
circuit, and obtain either right-angled polyhedral graphs or graphs with fewer nontrivial
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4–circuits that are then rationally reduced. In the latter case, the equivalence with
tangle polyhedra follows by the induction hypothesis. In the former case, we claim
that these right-angled polyhedra are also tangle polyhedra for D.

To obtain tangle polyhedra, we cut D along visible Conway spheres, remove the
visible algebraic part and inessential crossings, use crossing closures to form reduced
alternating diagrams and then take their checkerboard polyhedra. The crossing closure
makes each checkerboard polyhedron have an ideal vertex exactly where we cut along
the visible Conway sphere, which is the same as splitting � along the corresponding
nontrivial 4–circuit. The only difference is when rational reduction occurs: for tangle
polyhedra, the tangles are reduced before taking their crossing closures; for Andreev
polyhedra, we split and rationally reduce each alternating link diagram repeatedly, as
needed, discarding rationally reduced unknots. In both cases, what remains are reduced
alternating diagrams obtained by taking the crossing closure of each nonalgebraic
tangle cut along nontrivial 4–circuits. Thus, the resulting combinatorial polyhedra are
identical.

By Theorem 3.7, these are also the same as the guts polyhedra.

5 Right-angled volume

In this section, we use the guts/tangle/Andreev polyhedra to define a new geometric
link invariant, which gives a lower bound on the volume of the link.

Definition 5.1 Let L be a link with a reduced, twist-reduced, prime, alternating
diagram. The right-angled volume vol?.L/ is defined to be twice the sum of the
volumes of the right-angled guts polyhedra, or, equivalently by Theorem 4.11, twice
the sum of the volumes of the tangle polyhedra, or twice the sum of the volumes of the
Andreev polyhedra. If the set of such polyhedra is empty, we define vol?.L/D 0.

For example, if L denotes the standard alternating diagram of the Borromean rings,
the only guts polyhedron is a regular ideal octahedron. Therefore, vol?.L/D 2voct,
where voct � 3:66386 is the volume of the regular ideal octahedron.

On the other hand, if L is any visibly algebraic link, as in Example 3.5(1), vol?.L/D 0.

The three equivalent definitions of vol?.L/ imply different properties: using tangle
polyhedra we prove the invariance of vol?.L/ (Theorem 5.2), using guts polyhedra we
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prove the lower bound for the volume of S3 �L (Theorem 5.3) and using Andreev
polyhedra we provide a diagrammatic expression for vol?.L/ (Theorem 5.4).

Theorem 5.2 If L is any prime , alternating link , then vol?.L/ is a link invariant.

Proof Using the tangle polyhedra of L to obtain vol?.L/, invariance of the polyhedra
follows from Theorem 3.6. The uniqueness of their volume follows from Theorem 4.7.

Theorem 5.3 For any hyperbolic alternating link L with hyperbolic volume vol.L/,

vol?.L/� vol.L/:

Proof Here, we consider vol?.L/ in terms of the guts polyhedra of L. For a reduced,
prime, alternating diagram of L, the guts polyhedra inherit a hyperbolic structure with
geodesic faces meeting at right angles, by Theorem 2.3.

A theorem of Agol, Storm and Thurston [2, Theorem 9.1] states that, for a hyperbolic
3–manifold N with embedded �1–injective surface †,

vol.N /� 1
2
vtetkD.N nn†/k D

1
2

vol
�
D.guts.N nn†//

�
:

Here, vtet is the volume of a regular ideal tetrahedron, k � k denotes Gromov norm,
Theorem 9.1 of [2] gives the inequality, and the equality is the definition of the Gromov
norm.

We apply this result twice, to surfaces B and DR, which implies

vol.L/� 1
2

vol
�
D.guts..S3

�L/nnB//
�
D

1
2

vol.D.MB//

�
1
4

vol
�
D.guts.D.MB/nnDR//

�
:

The manifold D
�
guts.D.MB/nnDR/

�
is built by gluing eight copies of the guts poly-

hedra, glued by the identity along red and blue faces. Thus, this gives the desired
result.

Theorem 5.4 Let L be a prime , alternating link , given by a reduced , twist-reduced ,
prime , alternating diagram. Let K be its rationally reduced diagram , as in Definition 4.4.

(1) If K has five or fewer crossings , then vol?.K/D 0.

