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ABSTRACT

We recently discovered a relationship between the volume density spectrum and
the determinant density spectrum for infinite sequences of hyperbolic knots. Here, we
extend this study to new quantum density spectra associated to quantum invariants,
such as Jones polynomials, Kashaev invariants and knot homology. We also propose
related conjectures motivated by geometrically and diagrammatically maximal sequences
of knots.
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1. Volume and Determinant Density Spectra

In [7], we studied the asymptotic behavior of two basic quantities, one geometric
and one diagrammatic, associated to an alternating hyperbolic link K: The volume
density of K is defined as vol(K)/c(K), and the determinant density of K is defined
as 2π log det(K)/c(K).

For any diagram of a hyperbolic link K, an upper bound for the hyperbolic
volume vol(K) was given by D. Thurston by decomposing S3 − K into octahedra
at crossings of K. Any hyperbolic octahedron has volume bounded above by the
volume of the regular ideal octahedron, voct ≈ 3.66386. So if c(K) is the crossing
number of K, then

vol(K)
c(K)

≤ voct. (1.1)
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The following conjectured upper bound for the determinant density is equivalent
to a conjecture of Kenyon [14] for planar graphs. We have verified this conjecture
for all knots up to 16 crossings.

Conjecture 1.1 ([7]). If K is any knot or link,

2π log det(K)
c(K)

≤ voct.

This motivates a more general study of the spectra for volume and determinant
density.

Definition 1.2. Let Cvol = {vol(K)/c(K)} and Cdet = {2π log det(K)/c(K)} be
the sets of respective densities for all hyperbolic links K. We define Specvol = C′

vol

and Specdet = C′
det as their derived sets (set of all limit points).

Equation (1.1) and Conjecture 1.1 imply

Specvol, Specdet ⊂ [0, voct].

Twisting on two strands of an alternating link gives 0 as a limit point of both
densities: 0 ∈ Specvol ∩ Specdet. Moreover, by the upper volume bound established
in [1], voct cannot occur as a volume density of any finite link; i.e. voct /∈ Cvol.
However, voct is the volume density of the infinite weave W , the infinite alternating
link with the infinite square grid projection graph (see [7]).

To study Specvol and Specdet, we consider sequences of knots and links. We say
that a sequence of links Kn with c(Kn) → ∞ is geometrically maximal if

lim
n→∞

vol(Kn)
c(Kn)

= voct.

Similarly, it is diagrammatically maximal if

lim
n→∞

2π log det(Kn)
c(Kn)

= voct.

In [7], we found many families of geometrically and diagrammatically maximal
knots and links that are related to the infinite weave W .

Definition 1.3. Let G be any possibly infinite graph. For any finite subgraph H ,
the set ∂H is the set of vertices of H that share an edge with a vertex not in H .
We let | · | denote the number of vertices in a graph. An exhaustive nested sequence
of connected subgraphs, {Hn ⊂ G : Hn ⊂ Hn+1,∪nHn = G}, is a Følner sequence
for G if

lim
n→∞

|∂Hn|
|Hn| = 0.

For any link diagram K, let G(K) be the projection graph of the diagram. Let
G(W) be the projection graph of W , which is the infinite square grid. We will need
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(a) (b)

Fig. 1. (a) A Celtic knot diagram that has a cycle of tangles. (b) A Celtic knot diagram with no
cycle of tangles, which could be in a sequence that satisfies conditions of Theorem 1.4.

a particular diagrammatic condition called a cycle of tangles, which is defined in
[7]. For an example, see Fig. 1.

Theorem 1.4 ([7]). Let Kn be any sequence of hyperbolic alternating link diagrams
that contain no cycle of tangles, such that

(1) there are subgraphs Gn ⊂ G(Kn) that form a Følner sequence for G(W), and

(2) lim
n→∞ |Gn|/c(Kn) = 1.

Then Kn is geometrically maximal:

lim
n→∞

vol(Kn)
c(Kn)

= voct.

Theorem 1.5 ([7]). Let Kn be any sequence of alternating link diagrams such that

(1) there are subgraphs Gn ⊂ G(Kn) that form a Følner sequence for G(W), and

(2) lim
n→∞ |Gn|/c(Kn) = 1.

Then Kn is diagrammatically maximal:

lim
n→∞

2π log det(Kn)
c(Kn)

= voct.

