

Density spectra for knots

Abhijit Champanerkar and Ilya Kofman

*Department of Mathematics,
College of Staten Island & The Graduate Center,
City University of New York, New York, USA*

Jessica S. Purcell

*School of Mathematical Sciences,
Monash University,
9 Rainforest Walk, Victoria 3800, Australia*

Received 18 June 2015

Accepted 24 November 2015

Published 1 February 2016

ABSTRACT

We recently discovered a relationship between the volume density spectrum and the determinant density spectrum for infinite sequences of hyperbolic knots. Here, we extend this study to new quantum density spectra associated to quantum invariants, such as Jones polynomials, Kashaev invariants and knot homology. We also propose related conjectures motivated by geometrically and diagrammatically maximal sequences of knots.

Keywords: Hyperbolic knot; volume density; determinant density; quantum density spectrum.

Mathematics Subject Classification 2010: 57M25, 57M50

1. Volume and Determinant Density Spectra

In [7], we studied the asymptotic behavior of two basic quantities, one geometric and one diagrammatic, associated to an alternating hyperbolic link K : The *volume density* of K is defined as $\text{vol}(K)/c(K)$, and the *determinant density* of K is defined as $2\pi \log \det(K)/c(K)$.

For any diagram of a hyperbolic link K , an upper bound for the hyperbolic volume $\text{vol}(K)$ was given by D. Thurston by decomposing $S^3 - K$ into octahedra at crossings of K . Any hyperbolic octahedron has volume bounded above by the volume of the regular ideal octahedron, $v_{\text{oct}} \approx 3.66386$. So if $c(K)$ is the crossing number of K , then

$$\frac{\text{vol}(K)}{c(K)} \leq v_{\text{oct}}. \quad (1.1)$$

The following conjectured upper bound for the determinant density is equivalent to a conjecture of Kenyon [14] for planar graphs. We have verified this conjecture for all knots up to 16 crossings.

Conjecture 1.1 ([7]). *If K is any knot or link,*

$$\frac{2\pi \log \det(K)}{c(K)} \leq v_{\text{oct}}.$$

This motivates a more general study of the spectra for volume and determinant density.

Definition 1.2. Let $\mathcal{C}_{\text{vol}} = \{\text{vol}(K)/c(K)\}$ and $\mathcal{C}_{\text{det}} = \{2\pi \log \det(K)/c(K)\}$ be the sets of respective densities for all hyperbolic links K . We define $\text{Spec}_{\text{vol}} = \mathcal{C}'_{\text{vol}}$ and $\text{Spec}_{\text{det}} = \mathcal{C}'_{\text{det}}$ as their derived sets (set of all limit points).

Equation (1.1) and Conjecture 1.1 imply

$$\text{Spec}_{\text{vol}}, \quad \text{Spec}_{\text{det}} \subset [0, v_{\text{oct}}].$$

Twisting on two strands of an alternating link gives 0 as a limit point of both densities: $0 \in \text{Spec}_{\text{vol}} \cap \text{Spec}_{\text{det}}$. Moreover, by the upper volume bound established in [1], v_{oct} cannot occur as a volume density of any finite link; i.e. $v_{\text{oct}} \notin \mathcal{C}_{\text{vol}}$. However, v_{oct} is the volume density of the *infinite weave* \mathcal{W} , the infinite alternating link with the infinite square grid projection graph (see [7]).

To study Spec_{vol} and Spec_{det} , we consider sequences of knots and links. We say that a sequence of links K_n with $c(K_n) \rightarrow \infty$ is *geometrically maximal* if

$$\lim_{n \rightarrow \infty} \frac{\text{vol}(K_n)}{c(K_n)} = v_{\text{oct}}.$$

Similarly, it is *diagrammatically maximal* if

$$\lim_{n \rightarrow \infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = v_{\text{oct}}.$$

In [7], we found many families of geometrically and diagrammatically maximal knots and links that are related to the infinite weave \mathcal{W} .