Algebraic & Geometric Topology, Volume 22 (2022)



Right-angled polyhedra and alternating links 771

(2) If K admits no nontrivial 4–circuits , then vol?.K/D 2 vol.P .K//, where P .K/

is the checkerboard polyhedron for K, with a right-angled ideal hyperbolic
structure.

(3) Otherwise , split K along nontrivial 4–circuits to obtain a set of alternating
tangles whose crossing closures form alternating link diagrams Ki . Repeatedly,
as needed , rationally reduce each Ki and apply steps (1)–(3). Let fTig be the
resulting set of reduced nonalgebraic tangles and let T �i denote the crossing
closure of Ti , as in Figure 6. Then

vol?.L/D
X

i

vol?.T �i /:

Proof For (1), any alternating diagram with five or fewer crossings is visibly algebraic.

For (2), the claim follows by Lemma 4.8. In this case, the two checkerboard ideal
polyhedra P .K/ are exactly the tangle polyhedra of K.

For (3), we follow the procedure in Definition 4.10. By the proof of Theorem 4.11, the
Ti are the tangles whose crossing closures form the tangle polyhedra. The inductive
proof gives a way to find the tangle diagrams starting from the link diagram L by
repeated rational reduction and splitting.

Example 5.5 For the Borromean link L, its reduced alternating diagram satisfies
condition (2) of Theorem 5.4. Hence, vol?.L/D vol.L/.

Example 5.6 Let �1, �2 and �3 be the tangles shown in Figure 11. Let K be the
alternating link obtained by inserting �1 into each of the three inner boundary compo-
nents of �2, and then inserting the resulting tangle into the boundary of �3. Note K is
rationally reduced.

Using Theorem 5.4, we compute vol?.K/. Following step (3), we repeatedly split K

into alternating diagrams. For both �1 and �3, the crossing closure is the knot 818, and

Figure 11: The tangles �1, �2 and �3 used in Example 5.6.
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the repeated crossing closure of �2 is the figure-eight knot. Thus, we obtain alternating
links Ki for 1 � i � 5 such that four of the Ki are diagrams of 818, and the other
one is the figure-eight knot diagram. The figure-eight knot is visibly algebraic, and
can be rationally reduced to an unknot. Hence, we obtain four crossing closures of
tangles T �i in step (3) of Theorem 5.4, and each of these four is the knot 818. Thus,
vol?.K/D 4vol?.818/. We compute vol?.818/ exactly in Example 5.7 below.

5.1 Computing vol?.L/

We now provide an explicit algorithm to compute vol?.L/ from a reduced, prime,
alternating diagram of L. Applying Theorem 5.4, we get a set of reduced nonalgebraic
tangles Ti . We can then apply Theorem 5.8, below, to explicitly compute each
vol?.T �i /, and hence vol?.L/.

We will compute vol?.T �i / by dividing right-angled polyhedra into well-understood
pieces. Figure 12 shows one such piece, which is a 3

4
–ideal tetrahedron with one vertex

at1, the other two ideal vertices on the boundary of the same hemisphere on C� @H3,
and the finite vertex at the point with maximum Euclidean height on that hemisphere.
This is the double of what Schläfli called an orthoscheme.

In [25], Milnor computed the volume of the 3
4

–ideal tetrahedron T of Figure 12.
Let � denote the dihedral angle between the two vertical faces of T that meet at
the vertical edge lying over the finite vertex. By Milnor’s calculation, the volume is

Figure 12: A 3
4

–ideal tetrahedron with ideal vertices at1 and on the bound-
ary of a hemisphere, and with finite vertex at the Euclidean maximum of that
hemisphere.
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c

(a) (b) (c)

� �

�

� �

�2�

(d) (e)

z z

1

1

Figure 13: Decomposition of the right-angled polyhedron associated to 818.
(a) Crossing c is chosen to be the ideal vertex at1. (b) Diagram now with c

at infinity. (c) Geometry of right-angled polyhedron, with faces in H3 and c

at1. (d) Circles making up faces of the polyhedron, lying in a rectangle.
(e) Circles plus projection of edges of the 3

4
–ideal tetrahedra.

vol.T /Dƒ
�

1
2
�
�
, where ƒ.�/ is the Lobachevsky function

ƒ.�/D�

Z �

0

log j2 sin t j dt:

Example 5.7 We compute vol?.L/ for L the alternating knot 818. The process is
illustrated in Figure 13. Note that the reduced alternating diagram of L is already
rationally reduced with no nontrivial 4–circuits.

