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It is conjectured that the Khovanov homology of a knot is invariant under mutation. In
this paper, we review the spanning tree complex for Khovanov homology, and reformulate
this conjecture using a matroid obtained from the Tait graph (checkerboard graph) G of
a knot diagram K. The spanning trees of G provide a filtration and a spectral sequence
that converges to the reduced Khovanov homology of K. We show that the Ea-term of
this spectral sequence is a matroid invariant and hence invariant under mutation.
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1. Introduction

For any diagram of an oriented link L, Khovanov [7] constructed bigraded abelian
groups H%J(L), whose bigraded Euler characteristic gives the Jones polynomial
%7 (t):

X(H™") = (=1)'¢g'rank(H™) = (¢ + ¢ ")Vi(¢?)

i,

For knots (or links with a marked component), Khovanov also defined reduced
homology groups Hii (L) whose bigraded Euler characteristic is ¢=1Vz(¢?) [8].

Since the introduction of Khovanov homology in [7], the theory has been devel-
oped and generalized far beyond the Jones polynomial (see e.g. [9] and references
therein), and beyond classical links to objects like graphs and ribbon graphs (see
e.g. [3, 6, 10]).
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However, just as the original Jones polynomial eludes a topological interpre-
tation in terms of the knot complement, classical Khovanov homology remains
mysterious. The following questions are open for this invariant:

e Does any non-trivial knot have trivial Khovanov homology?

e Which knots have “thin” Khovanov homology (supported on two diago-
nals)?

e What is the Khovanov homology of (p, ¢)-torus knots?

e [s Khovanov homology invariant under Conway mutation of knots?

Our purpose here is to present ideas and results that we hope will be useful to
tackle the last question. It is conjectured that the Khovanov homology of a knot is
invariant under mutation (see [1, 20], and see [21] for a recent proof over Z/27Z).

Spanning trees and Khovanov homology

There is a 1-1 correspondence between connected link diagrams D and connected
planar graphs G with signed edges. G, called the Tuit graph of D, is obtained
by checkerboard coloring complementary regions of D, assigning a vertex to every
shaded region, an edge to every crossing and a + sign to every edge as follows:

L1 X

The signs are all equal if and only if D is alternating.

In Section 2 below, we express Khovanov homology using generators that cor-
respond to spanning trees of G. More accurately, with a fixed edge order on G, the
construction relies on activity words W (T') for each spanning tree 7. Before diving
into notation, it seems worthwhile to motivate this approach.

We give three motivating reasons to consider Khovanov homology using the
spanning trees of the Tait graph. First, Thistlethwaite [16] gave an expansion of
the Jones polynomial V7, (¢) in terms of spanning trees of any Tait graph G(L). Every
spanning tree contributes a monomial to the Jones polynomial. For non-alternating
knots, these monomials may cancel with each other, but for alternating knots, such
cancelations do not occur. Thus, for alternating knots, the number of spanning
trees is exactly the L'-norm of Jones coefficients, and the span of V7, (¢) is maximal,
equal to the crossing number. The bigraded spanning tree complex described below
provides an explicit distribution of spanning trees, which is at most (k + 1)-thick
for links that become alternating after k crossing changes (see [2]). It also provides
a tool to study particular Jones coefficients. For example, if we change a crossing in
an alternating knot diagram D, the span and L'-norm of Jones coefficients strictly
decrease. In the spanning tree complex, we can see how the gradings change to
make certain spanning trees cancel in the Euler characteristic.

A second reason is given by the important and closely related example of knot
Floer homology. The two knot homology theories are compared in detail in [15]. The
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complex for knot Floer homology in [14] has generators that correspond to spanning
trees, but no combinatorial differential is known. The more recent complex in [11]
is completely combinatorial but has far more generators, so it is quasi-isomorphic
(and possibly retracts) to a combinatorial complex generated by spanning trees. The
situation for Khovanov homology is similar: The Khovanov complex retracts to a
complex generated by spanning trees of G (Theorem 2.2), but it remains an open
question whether the differential on the spanning tree complex can be expressed
entirely in terms of the combinatorics (activity words) of spanning trees.

The third reason is discussed in Section 3, where we show that the conjectured
dependence of the differential on activity words is closely related to the mutation
invariance of Khovanov homology. This appears to be a promising approach to
prove that Khovanov homology is invariant under component-preserving mutation
of links.

In Section 2, we review the construction of the spanning tree complex C(K)
given in [2], the spanning tree filtration and the associated spectral sequence that
converges to H(K). In Sections 2.3 and 2.4, we prove new results that show direct
incidences and the Es—term of this spectral sequence are determined by activity
words. Material in Section 2.5 also has not been previously published.

In Section 3, we show that the mutation invariance of any knot invariant can
be expressed in terms of the colored cycle matroid M (K), obtained from the Tait
graph G of a knot diagram K. In particular, the reduced Khovanov homology
H(K) is invariant under mutation if and only if the spanning tree complex C(K)
is determined by M (K) up to quasi-isomorphism. As a partial step, the Eo—term
mentioned above is determined by M (K) and hence invariant under mutation.
In Section 3.3, we discuss an approach to prove mutation-invariance of Khovanov
homology.