Definition 1.3. Let G be any possibly infinite graph. For any finite subgraph H , the set ∂H is the set of vertices of H that share an edge with a vertex not in H . We let $|\cdot|$ denote the number of vertices in a graph. An exhaustive nested sequence of connected subgraphs, $\{H_n \subset G : H_n \subset H_{n+1}, \cup_n H_n = G\}$, is a *Følner sequence* for G if

$$\lim_{n \rightarrow \infty} \frac{|\partial H_n|}{|H_n|} = 0.$$

For any link diagram K , let $G(K)$ be the projection graph of the diagram. Let $G(\mathcal{W})$ be the projection graph of \mathcal{W} , which is the infinite square grid. We will need

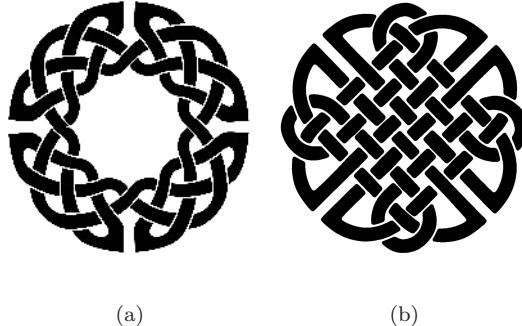


Fig. 1. (a) A Celtic knot diagram that has a cycle of tangles. (b) A Celtic knot diagram with no cycle of tangles, which could be in a sequence that satisfies conditions of Theorem 1.4.

a particular diagrammatic condition called a *cycle of tangles*, which is defined in [7]. For an example, see Fig. 1.

Theorem 1.4 ([7]). *Let K_n be any sequence of hyperbolic alternating link diagrams that contain no cycle of tangles, such that*

- (1) *there are subgraphs $G_n \subset G(K_n)$ that form a Følner sequence for $G(\mathcal{W})$, and*
- (2)
$$\lim_{n \rightarrow \infty} |G_n|/c(K_n) = 1.$$

Then K_n is geometrically maximal:

$$\lim_{n \rightarrow \infty} \frac{\text{vol}(K_n)}{c(K_n)} = v_{\text{oct}}.$$

Theorem 1.5 ([7]). *Let K_n be any sequence of alternating link diagrams such that*

- (1) *there are subgraphs $G_n \subset G(K_n)$ that form a Følner sequence for $G(\mathcal{W})$, and*
- (2)
$$\lim_{n \rightarrow \infty} |G_n|/c(K_n) = 1.$$

Then K_n is diagrammatically maximal:

$$\lim_{n \rightarrow \infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = v_{\text{oct}}.$$

Many families of knots and links are both geometrically and diagrammatically maximal. For example, weaving knots are alternating knots with the same projection as torus knots, and are both geometrically and diagrammatically maximal [8, 7]. These results attest to the non-triviality of $\text{Spec}_{\text{vol}} \cap \text{Spec}_{\text{det}}$:

Corollary 1.6. $\{0, v_{\text{oct}}\} \subset \text{Spec}_{\text{vol}} \cap \text{Spec}_{\text{det}}.$

Using our work, Burton [4] and Adams *et al.* [3] recently proved the following:

Theorem 1.7 ([3, 4]).

$\text{Spec}_{\text{vol}} = [0, v_{\text{oct}}]$, and $[0, v_{\text{oct}}] \subset \text{Spec}_{\text{det}}$, hence $\text{Spec}_{\text{vol}} \cap \text{Spec}_{\text{det}} = [0, v_{\text{oct}}]$.

Adams *et al.* [3] also showed that for any $x \in [0, v_{\text{oct}}]$, there exists a sequence of knots K_n (containing a large piece of \mathcal{W}) with x as a common limit point of both the volume and determinant densities of K_n .

Below, we prove how to explicitly realize elements in Spec_{vol} and Spec_{det} arising from periodic links.