In Figure 13(a), we choose a crossing c, or alternatively consider c as an ideal vertex
of the tangle polyhedron, and take this point to infinity. This is shown in Figure 13(b).

Because the diagram is rationally reduced, we know the tangle polyhedron admits a
geodesic right-angled hyperbolic structure. Each of the faces shown in Figure 13(b)
will be totally geodesic in this structure, and hence faces define lines and circles
on @H3. The polyhedron is shown in 3 dimensions in Figure 13(c), and circles on
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@H3 corresponding to the geodesic faces, viewed from the point 1, are shown in
Figure 13(d).

Subdivide the picture into a collection of 3
4

–ideal tetrahedra by adding a vertical edge
running from the center of each circle to infinity, and adding faces from this edge to
the ideal vertices. The result is shown in Figure 13(e).

Now use symmetry and trigonometry to compute the angles. In this case, six of the
angles are the same value � , six others are � � � , one has angle 2� and one has
angle � � 2� . If we set the size of the rectangle in Figure 13(d) to be 2� 2z, then
tan
�

1
2
�
�
D 1=z D 1

2
z. Then tan

�
1
2
�
�
D 1=
p

2, and vol?.L/� 12:0461.

A right kite is a kite with two right angles. The geometric data encoded in the rectangle
R.c/ of Figure 13(e) is completely determined by the tiling of R.c/ by right kites,
shown in blue lines in Figure 13(e). This follows because the projection of all the
3
4

–ideal tetrahedra to @H3 gives a rectangle tiled by isosceles triangles, which meet in
pairs across the edges of the diagram to form right kites. In each kite, right angles are
dihedral angles of the right-angled polyhedron; the remaining kite angles are of the
form � and � � � . See Figure 14.

Therefore, we can view the procedure described in Example 5.7 as a geometric realiza-
tion problem. Namely, the geometric Figure 13(d) is the realization of its combinatorial
graph, shown with solid lines in Figure 13(d), which can be obtained directly from

� � ��

Figure 14: Left: A right kite formed by radii of intersecting circles, meeting at
the dashed edge e shown as the short diagonal. The radii meet at right angles;
the other two angles of the kite are � and � � � . Right: An ideal hyperbolic
polyhedron is bounded by vertical planes and intersecting hemispheres above
a kite, which consists of two 3

4
–ideal tetrahedra.
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Figure 15: Left: the graph G, shown with blue edges, is obtained from �.L/,
as in Theorem 5.8, with the crossing c indicated in the red box. Right: G is
realized as a tiling of the rectangle R.c/ by right kites.

the diagram in Figure 13(b). We generalize this procedure below, showing that, for
appropriate prime, alternating links, the corresponding combinatorial graph can be
geometrically realized.

The central triangulation of a face of a plane graph is obtained by adding a central
vertex to the face, and edges joining the central vertex to all other vertices, triangulating
the face.

Theorem 5.8 Let L be a prime , alternating link , whose link diagram is already
rationally reduced and has no nontrivial 4–circuits. Let �.L/ be the projection graph of
the link diagram. Fix any crossing c of L, and let F.c/ be the closure of the four faces
of �.L/ which meet c. Let G be the graph obtained by taking the central triangulation
of each face of �.L/ that does not meet c, excluding the edges in �.L/. Then G can be
realized as a Euclidean rectangle tiled by right kites , with one kite ke for each edge e

of �.L/ not in F.c/. Let �e and � � �e denote the other kite angles of ke. Then

vol?.L/D 2
X

e2�.L/nF.c/

ƒ
�

1
2
�e

�
Cƒ

�
1
2
.� � �e/

�
:

We illustrate the graphs in Theorem 5.8 for the knot 818 in Figure 15.

Proof Let P D P .L/ be the checkerboard ideal polyhedron of L. Since the diagram
of L is already rationally reduced, the 1–skeleton of P is the diagram graph of L,
denoted by �.L/. Hence, P is 4–valent and the number of ideal vertices of P equals
the number of crossings in L. By Lemma 4.8, P admits a right-angled ideal hyperbolic
structure.
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We can realize P in H3 so that the ideal vertex corresponding to the crossing c is1.
The four faces incident to c are vertical half-planes in H3 intersecting at right-angles.
The faces of P not incident to1 are hemispheres which intersect each other and the
vertical faces at right-angles. Thus, P is the polyhedron inside the chimney formed by
the vertical faces and above the hemispheres, as in Figure 13(c).