2. Spanning Tree Complex

In [2], for any connected link diagram D, we defined the spanning tree complex
C(D) = {C¥(D),d}, whose generators correspond to spanning trees 7" of G. In this
section, we review the main ideas and related notation, which will be used later.

2.1. Activity words and twisted unknots

Fix an order on the edges of G. For every spanning tree T of GG, each edge e € G
has an activity with respect to T, as follows. If e € T', cut(T, e) is the set of edges
that connect T\ e. If f & T, cyc(T,f) is the set of edges in the unique cycle of
T U f. Note f € cut(T,e) if and only if e € cyc(T, f). An edge e € T (resp. e ¢ T))
is live if it is the lowest edge in its cut (resp. cycle), and otherwise it is dead.

For any spanning tree T of G, the activity word W (T') gives the activity of each
edge of G with respect to T'. The letters of W (T') are as follows: L, D, ¢, d denote a
positive edge that is live in T, dead in T, live in G —T', dead in G — T, respectively;
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L, D, ¢, d denote activities for a negative edge. Note that T is given by the capital
letters of W(T).
Thistlethwaite assigned a monomial p(7") to each T as follows:

LPDQ[FdsEmDyZzCZw = ,U(T) _ (_1)p+T+I+ZA—3p+q+3T—S+3I—y—3z+w'

Theorem 2.1 ([16]). Let G be the Tait graph of any connected link diagram D
with any order on its edges. Let (D) denote the Kauffman bracket polynomial of D.
Summing over all spanning trees T of G, (D) =3, u(T).

The activity word W(T') contains much more information than just u(7). A
twisted unknot U is a diagram of the unknot obtained from the round unknot using
only Reidemeister I moves. W (T') determines a twisted unknot U(T') by changing
the crossings of D according to Table 1 for dead edges, and leaving the crossings
unchanged for live edges (Lemma 1 [2]). In Table 1, the sign of the crossing in U(T)
is indicated for unsmoothed crossings, and Kauffman state markers are indicated
for smoothed crossings.

Table 1. Activity word for a spanning tree determines a
twisted unknot

D | ¢ d |
A ‘ + B

INX(

| 7

MM

XIh

We can also consider each U(T) as a partial smoothing of D determined by
W(T). In fact, there exists a skein resolution tree for D whose leaves are exactly
all the partial resolutions U(T'), for each spanning tree T of G (Theorem 2 [2]).
Let o(U) = #A-smoothings —# B-smoothings, and let w(U) be the writhe. If U
corresponds to T, then p(T) = AW (—A)3*() is exactly the monomial above
Theorem 2.1. As Louis Kauffman pointed out, this is how humans would compute
(D): Instead of smoothing all the way to the final Kauffman states, a human would
stop upon reaching any twisted unknot U, and use the formula p (7). We illustrate
all of this for the figure-eight knot diagram in Figure 1.

For any connected link diagram D, we choose the checkerboard coloring such
that its Tait graph G has more positive edges than negative edges, and in case of
equality that the unbounded region is unshaded. In [2], we defined the spanning
tree complex C(D) = {C¥(D), 0}, whose generators correspond to spanning trees T'
of G. The u and v—grading are determined by W(T') as follows:

w(T) = #L —#0 —#L+#0 and o(T)=#L+ #D.
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Spanning trees and twisted unknots for figure-8 knot
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Theorem 2.2 ([2]). For any connected link diagram D, there exist spanning tree
complexes C(D) = {C¥(D),d} and UC(D) = {UC;(D),0} with O of bi-degree
(—1,—1) that are deformation retracts of the reduced and unreduced Khovanov com-
plexes, respectively.

The differential in C(D) is defined indirectly. As discussed in detail below,
for each T the Khovanov complex C(U(T)) is contractible, and we proceed by
a sequence of collapses of each C(U(T)) to a single generator Z(T'). The differential
on spanning trees is the one induced by all such collapses.

Note that u(T) = —w(U(T)). Interestingly, v(T) has appeared in several guises
elsewhere: (1) Rasmussen’s 0—grading (Definition 4.4 [15]) satisfies § = 2v+k, where
k is a constant that depends only on D. (2) A connected link diagram determines
a ribbon graph, which is a graph embedded in a surface such that its complement
is a union of 2—cells. The genus ¢ of the ribbon graph is the genus of the minimal
such surface. Each spanning tree of G corresponds to a ribbon graph with one
complementary 2—cell, whose genus satisfies g+v = k’, where k’ is another constant
that depends only on D (Theorem 2.1 [3]).

2.2. Fundamental cycle of a twisted unknot

We review the main ideas underlying Theorem 2.2, which will be used in the next
section.