For any reduced alternating diagram D of a hyperbolic alternating link K , Adams [2] recently defined the following notion of a *generalized augmented link* J . Take an unknotted component B that intersects the projection sphere of D in exactly one point in each of two non-adjacent regions of D . Then $J = K \cup B$. In [2, Theorem 2.1], Adams proved that any such generalized augmented link is hyperbolic.

Theorem 1.8. *For any hyperbolic alternating link K ,*

(a) *if $K \cup B$ is any generalized augmented alternating link,*

$$\frac{\text{vol}(K \cup B)}{c(K)} \in \text{Spec}_{\text{vol}},$$

(b) $2\pi \log \det(K)/c(K) \in \text{Spec}_{\text{det}}$.

Proof of part (a). View K as a knot in the solid torus $S^3 - B$. Cut along the disk bounded by B (cutting K each time K intersects the disk bounded by B), obtaining a tangle T . Let K^n denote the n -periodic reduced alternating link with quotient K , formed by taking n copies of T joined in an n -cycle of tangles as in Fig. 2. Thus, $K^1 = K$ and $c(K^n) = n \cdot c(K)$.

Let B also denote the central axis of rotational symmetry of K^n . Then [12, Theorem 3.1], using results of [11], implies that

$$n \left(1 - \frac{2\sqrt{2}\pi^2}{n^2} \right)^{3/2} \text{vol}(K \cup B) \leq \text{vol}(K^n) \leq n \text{vol}(K \cup B).$$

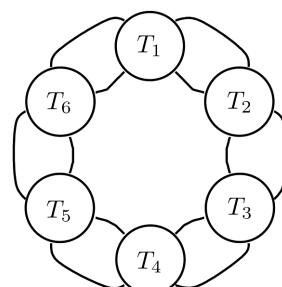


Fig. 2. A 6-cycle of 2-tangles.

Therefore,

$$\lim_{n \rightarrow \infty} \frac{\text{vol}(K^n)}{c(K^n)} = \lim_{n \rightarrow \infty} \frac{n \cdot \text{vol}(K \cup B)}{n \cdot c(K)} = \frac{\text{vol}(K \cup B)}{c(K)}.$$

This completes the proof of part (a). \square

For the proof of part (b) We recall some notation. Any alternating link K is determined up to mirror image by its Tait graph G_K , the planar checkerboard graph for which a vertex is assigned to every shaded region and an edge to every crossing of K . Thus, $e(G) = c(K)$. Let $\tau(G)$ denote the number of spanning trees of G . For any alternating link, $\tau(G) = \det(K)$, which is the determinant of K [19].

We will need the following special case of [15, Corollary 3.8]. Let $V(G)$ denote the set of vertices of G , and let $|G|$ denote the number of vertices.

Proposition 1.9. *Given $d > 0$, let G_n be any sequence of finite connected graphs with degree at most d such that*

$$\lim_{n \rightarrow \infty} \frac{\log \tau(G_n)}{|G_n|} = h.$$

If G'_n is a sequence of connected subgraphs of G_n such that

$$\lim_{n \rightarrow \infty} \frac{\#\{x \in V(G'_n) : \deg_{G'_n}(x) = \deg_{G_n}(x)\}}{|G_n|} = 1,$$

then

$$\lim_{n \rightarrow \infty} \frac{\log \tau(G'_n)}{|G'_n|} = h.$$

Proof of Theorem 1.8(b). Proceed as in the proof of part (a), but now view K as a closure of a 2-tangle T . Let K^n denote the n -periodic link formed by an n -cycle of tangles T as in Fig. 2. Let $L^n = K \# \cdots \# K$ denote the connect sum of n copies of K , which has a reduced alternating diagram as the closure of n copies of T joined in a row. Note that $c(K^n) = c(L^n) = n \cdot c(K)$, and $\det(L^n) = (\det(L))^n$.