Many families of knots and links are both geometrically and diagrammatically
maximal. For example, weaving knots are alternating knots with the same pro-
jection as torus knots, and are both geometrically and diagrammatically maxi-
mal [8, 7]. These results attest to the non-triviality of Specvol ∩ Specdet:

Corollary 1.6. {0, voct} ⊂ Specvol ∩ Specdet.

Using our work, Burton [4] and Adams et al. [3] recently proved the following:

Theorem 1.7 ([3, 4]).

Specvol = [0, voct], and [0, voct] ⊂ Specdet, hence Specvol ∩ Specdet = [0, voct].
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Adams et al. [3] also showed that for any x ∈ [0, voct], there exists a sequence of
knots Kn (containing a large piece of W) with x as a common limit point of both
the volume and determinant densities of Kn.

Below, we prove how to explicitly realize elements in Specvol and Specdet arising
from periodic links.

For any reduced alternating diagram D of a hyperbolic alternating link K,
Adams [2] recently defined the following notion of a generalized augmented link J .
Take an unknotted component B that intersects the projection sphere of D in
exactly one point in each of two non-adjacent regions of D. Then J = K ∪ B.
In [2, Theorem 2.1], Adams proved that any such generalized augmented link is
hyperbolic.

Theorem 1.8. For any hyperbolic alternating link K,

(a) if K ∪ B is any generalized augmented alternating link,

vol(K ∪ B)
c(K)

∈ Specvol,

(b) 2π log det(K)/c(K) ∈ Specdet.

Proof of part (a). View K as a knot in the solid torus S3 − B. Cut along the
disk bounded by B (cutting K each time K intersects the disk bounded by B),
obtaining a tangle T . Let Kn denote the n-periodic reduced alternating link with
quotient K, formed by taking n copies of T joined in an n-cycle of tangles as in
Fig. 2. Thus, K1 = K and c(Kn) = n · c(K).

Let B also denote the central axis of rotational symmetry of Kn. Then [12,
Theorem 3.1], using results of [11], implies that

n

(
1 − 2

√
2π2

n2

)3/2

vol(K ∪ B) ≤ vol(Kn) ≤ n vol(K ∪ B).

Fig. 2. A 6-cycle of 2-tangles.
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Therefore,

lim
n→∞

vol(Kn)
c(Kn)

= lim
n→∞

n · vol(K ∪ B)
n · c(K)

=
vol(K ∪ B)

c(K)
.

This completes the proof of part (a).

For the proof of part (b) We recall some notation. Any alternating link K is
determined up to mirror image by its Tait graph GK , the planar checkerboard
graph for which a vertex is assigned to every shaded region and an edge to every
crossing of K. Thus, e(G) = c(K). Let τ(G) denote the number of spanning trees
of G. For any alternating link, τ(G) = det(K), which is the determinant of K [19].

We will need the following special case of [15, Corollary 3.8]. Let V (G) denote
the set of vertices of G, and let |G| denote the number of vertices.

Proposition 1.9. Given d > 0, let Gn be any sequence of finite connected graphs
with degree at most d such that

lim
n→∞

log τ(Gn)
|Gn| = h.

If G′
n is a sequence of connected subgraphs of Gn such that

lim
n→∞

#{x ∈ V (G′
n) : degG′

n
(x) = degGn

(x)}
|Gn| = 1,

then

lim
n→∞

log τ(G′
n)

|G′
n|

= h.

Proof of Theorem 1.8(b). Proceed as in the proof of part (a), but now view
K as a closure of a 2-tangle T . Let Kn denote the n-periodic link formed by an
n-cycle of tangles T as in Fig. 2. Let Ln = K# · · ·#K denote the connect sum of n

copies of K, which has a reduced alternating diagram as the closure of n copies of
T joined in a row. Note that c(Kn) = c(Ln) = n · c(K), and det(Ln) = (det(L))n.

In terms of Tait graphs, GKn is obtained from GLn by identifying one pair of
vertices, so that GLn is a subgraph of GKn+1 , and |GLn | = |GKn | + 1. Hence, by
Proposition 1.9,

lim
n→∞

log τ(GKn)
|GKn | = lim

n→∞
log τ(GLn)

|GLn | .

Therefore,

lim
n→∞

2π log det(Kn)
c(Kn)

= lim
n→∞

2π log det(Ln)
c(Ln)

= lim
n→∞

n · 2π log det(K)
n · c(K)

=
2π log det(K)

c(K)
.

This completes the proof of part (b).
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Note that part (a) of Theorem 1.8 generalizes [8, Corollary 3.7], where B was
the braid axis.