Let R.c/ denote the rectangle in C � @H3 bounded by lines which are the boundaries
of vertical faces of P. Inside R.c/, an orthogonal circle pattern is formed by circles
which are boundaries of the hemispherical faces of P. The ideal vertices of P, other
than1, are the points of intersection of four circles, half-circles or lines in R.c/, as in
Figure 13(d).

Let G �R.c/ be the graph whose vertices are the centers of the circles in R.c/ and
the ideal vertices of P other than1, and whose edges are (Euclidean) line segments
joining the center of each circle to the ideal vertices lying on that circle. Note that the
boundary of the rectangle R.c/ consists of edges and vertices of G. Since the ideal
vertices of P, other than1, lie on the circles, every face of G is a quadrilateral such that
two opposite vertices are centers of intersecting circles, and the other two vertices are
the points of intersection. Hence, every face of G is a kite. The angle of intersection of
two hemispheres in H3 equals the angle of intersection of its boundary circles, which
in turn equals the (equal and opposite) angles of the kite formed by the center of the
circles and the points of intersection. Since P is right-angled, G is a rectangle tiled by
right kites.

On the other hand, the vertices of G are the vertices of �.L/, other than c, along with
the central vertex of each face of �.L/, other than those meeting c. The edges of G

are the edges from each central vertex to the vertices of that face. The faces of G are
quadrilaterals which correspond to the edges of �.L/ that do not meet c. Each side
of R.c/ corresponds to the boundary of each of the four faces meeting c. The degree
of each vertical polygonal face of P is the degree of the corresponding face. Since
the circles in R.c/ correspond to the faces of P not adjacent to1, this implies that
the vertices and edges of G and G coincide, and hence they are isomorphic as planar
graphs.

The volume formula then follows from the result of Milnor [25].

5.2 Right-angled volume for weaving knots

We now apply Theorem 5.8 to an infinite family of knots and links. A weaving knot
W .p; q/ is the alternating knot or link with the same projection as the standard closed
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Figure 16: Left: W .3; 7/ diagram with chosen crossing. Right: right kite
structure for W .3; 7/, with certain kite angles and edge lengths labeled.

p–braid .�1 : : : �p�1/
q diagram of the torus knot or link T .p; q/. The knot 818 is

the weaving knot W .3; 4/. See Table 1 for several other examples of weaving knots.
See [9] for more details on weaving knots.

Theorem 5.9 For all weaving knots W .3; q/, we can compute vol?.W .3; q// by an
algorithm that requires solving a one-variable polynomial equation.

Proof Theorem 5.4(1) implies vol?.W .3;q//D0 for q�2. To compute vol?.W .3;q//

for q � 3, we follow the procedure in Theorem 5.8 to obtain its right kite structure.
We start with the case W .3; 2nC 1/. See Figure 16, which shows a knot diagram for
W .3; 7/ and its right kite structure, with certain kite angles and edge lengths in a 2�2z

rectangle. For W .3; 2nC 1/, the kite angles are �i , and the edge lengths are z and
fxi ;yig for i D 1; : : : ; n� 1, extending the pattern shown in Figure 16 for nD 3. All
the other angles and edge lengths can then be determined immediately from these. Note
that for all W .3; 2nC 1/, the two kites centered at the bottom are squares.

The formulas below are for fxi ;yi ; �i j i D 1; : : : ; n� 1g, and we define y0 D 1:

tan
�

1
2
�1

�
D x1 D

y1

x1

D
1

z
; hence y1 D x2

1 and z D
1

x1
I

tan
�

1
2
�i

�
D

yi

xi
D

xi

yi�1

; hence x2
i D yiyi�1I

tan
�

1
2
.�iC1� �i/

�
D

yi

z
D x1yi ; hence

tan
�

1
2
�iC1

�
� tan

�
1
2
�i

�
1C tan

�
1
2
�iC1

�
tan
�

1
2
�i

�D x1yi :
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This implies

xiyiC1�xiC1yi D x1yi.xixiC1CyiyiC1/I

thus,

xi

�
x2

iC1

yi

�
�xiC1yi D x1yi.xixiC1Cx2

iC1/;

so

xiC1 D
x1xiy

2
i Cy2

i

xi �x1y2
i

:

These equations imply that xiC1 can always be expressed by a rational function
in just the variable x1. For example, for all W .3; q/, x2 D .x5

1
C x3

1
/=.1 � x4

1
/.