In terms of Tait graphs, G_{K^n} is obtained from G_{L^n} by identifying one pair of vertices, so that G_{L^n} is a subgraph of $G_{K^{n+1}}$, and $|G_{L^n}| = |G_{K^n}| + 1$. Hence, by Proposition 1.9,

$$\lim_{n \rightarrow \infty} \frac{\log \tau(G_{K^n})}{|G_{K^n}|} = \lim_{n \rightarrow \infty} \frac{\log \tau(G_{L^n})}{|G_{L^n}|}.$$

Therefore,

$$\begin{aligned} \lim_{n \rightarrow \infty} \frac{2\pi \log \det(K^n)}{c(K^n)} &= \lim_{n \rightarrow \infty} \frac{2\pi \log \det(L^n)}{c(L^n)} = \lim_{n \rightarrow \infty} \frac{n \cdot 2\pi \log \det(K)}{n \cdot c(K)} \\ &= \frac{2\pi \log \det(K)}{c(K)}. \end{aligned}$$

This completes the proof of part (b). \square

Note that part (a) of Theorem 1.8 generalizes [8, Corollary 3.7], where B was the braid axis.

Remark 1.10. Motivated by Conjecture 1.1, it is interesting to find proven upper bounds for the determinant density. In terms of graph theory, since every spanning tree is a subset of the edge set, $\tau(G) \leq 2^{e(G)}$ for any graph G , so that

$$\frac{2\pi \log \tau(G)}{e(G)} \leq 2\pi \log(2) \approx 4.3552.$$

We thank Jun Ge for informing us that Stoimenow has improved on this bound: Let $\delta \approx 1.8393$ be the real positive root of $x^3 - x^2 - x - 1 = 0$. Then [18, Theorem 2.1] implies that

$$\frac{2\pi \log \det(K)}{c(K)} \leq 2\pi \log(\delta) \approx 3.82885.$$

Note that planarity is required to prove Conjecture 1.1 because Kenyon has informed us that

$$\frac{2\pi \log \tau(G)}{e(G)} > v_{\text{oct}}$$

does occur for some non-planar graphs.

Experimental evidence has long suggested a close relationship between the volume and determinant of alternating knots [9, 10, 17]. We are now able to conjecture a precise inequality, which we have verified for all alternating knots up to 16 crossings, and weaving knots [8] with hundreds of crossings.

Conjecture 1.11 (Vol-Det Conjecture [7]). *For any alternating hyperbolic link K ,*

$$\text{vol}(K) < 2\pi \log \det(K).$$

In [7], we showed that the constant 2π is sharp; i.e. for any $\alpha < 2\pi$, there exist alternating links for which $\text{vol}(K) > \alpha \log \det(K)$. In Sec. 2.2, we extend this conjecture to non-alternating links using Khovanov homology.

Conjectures 1.1 and 1.11 would imply that any geometrically maximal sequence of knots is diagrammatically maximal. In contrast, we can obtain K_n by twisting on two strands, such that $\text{vol}(K_n)$ is bounded but $\det(K_n) \rightarrow \infty$. We also showed in [7] that the inequality in Conjecture 1.11 is sharp, in the sense that if $\alpha < 2\pi$, then there exist alternating hyperbolic knots K such that $\alpha \log \det(K) < \text{vol}(K)$.

Applying the same arguments as in the proof of Theorem 1.8, Conjecture 1.11 implies the following conjecture, which would be a new upper bound for how much the volume can change after drilling out an augmented unknot:

Conjecture 1.12. *For any hyperbolic alternating link K with an augmented unknot B around any two parallel strands of K ,*

$$\text{vol}(K) < \text{vol}(K \cup B) \leq 2\pi \log \det(K).$$

2. Quantum Density Spectra

In this section, we extend the ideas above to spectra related to quantum invariants of knots and links.

2.1. Jones polynomial density spectrum

Let $V_K(t) = \sum_i a_i t^i$ denote the Jones polynomial, with $d = \text{span}(V_K(t))$, which is the difference between the highest and lowest degrees of terms in $V_K(t)$. Let $\mu(K)$ denote the average of the absolute values of coefficients of $V_K(t)$, i.e.

$$\mu(K) = \frac{1}{d+1} \sum |a_i|.$$

For sequences of alternating diagrammatically maximal knots, we have the following.