Let D be a connected link diagram with a basepoint P away from the crossings
of D. In the version of Khovanov homology in [19, 18], generators of the reduced
Khovanov complex C (D) are given by enhanced Kauffman states of D. A Kauffman
state s is a choice of smoothings of all crossings of D, and enhancements are + signs
on every loop of s. The reduced Khovanov complex consists only of enhanced states
for which every loop that contains P has a positive enhancement. Enhanced states
are incident in C(D) if and only if exactly one A marker can be changed to a B
marker, such that loops unaffected by the marker change keep their enhancements,
and the changed loops are enhanced to increase the enhancement signature by one.

For any twisted unknot U, C(U) is contractible, with the same homology as that
of the positively enhanced round unknot (). Starting from the round unknot, by a
sequence of positive and negative twists, we can obtain any U. For every such twist,
Figure 2 indicates how to obtain a linear combination of maximally disconnected
enhanced states. We define the fundamental cycle Zy € C(U) to be the linear
combination of enhanced states of U given by iterating the local changes in Figure
2. Let fu : C(Q) — C(U) be defined by fu(OF) = Zu.

On the other hand, there exists a sequence of elementary collapses ry : C U) —
6(0)7 such that ry o fy = id and fy o ry =~ id. Essentially, this follows from
invariance of Khovanov homology under the first Reidemeister move [7].

We can summarize this discussion as follows: Each spanning-tree generator T' €
C(D) corresponds to a contractible Khovanov subcomplex C(U(T)), for which the
fixed point of the retraction is the fundamental cycle Zy (7). The basepoint P
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Fig. 2. How to obtain the fundamental cycle of a twisted unknot
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determines a unique fixed point for this retraction: (U, P) is given by a sequence of
first Reidemeister moves from (), P), which determines Zy uniquely.

Let ¢ : C(U(T)) — C(D) be the inclusion of enhanced states given by appro-
priately shifting the gradings. The image Z(T) = ¢ (Zy(ry) € C(D) is called the
fundamental cycle of T. Note that Z(T') is not generally a cycle in 5(D), even
though Zy (7 is a cycle in 5(U(T)) In the proof of Theorem 2.2, the map from
C(D) — C(D) given by T — Z(T) induces an isomorphism on homology.

Up to linear combinations of enhancements, Z(7T) is just a single Kauffman state:
the maximally disconnected state of U(T'), obtained by replacing every positive or
negative twist in U(T") by an A or B marker, respectively. So from Table 1 we
obtain the markers for Z(T") from the activity word W (7T'):

D
A

| T

(2.1)

|
3| i
hNY W

L ¢ d
B A B
It also follows that distinct enhanced states s,s' € C(U(T)) differ only at markers
that are live in W(T). If i # j, the enhanced states s; € C(U(T;)) and s €
C(U(Ty)) differ in at least one marker that is dead in both W (T3;) and W (T}).

Finally, it is straightforward to extend these ideas to unreduced Khovanov
homology. Using the gradings in [19], C(O) = Z(®~1 and C(Q) = 2% g 701,
Hence, for every T, there are two fundamental cycles for U(T), and two corre-
sponding generators in UC(D): T" in grading (u(7T'),v(T)), and T~ in grading
(u(T) 4+ 2,v(T) + 1). With the activity word W (T') and the basepoint P, we can
associate a unique generator in C(D) to each of T+ and T~ by using the same rules
in Figure 2 to obtain le;(T) € C(D), starting with O for T+ and O~ for T~.

2.3. Activity words and the differential on the spanning tree
complex

The proof of Theorem 2.2 does not provide an intrinsic description of the differential
on the spanning tree complex C(D) without reference to enhanced states. The main
result of this section is that the simplest kind of incidence in C(D) is determined
by activity words.
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For a complex (C,d) over Z with graded basis {e;}, let (-,-) denote the inner
product defined by (e;, e;) = 6;5. We say « is incident to y in (C,0) if (0z,y) # 0
and their incidence number is (Ox,y).

Let Ty, T be spanning trees with fundamental cycles Z1, Zy € C(D). We define
Ty and T to be directly incident if (071, Z3) # 0 in 5’(D) In this case, (071, Zs) =
(—1)%, where 3 is the number of B-markers after the A-marker that is changed.
By Lemma 2.1 below, if 77 and T are directly incident, then they are incident in
C(D) and (0Ty,T2) = (0Z1, Zs) = £1. However, T1 and T5 may be incident in C(D)
even though (077, Zs) = 0, which is discussed in Section 2.5.

Theorem 2.3. Spanning trees Ty and Ty are directly incident if and only if the
activity words W(Ty) and W (Ts) differ by changing exactly two (not necessarily
adjacent) letters in one of the following four ways:

Ld—dD
dD— Ld
{D—Dd
Dd— (D

In particular, Ty is obtained from Ty by replacing one positive edge e € Ty with one
negative edge f, such that f € cut(Th,e), and no other edges change activity.

Proof. First, we show that if W(T71) (on the left) changes in one of the four ways to
W (Ty), then T and Ty are directly incident. Let Z; and Z5 be fundamental cycles
of Ty and T». In all four cases, by (2.1) exactly one A marker of Z; is changed
to a B marker to get Zs, and (u(T32),v(T2)) = (u(Ty) — 1,v(Ty) — 1). Changing
indices according to equations (2) in [2], it follows by results in [19] that at least
one summand of each of Z; and Z, are incident in C(D).

