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VOLUME BOUNDS FOR GENERALIZED TWISTED TORUS

LINKS
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and Jessica S. Purcell

Abstract. Twisted torus knots and links are given by twisting adjacent strands of a
torus link. They are geometrically simple and contain many examples of the smallest
volume hyperbolic knots. Many are also Lorenz links.

We study the geometry of twisted torus links and related generalizations. We de-
termine upper bounds on their hyperbolic volumes that depend only on the number of
strands being twisted. We exhibit a family of twisted torus knots for which this upper
bound is sharp, and another family with volumes approaching infinity. Consequently, we
show there exist twisted torus knots with arbitrarily large braid index and yet bounded
volume.

1. Introduction

Recently, there has been interest in relating the volume of a hyperbolic knot and
link to other link properties. Lackenby has related the volume of an alternating link
to the number of twist regions in its diagram [13], and this relationship was extended
to larger classes of links that satisfy a certain threshold of complexity, such as a high
amount of symmetry or twisting [10, 11, 14]. To better understand volumes in general,
it seems natural to also investigate properties of knots and links that are “simple.”

Twisted torus knots and links are obtained by twisting a subset of strands of a
closed torus braid. These knots are geometrically simple by several different mea-
sures of geometric complexity. Dean [9] showed that they often admit small Seifert
fibered and lens space fillings. In [6, 7], it was discovered that twisted torus knots
dominate the census of “simplest hyperbolic knots,” those whose complements can
be triangulated with seven or fewer ideal tetrahedra. It is not surprising then that
twisted torus knots contain many examples of the smallest volume hyperbolic knots.

In this paper we investigate the geometry of twisted torus links and closely related
generalizations. We determine upper bounds on their volumes in terms of their de-
scription parameters. We also exhibit a family of twisted torus knots for which this
upper bound is sharp, and another family with volumes approaching infinity.

A consequence of these results is that the braid index of a knot or link gives no
indication of its volume. Using techniques of [4] to determine braid index, we show
there exist twisted torus knots with arbitrarily large braid index and yet bounded
volume. The reverse result is also known, for example closed 3–braids can have
unbounded volume [12].

1.1. Twisted torus links. A positive root β will mean a positive n–braid whose
n–th power is the central element ∆2

n (i.e. the full twist) in Bn. In Theorem 2.1, we

10001



10002 A. Champanerkar, D. Futer, I. Kofman, W. Neumann, and J. Purcell

Figure 1. The regular neighborhood of a line segment crossing r strands.

show that there are 2n−2 braid isotopy classes of positive n-th roots, all of which have
the form

(1) β = σi1 · · ·σin−1

with i1, . . . , in−1 a permutation of 1, . . . , n − 1, and all of which are conjugate in Bn

to δn = σ1 · · ·σn−1, which we will call the standard root. Let δ̄n = σn−1 · · ·σ1 denote
a conjugate root which we will also use below.

Definition 1.1. Let p > 0, q, s 6= 0, and 1 < r ≤ p + |q| be integers. Let β ∈ Br be
any positive root. Let L be a (p, q)–torus link embedded on a flat torus. Let D be
a regular neighborhood of a line segment that crosses r strands of L, as in Figure 1.
The twisted torus link T (p, q, r, s, β) is formed from L by replacing the r strands of
L ∩ D with the braid βs. We will usually suppress the root β in the notation.

In [9], Dean defined the twisted torus link T (p, q, r, s) by replacing the r strands of
L∩D with the r–braid (δr)

s, for s an integer multiple of r, which implies T (p, q, r, s) =
T (q, p, r, s). In [6, 7], twisted torus links were defined as closed braids for 1 < r < p
and for s an integer multiple of r; namely, the closure of the p–braid (δp)

q (δr)
s =

(σ1 · · ·σp−1)
q(σ1 · · ·σr−1)

s. In [4], this was generalized to any integer s, for which
switching p and q may result in distinct links. Definition 1.1 includes all of these as
special cases.

1.2. T–links. A natural way to generalize twisted torus links is to repeatedly twist
nested subsets of strands.

Definition 1.2. Let r1 > · · · > rk ≥ 2 and q, si 6= 0 be integers. Define the T–link

T ((p, q), (r1, s1, β1), . . . , (rk, sk, βk)) to be formed from L, as in Definition 1.1 with
r = r1, by replacing the r strands of L∩D with the braid βs1

1 · · ·βsk

k , where each βi is
a specified ri-th root of the full twist on the first ri strands. We will usually suppress
the roots βi in the notation. If k = 1, a T –link is a twisted torus link. See Figure 2
for an example.

The above definition of T –links is generalized from the definition in [4], but our
si’s may be negative and our ri’s form a decreasing sequence. By [4], it follows that
positive T –links using only the roots δ̄ri

coincide with Lorenz links. The T –link point
of view opens the door to understanding the geometry of Lorenz link complements.
But our results below do not require positivity. We provide volume bounds for T –
links, so in particular, for Lorenz links.
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(a) T (9, 7) (b) T (9, 7, 5, 3) (c) T ((9, 7), (5, 3), (3, 4))

Figure 2. A torus knot, a twisted torus knot, and a T –knot using
standard roots.