Proposition 2.1. *If K_n is any sequence of alternating diagrammatically maximal links,*

$$\lim_{n \rightarrow \infty} \frac{2\pi \log \mu(K_n)}{c(K_n)} = v_{\text{oct.}}$$

Proof. If, as above, G is the Tait graph of K , and $\tau(G)$ is the number of spanning trees, then $\tau(G) = \det(K)$ and $e(G) = c(K)$. It follows from the spanning tree expansion for $V_K(t)$ in [19] that if K is an alternating link,

$$\mu(K) = \frac{\det(K)}{c(K) + 1}.$$

Thus,

$$\frac{\log \mu(K)}{c(K)} = \frac{\log \det(K) - \log(c(K) + 1)}{c(K)},$$

and the result follows since K_n are diagrammatically maximal links. \square

We conjecture that the alternating condition in Proposition 2.1 can be dropped.

Conjecture 2.2. *If K is any knot or link,*

$$\frac{2\pi \log \mu(K)}{c(K)} \leq v_{\text{oct.}}$$

Proposition 2.3. *Conjecture 1.1 implies Conjecture 2.2.*

Proof. By the proof of Proposition 2.1, Conjecture 1.1 would immediately imply that Conjecture 2.2 holds for all alternating links K . By the spanning tree expansion for $V_K(t)$, $\sum |a_i| \leq \tau(G(K))$, with equality if and only if K is alternating. Hence, if K is not alternating, then there exists an alternating link with the same crossing

number and strictly greater coefficient sum $\Sigma|a_i|$. Therefore, Conjecture 1.1 would still imply Conjecture 2.2 in the non-alternating case. \square

Definition 2.4. Let $\mathcal{C}_{\text{JP}} = \{2\pi \log \mu(K)/c(K)\}$ be the set of Jones polynomial densities for all links K . We define $\text{Spec}_{\text{JP}} = \mathcal{C}'_{\text{JP}}$ as its derived set (set of all limit points).

Conjecture 2.2 is that $\text{Spec}_{\text{JP}} \subset [0, v_{\text{oct}}]$.

Corollary 2.5. $[0, v_{\text{oct}}] \subset \text{Spec}_{\text{JP}}$.

Proof. The result follows from Theorem 1.7 and the proof of Proposition 2.1. \square

For example, twisting on two strands of an alternating link gives 0 as a common limit point. For links K_n that satisfy Theorem 1.4, their asymptotic volume density equals their asymptotic determinant density, so in this case,

$$\lim_{n \rightarrow \infty} \frac{\text{vol}(K_n)}{c(K_n)} = \lim_{n \rightarrow \infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = \lim_{n \rightarrow \infty} \frac{2\pi \log \mu(K_n)}{c(K_n)} = v_{\text{oct}}.$$

2.2. Knot homology density spectrum

A natural extension of Conjecture 1.11 to any hyperbolic knot is to replace the determinant with the rank of the reduced Khovanov homology $\tilde{H}^{*,*}(K)$. We have verified the following conjecture for all non-alternating knots with up to 15 crossings.

Conjecture 2.6 ([7]). *For any hyperbolic knot K ,*

$$\text{vol}(K) < 2\pi \log \text{rank}(\tilde{H}^{*,*}(K)).$$

Note that Conjecture 1.11 is a special case of Conjecture 2.6.

Question 2.7. Is Conjecture 2.6 true for knot Floer homology; i.e. is it true that $\text{vol}(K) < 2\pi \log \text{rank}(HFK(K))$?

Definition 2.8. Let $\mathcal{C}_{\text{KH}} = \{2\pi \log \text{rank}(\tilde{H}^{*,*}(K))/c(K)\}$ be the set of Khovanov homology densities for all links K . We define $\text{Spec}_{\text{KH}} = \mathcal{C}'_{\text{KH}}$ as its derived set (set of all limit points).