We claim that (071, Zs) # 0. If these are single enhanced states, then we are
done. For linear combinations of enhanced states, we must show that incidences
among summands do not cancel. A fundamental cycle Z(T') can have more than one
summand only if U(T) is smoothed at a crossing ¢, resulting in a linear combination
of enhanced states, as shown in Figure 2. Since c is a crossing of U(T), ¢ is live in
W (T). In all four cases, the marker that changes from A to B is dead in both W (T})
and W (T3), so the marker at ¢ cannot change. All summands of Z(T') have the same
markers, so the sign of every summand is determined by its enhancements. Since
the sign of the Khovanov differential depends only on the markers, cancellations
cannot occur among terms in (077, Zo). Since at least some summands of Z; and
Zo are incident and do not cancel, T7 and T5 are directly incident.

Conversely, suppose T and T5 are directly incident. We claim there is exactly
one pair of edges e;, e; such that To = (77 \ e;) Ue;, and only e; and e; change
activities.
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If a marker does not change, then by (2.1), since edge signs do not change, the
activity of the corresponding edge can change as follows:

L +—d, D ¢, L —d, D7 (2.2)

Therefore, without a marker change, the activity of an edge changes if and only if
the edge is removed from the tree or inserted into the tree.

From any spanning tree 7', we can obtain any other spanning tree by switching
pairs of edges e; € T, e; ¢ T', such that e; € cut(T), e;). Consider switching one such
pair of edges for which neither marker changes.

Suppose the markers of e; and e; are fixed, and suppose for spanning trees T', T”,
we have T” = (T \ e;) U e;. In every case in (2.2), e; and e; are both live in either
T or T'. However, e; € cut(T,e;) and e; € cut(T’,e;), so only one of e; or e; can
be live (the lower-ordered edge). This contradiction implies that if neither marker
changes, then the activities cannot change, and in particular, this pair of edges
cannot be switched.

Since T; and T5 are directly incident, exactly one marker changes. By the argu-
ment above, there is exactly one pair of edges e;, e; such that To = (77 \ e;) Ue;,
and only the activities of e; and e; change. Moreover, only the lower-ordered edge
can be live in either T} or T5. Since v(T2) = v(T1) — 1, e; must be positive, and e;
negative. Since u(T2) = u(Ty) — 1, if both edges are dead on the right (i.e., with
respect to Tb), one edge on the left must be L or /; if both edges are dead on the
left, one edge on the right must be L or . These four cases are the ones given in
the theorem, and all can occur. O

Lemma 2.1. Let T1,T5 be spanning trees with fundamental cycles Zy, Zs € é(D)
If <8Z1, ZQ> 7£ 0 then in C(D), <8T1,T2> = <8Z1, ZQ>

Proof. If z is incident to y in 5(D), we denote this by © — y below. Let U; =
U(T;). We claim that the differential Z; — Z5 remains after all elementary collapses
of twisted unknots, as in Lemma 4 of [2]. It suffices to show that the incidences
shown in the diagram below are impossible for any enhanced states s’, s’ that
are distinct from Zy, Z5. This is the only way for the differential Z; — Z5 to be
removed by elementary collapse.

g —= g

X

Z1—>ZQ

Case 1: s € C(U;) C C(D). If i # j, any incidence between enhanced states
in C(U;) and 5(Uj) must occur at a marker that is dead in both W(T;) and W (T}).
Thus, both s’ and Z; differ from Z5 on a dead marker, hence they have the same live
markers. Since both are in C (Uy), they have the same dead markers too. Therefore,
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s’ and Z; just differ by the following enhancements:

O*OJr > g

O*O~—0O"
Now, for both s’ and Z; to be incident to s”, the same marker must change. This
implies that s” = Z since both have the same markers and the same enhancements,
which is a contradiction.
Case 2: ' & C(U;) C C(D). Suppose Z; — Zy at marker 1, and s’ — Z, at
marker 2, which must be distinct markers. Therefore at markers 1 and 2, we have

BA—— 35"

<

AB—— BB

Because Z; and s’ are both incident to s”, this implies that s” must have the same
markers as Zs. Therefore, for Z; to be incident to both s” and Z,, the enhancements
must be as follows:

s . O*OJr

O —=0O"0O"
Now, for both s” and Zs to be incident to s’, the same marker must change. So
marker 1 = marker 2, which is a contradiction. O

2.4. Spanning tree filtration and spectral sequence

The activity word W(T') determines a partial smoothing U(T'). Live edges, denoted
below by *, correspond to crossings of the twisted unknot, which are not smoothed.

Let D be any connected link diagram with n ordered crossings. For any span-
ning trees T,7" of G, let (z1,...,2,) and (yi1,...,yn) be the corresponding partial
smoothings of D. We define a relation T' > T”, or equivalently, (z1,...,z,) >
(y1,...,yn) if for each i, y; = A implies x; = A or *, and there exists ¢ such that
x; = A and y; = B. The transitive closure of this relation gives a partial order,
also denoted by > (Proposition 1 [2]). We define P(D) to be the poset of spanning
trees of G with this partial order. Note that P(D) always has a unique maximal
tree and unique minimal tree, whose partial smoothings contain the all-A and all-B
Kauffman states, respectively.