In addition, using the midline of the rectangle, z C yn�1 D 2, which implies thatP
xi D z� 1D 1=x1� 1. This yields one polynomial equation in x1, whose solution

provides a solution for all edge lengths, xi and yi .

For W .3; 2n/, the right kite structure extends the pattern shown in Figure 13(e), and
we get the same equations as above, except

P
xi D

1
2
z D 1=.2x1/.

Finally, the kite angles �i can be computed from the edge lengths. By Theorem 5.8,
this provides an algorithmic solution for vol?.W .3; q// for each q.

See Table 1 for numerical computations of vol?.W .p; q// for several small values of
p and q. The equality for the Borromean link L is exact: all four of its right kites are
squares, so vol?.L/D 16 and ƒ

�
1
4
�
�
D vol.L/. The exact equality for W .4; 4/ was

proved in [14].

5.3 Asymptotically sharp volume bounds

Our results in [8; 10] imply that the lower bound from right-angled volume is asymp-
totically sharp for many sequences of alternating links. Using our results above, we
prove that we can remove the “no cycle of tangles” condition from [8, Theorem 1.4;
10, Theorem 6.7].

Let W be the infinite square weave and let Q be the triaxial link, which are biperiodic
alternating links discussed in [8; 10]. Let W and Q be the respective toroidally
alternating quotient links. Let vtet � 1:01494 and voct � 3:66386 be the hyperbolic
volumes of the regular ideal tetrahedron and the regular ideal octahedron, respectively.
Let c.K/ denote the crossing number of K.

Algebraic & Geometric Topology, Volume 22 (2022)



Right-angled polyhedra and alternating links 779

W .p; q/DL vol?.L/ vol.L/

W .3; 2/D 41 0 2.0299
W .3; 3/D Borromean link 7.3277 7.3277
W .3; 4/D 818 12.0461 12.3509
W .4; 3/D 940 14.6554 15.0183
W .3; 5/D 10123 16.2758 17.0857
W .3; 6/DL12a1882 19.4287 21.6316
W .3; 7/D 14a19470 24.2126 26.0544
W .4; 4/DL12a2008 24.0922 24.0922

Table 1: Right-angled volumes for several low-crossing weaving knots.

Theorem 5.10 Let Kn be any sequence of alternating hyperbolic link diagrams which
satisfy Følner convergence almost everywhere , as in [10, Definition 6.1], to W and Q,
respectively. Then

Kn
F
�!W D) lim

n!1

vol.Kn/

c.Kn/
D lim

n!1

2� log det.Kn/

c.Kn/
D

vol..T 2�I/�W /

c.W /
D voct;

Kn
F
�!Q D) lim

n!1

vol.Kn/

c.Kn/
D lim

n!1

2� log det.Kn/

c.Kn/
D

vol..T 2�I/�Q/

c.Q/
D

10
3
vtet:

Proof For links without a cycle of tangles, the proofs of [8, Theorem 1.4] and
[10, Theorem 6.7] relied on a lower volume bound coming from the checkerboard
polyhedra of Kn, given an ideal right-angled hyperbolic structure. Now, we use instead
the guts polyhedra of Kn, whose volume is vol?.Kn/, which is a lower volume bound
by Theorem 5.3. Since neither W nor Q contains a cycle of tangles, any cycles of
tangles in Kn must be in G.Kn/�Gn. Thus, if we use the guts polyhedra, the proofs
are otherwise unchanged.

Corollary 5.11 The lower bound , vol?.L/, is asymptotically sharp; ie there exists a
sequence of alternating hyperbolic links Kn such that

lim
n!1

vol?.Kn/

vol.Kn/
D 1:

Proof By Theorem 5.10, there exist sequences of alternating links Kn and K0n such
that

lim
n!1

vol?.Kn/

c.Kn/
D lim

n!1

vol.Kn/

c.Kn/
Dvoct; lim

n!1

vol?.K0n/
c.K0n/

D lim
n!1

vol.K0n/
c.K0n/

D
10
3
vtet:
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It follows that, for any sequence Kn such that Kn
F
�!W or Kn

F
�!Q,

lim
n!1

vol?.Kn/

vol.Kn/
D 1:

For an example of such a sequence, let Kn DW .pn; qn/ for any pn; qn!1. Then
Kn

F
�!W.