Proposition 2.9. *If $\text{Spec}_{\text{det}} \subset [0, v_{\text{oct}}]$ then $\text{Spec}_{\text{KH}} \subset [0, v_{\text{oct}}]$.*

Proof. For alternating knots, $\text{rank}(\tilde{H}^{*,*}(K)) = \det(K)$. Let K be an alternating hyperbolic knot, and K' be obtained by changing any proper subset of crossing of K . It follows from results in [6] that $\det(K') \leq \text{rank}(\tilde{H}^{*,*}(K')) \leq \det(K)$. \square

Question 2.10. Does $\text{Spec}_{\text{KH}} = \text{Spec}_{\text{det}}$?

2.3. Kashaev invariant density spectrum

The Volume Conjecture (see, e.g. [5] and references therein) is an important mathematical program to bridge the gap between quantum and geometric topology. One interesting consequence of our discussion above is a *maximal volume conjecture* for a sequence of links that is geometrically and diagrammatically maximal.

The Volume Conjecture involves the Kashaev invariant

$$\langle K \rangle_N := \frac{J_N(K; \exp(2\pi i/N))}{J_N(\bigcirc; \exp(2\pi i/N))},$$

and is the following limit:

$$\lim_{N \rightarrow \infty} 2\pi \log |\langle K \rangle_N|^{\frac{1}{N}} = \text{vol}(K).$$

For any knot K , Garoufalidis and Le [13] proved

$$\limsup_{N \rightarrow \infty} \frac{2\pi \log |\langle K \rangle_N|^{\frac{1}{N}}}{c(K)} \leq v_{\text{oct}}.$$

Now, since the limits in Theorems 1.4 and 1.5 are both equal to v_{oct} , we can make the maximal volume conjecture as follows.

Conjecture 2.11 (Maximal volume conjecture). *For any sequence of links K_n that is both geometrically and diagrammatically maximal, there exists an increasing integer-valued function $N = N(n)$ such that*

$$\lim_{n \rightarrow \infty} \frac{2\pi \log |\langle K_n \rangle_{N_n}|^{\frac{1}{N_n}}}{c(K_n)} = v_{\text{oct}} = \lim_{n \rightarrow \infty} \frac{\text{vol}(K_n)}{c(K_n)}.$$

To prove Conjecture 2.11 it suffices to prove

$$\lim_{n \rightarrow \infty} \frac{2\pi \log |\langle K_n \rangle_N|^{\frac{1}{N}}}{c(K_n)} = \lim_{n \rightarrow \infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = v_{\text{oct}},$$

which relates only diagrammatic invariants.

These ideas naturally suggest an interesting quantum density spectrum.

Definition 2.12. Let $\mathcal{C}_q = \{2\pi \log |\langle K \rangle_N|^{\frac{1}{N}}/c(K), N \geq 2\}$ be the set of quantum densities for all links K and all $N \geq 2$. We define $\text{Spec}_q = \mathcal{C}'_q$ as its derived set (set of all limit points).

Conjecture 2.11 would imply that $v_{\text{oct}} \in \text{Spec}_q$. The Volume Conjecture would imply that $\text{Spec}_{\text{vol}} \subset \text{Spec}_q$.

Remark 2.13. For every link K for which the Volume Conjecture holds,

$$\frac{\text{vol}(K)}{c(K)} \in \text{Spec}_q.$$

A. Champanerkar, I. Kofman & J. S. Purcell

In particular, since the Volume Conjecture has been proved for torus knots, the figure-eight knot, Whitehead link and Borromean link (see [16]), we know that certain rational multiples of volumes of the regular ideal tetrahedron and octahedron are in Spec_q ; namely,

$$\left\{ 0, \frac{1}{2}v_{\text{tet}}, \frac{1}{5}v_{\text{oct}}, \frac{1}{3}v_{\text{oct}} \right\} \subset \text{Spec}_q.$$

If $N = 2$, then $|\langle K \rangle_N| = \det(K)$, so $\frac{1}{2}\text{Spec}_{\text{det}} \subset \text{Spec}_q$.