For example, for the figure-8 knot from Figure 1,

no | n | 1y | Tw | Tp
**BB|*BAB|*AAB|**BA|**AA
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We get two sequences: Ts > T35 > Ty > Ty and T5 > Ty > T;. The maximal and
minimal trees correspond respectively to the left-most and right-most unknots in
Figure 1.

The poset P (D) provides a partially ordered filtration of C'(D) indexed by P(D):
Let U; = «(C(U(T3))) € C(D). Let ¢ : P(D) — C(D) defined by (T) = +r>7,U;.
From a partially ordered filtration, we can get a decreasing linearly ordered filtration
FPC(D) by taking all trees of order at least p from all maximal descending ordered
sequences in P(D). For example, the figure-8 knot from Figure 1 has the following

filtration FPC(D),
F'=y(T5) = C(D), F?>=v(T3) +¢(Ty), F*=vy(Tz), F*=y(T1)

Theorem 2.4 ([2]). For any knot diagram D, there is a spectral sequence Ef*
that converges to the reduced Khovanov homology ﬁ***(D; Z), such that as groups
E]" 2 C(D), and the spectral sequence collapses for r < c¢(D), where ¢(D) is the
number of crossings.

The associated graded module consists of submodules of C (D) in bijection with
spanning trees:

EP* = FPC(D)/FPC(D) = @; U; (2.3)

Corollary 2.1. For any knot diagram D, the Es—term of the spectral sequence in
Theorem 2.4 is determined by the set of activity words for all spanning trees in
G(D).

Proof. Let D be any knot diagram. It follows from the filtration that for any p,
it Uy,Uy C EP™ then T and T, are not comparable in P. Hence, dy : EJ? —
EP9t satisfies do(Uy) C Uy, for every k. This implies that (2.3) is a direct sum of
complexes.

Each complex Uy, has homology generator corresponding to a spanning tree, so
FE is isomorphic as a group to the spanning tree complex:

EP* = H*(FP)FP* dy) = & H*(Uy) = C(D)

Let d; : EP? — Ef“’q. If 77 > T5 are directly incident and one filtration level
apart then Z; € FPC(D), Zy € FPHIC(D) € Ef*, and (8(Z1), Zs) # 0. Thus,
(d1(Z4), Za) # 0. Conversely, if (d1(Z1), Z2) # 0 then T7 and Ty are one filtration
level apart and hence directly incident. The partial order and filtration are deter-
mined by activity words, and by Theorem 2.3 direct incidences are determined by
activity words. Therefore, the Es—term of the spectral sequence is determined by
activity words. O

2.5. Higher order incidences

To construct C(D) as well as UC(D), we proceed by a sequence of elementary
collapses of each U; to its fundamental cycle Z(T;), starting from the minimal tree
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and ascending in the partial order whenever trees are comparable. Any elementary
collapse in U; does not change incidence numbers in fjj for any j # i (Lemma 5
[2]), so we can sequentially collapse each Us.

Differentials are induced from each collapse, so T and T may be incident in
C(D) without being directly incident; i.e., (0721, Z3) = 0 but {(d,. Z1, Z3) # 0 for some
r > 1. In general, (9T1,T>) is the sum of induced incidence numbers given by all
ladders from Zy to Z5. Before giving definitions, here is an example of a 2-incidence
(1 # 1,2 and x;, y; # Z;), which becomes an incidence after collapsing Uy;:

7z Uy
Zo Us

Definition 2.1. Let T} > T5 be spanning trees with fundamental cycles Z1, Zs €
G(D) T1 and Ty are 1-incident if they are directly incident. For & > 1, T and T5
are k—incident if there exist x;,y; € ﬁji —Zj, for 1 <i < k—1, such that if xg = Z
and y, = Z5 then

(0%, yit1) Z0for 0 <i<k—1, (Ox;,y;) #0for 1 <i<k-—1

Such a sequence of ordered pairs of enhanced states will be called a ladder of
enhanced states from Z7 to Zs.

If T and T5 are k-incident, then collapsing along {(7]1 |1<i<k-1,j#1,2},
as in Definition 2.1, the incidence number between Z; and y, = Z» induced from this

E—1
ladder is (—1)*"1(0Zy, y1) H_il (0%, yi)(Ox;, yiv1). Moreover, since each enhanced

state belongs to a unique U;, for every ladder from Z; to Zs, such a collapse implies
the following:

(1) Th > T, >...>1Tj, , >T> and these relations are transitive.

(2) Exactly k A-markers of Z; are changed to B-markers of Zs.

(3) Exactly (k — 1) B-markers of Z; are changed to A-markers of Zs.

(4) For each j;, z;,y; are resolutions of U j.» with a differential x; — y; by changing

a marker that is live in W (T},).