5.4 Comparison to other volume bounds

By [2; 19], for any hyperbolic alternating link diagram L with twist number t.L/,

(1) 1
2
voct.t.L/� 2/� vol.L/:

Both this lower bound and the one we obtain from vol?.L/ are equalities for the
Borromean link. In general, the bound in (1) seems to provide information about the
volume of the “algebraic” part of L. By contrast, vol?.L/ gives no information on
volumes of the algebraic part, but seems to give better estimates when the algebraic
part is “small.” For example, by Theorem 5.10, there are many families of alternating
links Kn with vol.Kn/=c.Kn/! voct such that t.Kn/=c.Kn/! 1. For such alternating
links Kn, including weaving links, vol?.Kn/ will be at least twice the lower bound
in (1).

For the examples in Table 1, vol?.L/ beats all previous diagrammatic lower volume
bounds. However, as discussed in Section 3, for any visibly algebraic link L, there
are no tangle polyhedra, so vol?.L/ D 0. For example, any Montesinos link L,
whose hyperbolic volume can be arbitrarily large, has vol?.L/ D 0. Similarly, for
any arborescent link L with no hidden Conway spheres, vol?.L/D 0, but the lower
bound in (1) is nonzero. As discussed above, there also exist arborescent links whose
alternating diagram does not admit visible Conway spheres, such as the Borromean
link B, for which vol?.B/D vol.B/.

It would be useful to be able to combine estimates on algebraic parts of links using (1)
with the volume bound of Theorem 5.3. However, at this time our techniques do not
allow us to combine the two arguments used to prove the different bounds.

5.5 Right-angled links

We say that a hyperbolic link L is right-angled if S3�L with the complete hyperbolic
structure admits a decomposition into ideal hyperbolic right-angled polyhedra. For
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example, the Whitehead link and Borromean link are right-angled alternating links. But
vol?.L/D vol.L/ only for the Borromean link; vol?.L/D 0 for the Whitehead link.
Among nonalternating links, the class of fully augmented links is right-angled [11; 28].

Hyperbolic right-angled 3–manifolds have interesting properties. The right-angled
decomposition gives an immersed totally geodesic surface in the 3–manifold arising
from the faces of the polyhedra. Another property is that their fundamental groups are
virtually special [11]. In general, it seems difficult to prove that a hyperbolic 3–manifold
is not right-angled. For example, Calegari proved that the knot 820 has no immersed
totally geodesic surfaces [7, Corollary 4.6]. This implies that 820 is not right-angled.

Conjecture 5.12 There does not exist a right-angled knot.

Together with Theorem 5.3, Conjecture 5.12 would imply that, for any knot K,

vol?.K/ < vol.K/:

Volume bounds for ideal right-angled polyhedra provide another obstruction for links to
be right-angled. By [3], the regular ideal octahedron has the smallest volume among all
such polyhedra. Thus, any hyperbolic link L with vol.L/ < voct cannot be right-angled;
for alternating links L, if vol.L/ < 2voct, then vol?.L/D 0.

Recently, Vesnin and Egorov [34] enumerated the volumes of ideal right-angled poly-
hedra with at most 23 faces. Using their enumeration, we have verified Conjecture 5.12
for all knots up to 11 crossings.

Question 5.13 Does there exist a hyperbolic alternating link L, besides the Borromean
link, for which vol?.L/D vol.L/?

Remark 5.14 Since we posted this paper on arXiv, Gan showed that there are exactly
three links with two totally geodesic checkerboard surfaces [14]. These are the Bor-
romean link with underlying graph the octahedron, a 4–component link with underlying
graph the cuboctahedron (which is W .4; 4/ from Table 1) and a 6–component link
with underlying graph the icosidodecahedron. These are illustrated in [14, Figure 6].
In particular, there are no knots whose checkerboard surfaces are right-angled totally
geodesic, resolving a special case and providing more evidence for Conjecture 5.12.
Moreover, for these three links, vol?.L/ D vol.L/, giving two more examples to
Question 5.13. See [14, Remark 3.15]. Thus, to extend Theorem 5.3, it is reasonable to
conjecture that, for any hyperbolic alternating link L, except for the three links in [14],

vol?.L/ < vol.L/:
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