Together with Theorem 1.7, the results above suggest the following general conjecture:

Conjecture 2.14.

$$\text{Spec}_{\text{vol}} = \text{Spec}_{\text{det}} = \text{Spec}_q = [0, v_{\text{oct}}].$$

Acknowledgments

The first two authors acknowledge support by the Simons Foundation and PSC-CUNY. The third author acknowledges support by the National Science Foundation under grant number DMS-1252687.

References

- [1] C. Adams, Triple crossing number of knots and links, preprint (2012), arXiv:1207.7332 [math.GT].
- [2] C. Adams, Generalized augmented alternating links and hyperbolic volumes, preprint (2015), arXiv:1506.03026 [math.GT].
- [3] C. Adams, A. Calderon, X. Jiang, A. Kastner, G. Kehne, N. Mayer and M. Smith, Volume and determinant densities of hyperbolic rational links, preprint (2015), arXiv:1510.06050 [math.GT].
- [4] S. D. Burton, The spectra of volume and determinant densities of links, preprint (2015), arXiv:1507.01954 [math.GT].
- [5] A. Champanerkar, O. Dasbach, E. Kalfagianni, I. Kofman, W. Neumann and N. Stoltzfus (eds.), *Interaction Between Hyperbolic Geometry, Quantum Topology and Number Theory*, Contemporary Mathematics, Vol. 541, American Mathematical Society, Providence, RI, 2011.
- [6] A. Champanerkar and I. Kofman, Spanning trees and Khovanov homology, *Proc. Amer. Math. Soc.* **137**(6) (2009) 2157–2167.
- [7] A. Champanerkar, I. Kofman and J. S. Purcell, Geometrically and diagrammatically maximal knots, preprint (2014), arXiv:1411.7915 [math.GT].
- [8] A. Champanerkar, I. Kofman and J. S. Purcell, Volume bounds for weaving knots, preprint (2015), arXiv:1506.04139 [math.GT].
- [9] N. Dunfield, <http://www.math.uiuc.edu/~nmd/preprints/misc/dylan>.
- [10] S. Fried and N. Jackson, Approximations to the volume of hyperbolic knots, preprint (2011), arXiv:1102.3742 [math.GT].
- [11] D. Futer, E. Kalfagianni and J. S. Purcell, Dehn filling, volume, and the Jones polynomial, *J. Differential Geom.* **78**(3) (2008) 429–464.

- [12] D. Futer, E. Kalfagianni and J. S. Purcell, Symmetric links and Conway sums: Volume and Jones polynomial, *Math. Res. Lett.* **16**(2) (2009) 233–253.
- [13] S. Garoufalidis and T. T. Q. Lê, Asymptotics of the colored Jones function of a knot, *Geom. Topol.* **15**(4) (2011) 2135–2180.
- [14] R. Kenyon, Tiling a rectangle with the fewest squares, *J. Combin. Theory Ser. A* **76**(2) (1996) 272–291.
- [15] R. Lyons, Asymptotic enumeration of spanning trees, *Combin. Probab. Comput.* **14**(4) (2005) 491–522.
- [16] H. Murakami, *An Introduction to the Volume Conjecture*, Interactions between hyperbolic geometry, quantum topology and number theory, Contemp. Math., Vol. 541, Amer. Math. Soc., Providence, RI, 2011, pp. 1–40.
- [17] A. Stoimenow, Graphs, determinants of knots and hyperbolic volume, *Pacific J. Math.* **232**(2) (2007) 423–451.
- [18] A. Stoimenow, Maximal determinant knots, *Tokyo J. Math.* **30**(1) (2007) 73–97.
- [19] M. B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, *Topology* **26**(3) (1987) 297–309.