(5) If at level ¢ and level i +1 (i # 1,k — 1), the same spanning tree T occurs, then
there exists a differential ; — y;+1 by changing a marker that is live in W(T').

(6) If at level 4 and level ¢ + 1, distinct spanning trees occur, then there exists a

differential 2; — y;+1 by changing a marker that is dead in both W (7},) and

W (T;

i+1 )'

We will say that a sequence of (possibly repeated) activity words {W(7},)}
along with the following extra data is an admissible activity sequence if
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(1) The first and last activity words correspond to spanning trees 77 and 75, whose
bigradings permit a nonzero differential.

(2) The sequence satisfies the partial order: Ty > T, > Tj,., > T, for all 7.

(3) A sequence of ordered pairs of markers indicates how to change the live markers

in each W (T3,).

Each ladder of enhanced states gives rise to a unique admissible activity
sequence. The converse is an open question that is fundamental to understand-
ing the differential on the spanning tree complex:

Question 2.1. Which admissible activity sequences correspond to ladders of
enhanced states?

Theorem 2.3 answers Question 2.1 in the simplest case.

As discussed in Section 2.2, given W(T') and basepoint P, we can compute
Z(T) € C(D) from U(T). In particular, W (T}) and W (T5) completely determine
Z1 and Z,. But starting with Z7, and just specifying allowed marker changes may
not be sufficient to produce a ladder (or possibly a linear combination of ladders)
of enhanced states to Zy. The difficulty inherent in Question 2.1 is whether the
enhancements on the states “take care of themselves,” or whether the enhancements
can obstruct the existence of a ladder, given a sequence of allowed marker changes
from Zy to Zs.

For the unreduced spanning tree complex UC(D), an admissible sequence must
also include the signs of the spanning tree generators: {£W (T},)}. With the signed
activity word W (T') and the basepoint P, we can compute Z* for each generator
T#*. Because any enhancement is allowed on the state with P, it seems less likely,
given an admissible signed activity sequence, that enhancements can obstruct a
ladder.

In Section 3.3, we show how this is directly related to the mutation-invariance
of Khovanov homology.

3. Mutation and Matroids

A marked 2-tangle is a 2-tangle contained in a round ball such that its four endpoints
are equally spaced around the equator of the boundary sphere, called a Conway
sphere. Let L be a link that contains a marked 2-tangle 7. A mutation of L is the
following operation: Remove the Conway sphere containing 7, rotate it by 7 about
one of its three coordinate axes, and glue it back to form the link L'.

The same operation can be described for any planar diagram D of L. The
projection of the Conway sphere is a Conway circle that meets D in four points,
which are the endpoints of the marked 2-tangle diagram contained in the disc. A
mutation of D is then given by one of the three corresponding involutions of the
disc. Diagrams D and D’ are called mutants if D’ can be obtained from D by a
sequence of mutations.
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3.1. Tasit graphs and mutation

There are two choices for the checkerboard coloring of D, and the resulting Tait
graphs are the planar duals of each other. The projection of D is the medial graph
of G, and the signs on G determine the crossings of D. This determines a one-one
correspondence between checkerboard-colored link diagrams and planar embeddings
of signed graphs. In order to study mutation using Tait graphs, we define two moves
on graphs:

Fig. 3. Connect sum for links and their Tait graphs

1-flip Let v; and vy be vertices of disjoint graphs G; and Gs. A vertex identi-
fication is G = G1UGs/v1 ~ vy. If v is a cut-vertex of G, i.e. G — v is disconnected,
a vertex splitting at v of G is the inverse operation of vertex identification. A 1-flip
of G is a vertex splitting followed by a vertex identification.

2flip For i € {1,2}, let u;,v; be vertices of disjoint graphs G; such that
G = Gl ] GQ/(Ul, Ul) ~ (UQ, UQ). A 2,ﬂip of is the identification Gl ] GQ/(Ul, Ul) ~
(va, ug).

We extend both these moves to signed graphs by requiring that the signs on the
corresponding edges are preserved.

For a link diagram D, a 1-flip corresponds to breaking a connect sum and
reconnecting at a different place. Since the connect sum operation is well-defined
for knots, 1-flips do not change the knot type. However, 1-flips may change link
type; see Figure 3. We will consider only component-preserving link mutation later.

2-flips correspond to mutation for link diagrams. Figure 4 shows the Kinoshita-
Terasaka and Conway mutants along with their Tait graphs (unsigned edges are
positive). The graphs in the second row come from the checkerboard coloring with
the unbounded region shaded, and the graphs in the third row from the other
checkerboard coloring.

Some mutations change only the planar embedding of G but not G itself, so not
all types of mutation can be realized as 2—flips. For example the graphs in the third
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row of Figure 4 are not related by 2-flips. To address this, we define the following
two moves on planar embeddings of G that preserve the graph itself.

planar 1-flip A planar 1-flip replaces a 1-connected component of a planar
embedding with its rotation by 7 about an axis in the plane which intersects the
cut vertex.

planar 2—flip A planar 2-flip replaces a 2-connected component of a planar
embedding with its rotation by 7 around the axis determined by the 2-connecting
vertices.