Remark 1.10. Motivated by Conjecture 1.1, it is interesting to find proven upper
bounds for the determinant density. In terms of graph theory, since every spanning
tree is a subset of the edge set, τ(G) ≤ 2e(G) for any graph G, so that

2π log τ(G)
e(G)

≤ 2π log(2) ≈ 4.3552.

We thank Jun Ge for informing us that Stoimenow has improved on this bound: Let
δ ≈ 1.8393 be the real positive root of x3 − x2 − x− 1 = 0. Then [18, Theorem 2.1]
implies that

2π log det(K)
c(K)

≤ 2π log(δ) ≈ 3.82885.

Note that planarity is required to prove Conjecture 1.1 because Kenyon has
informed us that

2π log τ(G)
e(G)

> voct

does occur for some non-planar graphs.

Experimental evidence has long suggested a close relationship between the vol-
ume and determinant of alternating knots [9, 10, 17]. We are now able to conjecture
a precise inequality, which we have verified for all alternating knots up to 16 cross-
ings, and weaving knots [8] with hundreds of crossings.

Conjecture 1.11 (Vol-Det Conjecture [7]). For any alternating hyperbolic
link K,

vol(K) < 2π log det(K).

In [7], we showed that the constant 2π is sharp; i.e. for any α < 2π, there
exist alternating links for which vol(K) > α log det(K). In Sec. 2.2, we extend this
conjecture to non-alternating links using Khovanov homology.

Conjectures 1.1 and 1.11 would imply that any geometrically maximal sequence
of knots is diagrammatically maximal. In contrast, we can obtain Kn by twisting
on two strands, such that vol(Kn) is bounded but det(Kn) → ∞. We also showed
in [7] that the inequality in Conjecture 1.11 is sharp, in the sense that if α < 2π,
then there exist alternating hyperbolic knots K such that α log det(K) < vol(K).

Applying the same arguments as in the proof of Theorem 1.8, Conjecture 1.11
implies the following conjecture, which would be a new upper bound for how much
the volume can change after drilling out an augmented unknot:

Conjecture 1.12. For any hyperbolic alternating link K with an augmented
unknot B around any two parallel strands of K,

vol(K) < vol(K ∪ B) ≤ 2π log det(K).
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2. Quantum Density Spectra

In this section, we extend the ideas above to spectra related to quantum invariants
of knots and links.

2.1. Jones polynomial density spectrum

Let VK(t) =
∑

i ait
i denote the Jones polynomial, with d = span(VK(t)), which is

the difference between the highest and lowest degrees of terms in VK(t). Let µ(K)
denote the average of the absolute values of coefficients of VK(t), i.e.

µ(K) =
1

d + 1

∑
|ai|.

For sequences of alternating diagrammatically maximal knots, we have the fol-
lowing.

Proposition 2.1. If Kn is any sequence of alternating diagrammatically maximal
links,

lim
n→∞

2π log µ(Kn)
c(Kn)

= voct.

Proof. If, as above, G is the Tait graph of K, and τ(G) is the number of spanning
trees, then τ(G) = det(K) and e(G) = c(K). It follows from the spanning tree
expansion for VK(t) in [19] that if K is an alternating link,

µ(K) =
det(K)

c(K) + 1
.

Thus,

log µ(K)
c(K)

=
log det(K) − log(c(K) + 1)

c(K)
,

and the result follows since Kn are diagrammatically maximal links.

We conjecture that the alternating condition in Proposition 2.1 can be dropped.

Conjecture 2.2. If K is any knot or link,

2π log µ(K)
c(K)

≤ voct.

Proposition 2.3. Conjecture 1.1 implies Conjecture 2.2.

Proof. By the proof of Proposition 2.1, Conjecture 1.1 would immediately imply
that Conjecture 2.2 holds for all alternating links K. By the spanning tree expansion
for VK(t), Σ|ai| ≤ τ(G(K)), with equality if and only if K is alternating. Hence, if
K is not alternating, then there exists an alternating link with the same crossing
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number and strictly greater coefficient sum Σ|ai|. Therefore, Conjecture 1.1 would
still imply Conjecture 2.2 in the non-alternating case.

Definition 2.4. Let CJP = {2π log µ(K)/c(K)} be the set of Jones polynomial
densities for all links K. We define SpecJP = C′

JP as its derived set (set of all limit
points).

Conjecture 2.2 is that SpecJP ⊂ [0, voct].

Corollary 2.5. [0, voct] ⊂ SpecJP.

Proof. The result follows from Theorem 1.7 and the proof of Proposition 2.1.

For example, twisting on two strands of an alternating link gives 0 as a common
limit point. For links Kn that satisfy Theorem 1.4, their asymptotic volume density
equals their asymptotic determinant density, so in this case,

lim
n→∞

vol(Kn)
c(Kn)

= lim
n→∞

2π log det(Kn)
c(Kn)

= lim
n→∞

2π log µ(Kn)
c(Kn)

= voct.

2.2. Knot homology density spectrum

A natural extension of Conjecture 1.11 to any hyperbolic knot is to replace the
determinant with the rank of the reduced Khovanov homology H̃∗,∗(K). We
have verified the following conjecture for all non-alternating knots with up to 15
crossings.

Conjecture 2.6 ([7]). For any hyperbolic knot K,

vol(K) < 2π log rank(H̃∗,∗(K)).

Note that Conjecture 1.11 is a special case of Conjecture 2.6.

Question 2.7. Is Conjecture 2.6 true for knot Floer homology; i.e. is it true that
vol(K) < 2π log rank(HFK(K))?

Definition 2.8. Let CKH = {2π log rank(H̃∗,∗(K))/c(K)} be the set of Khovanov
homology densities for all links K. We define SpecKH = C′

KH as its derived set (set
of all limit points).

Proposition 2.9. If Specdet ⊂ [0, voct] then SpecKH ⊂ [0, voct].

Proof. For alternating knots, rank(H̃∗,∗(K)) = det(K). Let K be an alternating
hyperbolic knot, and K ′ be obtained by changing any proper subset of crossing of
K. It follows from results in [6] that det(K ′) ≤ rank(H̃∗,∗(K ′)) ≤ det(K).

Question 2.10. Does SpecKH = Specdet?
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2.3. Kashaev invariant density spectrum

The Volume Conjecture (see, e.g. [5] and references therein) is an important math-
ematical program to bridge the gap between quantum and geometric topology. One
interesting consequence of our discussion above is a maximal volume conjecture for
a sequence of links that is geometrically and diagrammatically maximal.

The Volume Conjecture involves the Kashaev invariant

〈K〉N :=
JN (K; exp(2πi/N))
JN (©; exp(2πi/N))

,

and is the following limit:

lim
N→∞

2π log |〈K〉N | 1
N = vol(K).

For any knot K, Garoufalidis and Le [13] proved

lim sup
N→∞

2π log |〈K〉N | 1
N

c(K)
≤ voct.

Now, since the limits in Theorems 1.4 and 1.5 are both equal to voct, we can
make the maximal volume conjecture as follows.

Conjecture 2.11 (Maximal volume conjecture). For any sequence of links Kn

that is both geometrically and diagrammatically maximal, there exists an increasing
integer-valued function N = N(n) such that

lim
n→∞

2π log |〈Kn〉N | 1
N

c(Kn)
= voct = lim

n→∞
vol(Kn)
c(Kn)

.

To prove Conjecture 2.11 it suffices to prove

lim
n→∞

2π log |〈Kn〉N | 1
N

c(Kn)
= lim

n→∞
2π log det(Kn)

c(Kn)
= voct,

which relates only diagrammatic invariants.
These ideas naturally suggest an interesting quantum density spectrum.

Definition 2.12. Let Cq = {2π log |〈K〉N | 1
N /c(K), N ≥ 2} be the set of quantum

densities for all links K and all N ≥ 2. We define Specq = C′
q as its derived set (set

of all limit points).

Conjecture 2.11 would imply that voct ∈ Specq. The Volume Conjecture would
imply that Specvol ⊂ Specq.

Remark 2.13. For every link K for which the Volume Conjecture holds,

vol(K)
c(K)

∈ Specq.
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In particular, since the Volume Conjecture has been proved for torus knots, the
figure-eight knot, Whitehead link and Borromean link (see [16]), we know that cer-
tain rational multiples of volumes of the regular ideal tetrahedron and octahedron
are in Specq; namely, {

0,
1
2
vtet,

1
5
voct,

1
3
voct

}
⊂ Specq.

If N = 2, then |〈K〉N | = det(K), so 1
2Specdet ⊂ Specq.

Together with Theorem 1.7, the results above suggest the following general
conjecture:

Conjecture 2.14.

Specvol = Specdet = Specq = [0, voct].
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