We similarly extend both these moves to embeddings of signed graphs by requir-
ing that the signs on the corresponding edges are preserved.

Any two planar embeddings of a signed graph are related by a sequence of
planar 1-flips and planar 2-flips (see [12]). As before, these moves correspond to
reconnecting connect sums and mutations of link diagrams, respectively. Although,
1-flips can also correspond to mutation in link diagrams whose Tait graphs have a
cut vertex; for example, see Figure 3 and [20].

____________

Fig. 4. Kinoshita-Terasaka and Conway mutants and their Tait graphs

A graph G is said to be 2—isomorphic to a graph H if G can be obtained from
H by any sequence of vertex identifications, vertex splittings, or 2—flips. Hence, a
connected graph G is 2—isomorphic to a connected graph H if G can be obtained
from H by any sequence of 1-flips and 2—flips. In particular, isomorphic graphs are
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2-isomorphic. We require 2-isomorphisms of signed graphs to preserve signs on the
edges.

Prop 3.1. Let D and D’ be connected link diagrams with checkerboard colorings
chosen so that their unbounded regions are both shaded or both unshaded. Let G
and G’ be their respective Tait graphs. Then D and D’ are mutants if and only if
G and G’ are 2-isomorphic.

Proof. For any Tait graph, any type of mutation corresponds to either a 1-flip
(possibly a planar 1-flip), a 2—flip or a planar 2—flip, and all of these can be realized
by mutation. As mentioned above, any two planar embeddings of a graph are related
by a sequence of planar 1-flips and planar 2—flips. Specifying the coloring of the
unbounded region distinguishes a Tait graph from its planar dual. O

Thus, in order to study mutation via Tait graphs, we need to study invariants of
2—-isomorphism classes of signed graphs. As we discuss below, these naturally come
from matroids.

3.2. Matroids

We recall some ideas from the theory of matroids (see [13]). A matroid M is a finite
set of elements, together with a family of subsets, called independent sets, such that

(1) The empty set is independent,

(2) Every subset of an independent set is independent,

(3) For every subset A of M, all maximal independent sets contained in A have
the same number of elements.

A maximal independent set in M is called a basis for M, and any two bases of M
have the same number of elements, which is the rank of M.

For example, let E be the set of edges of a graph GG, and let Z be the collection
of subsets of edges that do not contain a cycle. Then (E,Z) is a matroid M (G),
called the graphic matroid of G. For a connected graph G, the bases of M (G) are
the spanning trees of G.

For any connected link diagram D with a checkerboard coloring and Tait graph
G, let the colored graphic matroid M (D) be the graphic matroid M (G) with edges
colored by {#1} as in the Tait graph, according to the crossings of D.

Whitney [22] determined precisely when two graphs have isomorphic graphic
matroids. This fundamental result, which motivated matroid theory, is called the 2—
isomorphism theorem (for background see [13]). If we require that any isomorphism
of colored graphic matroids be color-preserving, then the 2-isomorphism theorem
extends to signed graphs (see e.g., [17]):

Theorem 3.1. For signed graphs G and H with no isolated vertices, their colored
graphic matroids are isomorphic if and only if G and H are 2—isomorphic.
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Theorem 3.1 and Proposition 3.1 imply the following:

Corollary 3.1. Let D and D’ be connected link diagrams with checkerboard color-
ings chosen so that their unbounded regions are both shaded or both unshaded. Let
M (D) and M(D’) be their respective colored graphic matroids. Then D and D’ are
mutants if and only if M (D) = M(D’).

Consequently, any knot invariant ¢ is invariant under mutation if and only if for
any knot diagram K, ¢(K) is an invariant of the colored graphic matroid M (K).
For any matroid M, activities can be defined with respect to its basis, just as we
did for the graphic matroid M (G) using spanning trees. We will use that activity
words are determined by M (K), essentially due to Crapo [4].

For example, by Theorem 2.1, the Jones polynomial Vi (t) has an expansion
using activity words. Therefore, the Jones polynomial is an invariant of M (K), and
hence invariant under mutation. Below, we extend this idea to Khovanov homology.

3.3. Khovanov homology and matroids

For a given connected link diagram D with basepoint P, we choose the checkerboard
coloring such that its Tait graph G has more positive edges than negative edges,
and in case of equality that the unbounded region is unshaded. Let M (D) be the
colored graphic matroid of D with this coloring. The generators of C(D), which
are the spanning trees of G, are bases of M (D). Since both the u and v—gradings
are determined by the activities and signs, the bigrading on C(D) is determined by
M(D).

Generally, Conway mutation, as in Figure 3, may not preserve components.
Indeed, two mutant links were shown to have different Khovanov homology in [20],
using this connect sum ambiguity for links. From our point of view, such a mutation
moves the basepoint P from one component to another, leading to a different Zy (1)
for every T', which sometimes changes the homology. To eliminate this ambiguity, we
can either consider only knot diagrams, or require that Conway mutation of links
be component-preserving. For purposes of exposition, it is easier to just discuss
mutation of knot diagrams.

Whenever K and K’ are mutant knot diagrams, by Corollary 3.1, M(K) =
M(K"). Therefore, C(K) = C(K') as bigraded abelian groups. We conjecture that
the differential on C(K) is determined by M (K) in the following way.

Conjecture 3.1. Let K and K’ be knot diagrams such that M(K) = M(K'). If
11,15 € C(K) and T{,Ty € C(K') are generators corresponding to spanning trees,

(91, To) = (IT], Ty whenever W (T1) = W(T}), W(Tz) = W (T3)

If Conjecture 3.1 holds, then C(K) = C(K') as bigraded chain complexes for
mutant knot diagrams K and K’. This would imply that H(K) is invariant under
mutation.
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A quasi-isomorphism between chain complexes is a morphism that induces an
isomorphism on homology. Any two chain complexes of free abelian groups with
isomorphic homology are quasi-isomorphic. * This implies the following equivalence:

For a knot diagram K, the reduced Khovanov homology fl(K) is invariant under
mutation if and only if C(K) is determined up to quasi-isomorphism by M (K).

Corollary 3.2. For any knot diagram, the Eo—term of the spectral sequence in
Theorem 2.4 is invariant under mutation.

Proof. Corollary 2.1 implies that 3" (K) is determined by M (K). If K and K’
are mutant knot diagrams, M (K) = M (K'), which implies Ey*(K) = E3*(K').O

Theorem 3.1 is at the heart of these results in terms of spanning trees. But
in terms of enhanced Kauffman states, mutation appears to be a rather violent
operation on the Khovanov complex. It is interesting to relate these two points of
view.

Generally, we are given a connected link diagram D with a basepoint P. Con-
way mutation 7 on D induces a mutation on the Kauffman states of D. Conway
mutation of an enhanced state S of D may identify arcs with opposite enhance-
ments. To assign enhancements unambiguously for 7(5), (1) any state disjoint from
the Conway circle must keep its enhancement, and (2) all enhancements must be
preserved in the part of D that contains the basepoint P. The latter requirement
induces enhancements on arcs in the other part of D that intersect the Conway
circle. We will refer to this operation, which must preserve the link components, as
Conway mutation of (D, P), denoted by 7(D, P).

Let (D', P) = 7(D, P). By Theorem 3.1, spanning trees 7" = 7(T') if and only
if W(T') = W(T"). As discussed in Section 2.2, with the activity word W(T") and
the basepoint P, we can associate a unique generator in C'(D) to each of T and
T-, and for C(D) just use 7. Thus, the activity word =W (T}) for T determines
a unique generator Zii in each of the respective Khovanov complexes, C'(D) and
C(D'), as well as in C(D) and C(D'). Hence, the maps induced by Conway mutation
7:C(D) — C(D'") and 7y : UC(D) — UC(D’) are isomorphisms of bigraded abelian
groups.

This provides an approach to prove mutation-invariance of Khovanov homology.
In Section 2.5, we defined an admissible activity sequence, which depends only on
M (D). Even without an explicit answer to Question 2.1, these sequences may record
the essential information about the differential:

Conjecture 3.2. Let (D', P) = 7(D, P). For every ladder of enhanced states in
C (D), the~corresp0ndmg admissible activity sequence describes a ladder of enhanced
states in C'(D').

2This follows from the fact that every chain complex of free abelian groups decomposes as a direct
sum of two-step complexes, for which the relation matrix can be diagonalized. We thank Ciprian
Manolescu for this comment.
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Conjecture 3.2 appears weaker than Conjecture 3.1, but it too implies the
mutation-invariance of reduced Khovanov homology!

If Conjecture 3.2 holds then every differential in C(D’) may be computed from
some collection of admissible activity sequences. If so, for every ladder in é(D),
there is a corresponding ladder in C(D’) with the same induced incidence number
as in C(D). This would imply that 7 : C(D) — C(D') is a quasi-isomorphism. In
other words, C(D) is determined up to quasi-isomorphism by M (D).

Because signs on the spanning trees (or their activity words) are not contained
in M (D), the unreduced Khovanov complex UC(D) in general is not determined
by M (D). However, the following analogue of Conjecture 3.2 similarly implies the
mutation-invariance of unreduced Khovanov homology:

Conjecture 3.3. Let (D', P) = 7(D, P). For every ladder of enhanced states in
C(D), the corresponding admissible signed activity sequence describes a ladder of
enhanced states in C'(D’).

Remark 3.1. In [1], an attempt to prove mutation-invariance of Khovanov homol-
ogy was outlined using “re-embedding universality.” However, as explained there,
re-embedding universality implies invariance under cabled mutation, which Kho-
vanov homology does not satisfy [5]. We can explain the non-invariance of Khovanov
homology under cabled mutation by the fact that cabled mutation corresponds to
an n—flip for n > 2. Under this operation, Corollary 3.1 does not hold. In fact, the
14-crossing example in [5] has spanning trees whose activity words change after
2—cabled mutation. This lends some support to our approach.
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