1.3. Volume bounds. Let Vol(K) denote the volume of the link complement S3
rK.

If K is not hyperbolic, Vol(K) is the sum of volumes of the hyperbolic pieces of S3
rK.

Let v3 ≈ 1.0149 denote the volume of the regular hyperbolic ideal tetrahedron. In
Section 3, we prove the following result.

Theorem 1.3. Let T (p, q, r, s) be a twisted torus link with positive root β. Then

Vol(T (p, q, r, s)) < 10v3 if r = 2,

Vol(T (p, q, r, s)) < v3(2r + 10) if s mod r = 0,

Vol(T (p, q, r, s)) < v3(r
2 + r + 10) if β = δr or δ̄r,

Vol(T (p, q, r, s)) < v3(r
2 + 4r + 4) otherwise.

Theorem 1.4. Choose any sequence (pN , qN ) → (∞,∞), such that gcd(pN , qN ) = 1.
Then the twisted torus knots T (pN , qN , 2, 2N) have volume approaching 10v3 as N →
∞.

The noteworthy feature of Theorem 1.3 is that the upper bound only depends on
the parameter r. The independence of p and q was a surprise to the authors. One
consequence of this independence is that there is no direct relationship between the
braid index and volume of a link.

Corollary 1.5. The twisted torus knots T (p, q, 2, s), p, q > 2, s > 0, have arbitrarily

large braid index and volume bounded by 10v3.

Proof. For q, s > 0 and p > r, the minimal braid index of T (p, q, r, s) with root δr

or δ̄r is exactly min(p, q) if r ≤ q, and min(s + q, r) if r ≥ q (Corollary 8 of [4]). By
Theorem 1.3, any T (p, q, 2, s) has volume bounded above by 10v3, but for all p, q > 2,
its minimal braid index is min(p, q). �

The reverse of Corollary 1.5 is also true: for example, closed 3–braids have un-
bounded hyperbolic volume. See [12, Theorem 5.5].

When the twisted torus knots are Lorenz, we can use Lorenz duality [4, Corollary
4] to obtain another volume bound in terms of q.
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Corollary 1.6. If we use the roots δr or δ̄r, and let (q · s) > 0 and p > r,

Vol(T (p, q, r, s)) < 10v3 if q = 2,

Vol(T (p, q, r, s)) < v3(2|q| + 10) if p mod q = r,

Vol(T (p, q, r, s)) < v3(q
2 + |q| + 10) otherwise.

Proof. The braids (δq
p δs

r), (δ̄
q
p δ̄s

r), (δ
s
r δq

p) and (δ̄s
r δ̄q

p) have isotopic closures. When
(q · s) > 0, all the twisting is in the same direction. Thus, under the hypotheses of
the corollary, the twisted torus links are Lorenz or mirror images of Lorenz links. So
they satisfy the following duality coming from the symmetry of the Lorenz template
[4]:

T (p, q, r, s) = T (q + s, r, q, p − r) if q, s > 0.

In particular, q and r can be exchanged. �

Our results extend to volume bounds for T –links.

Theorem 1.7. If L is the T–link T ((p, q), (r1, s1, β1), . . . , (rk, sk, βk)),

Vol(L) < v3

(
r2
1 + 9r1 − 8

)
if all si mod ri = 0,

Vol(L) < v3

(
1

3
r3
1 + 5

2
r2
1 + 5r1 − 5

)
otherwise.

Again, the notable feature of Theorem 1.7 is that even though it takes many
parameters to specify a T –link, a single coordinate suffices to bound the volume from
above.

If p > r1, the braids (δ̄q
p δ̄s1

r1
· · · δ̄sk

rk
) and (δsk

rk
· · · δs1

r1
δq
p) have isotopic closures. So if

all si > 0 and all roots are δ̄ri
, these T-links are Lorenz by [4], and Lorenz duality

implies a result analogous to Corollary 1.6, with r1 replaced by (q+s1+s2+. . .+sk−1).
If r1 ≤ d = gcd(p, q) then T ((p, q), (r1, s1), . . . , (rk, sk)) is a satellite link with

companion T (p/d, q/d). In the JSJ decomposition of this link complement, only the
solid torus minus T ((r1, s1), . . . , (rk, sk)) can have non-zero volume, which is bounded
by the function from Theorem 1.7 with r1 replaced by r2. Similarly, if r ≤ gcd(p, q)
in Theorem 1.3 the volume is zero. So we assume from now on that r1 > gcd(p, q),
resp. r > gcd(p, q).

In Section 4, we prove the following theorem, which shows that these volume
bounds are non-trivial.

Theorem 1.8. For any number V , there exists a hyperbolic twisted torus knot whose

complement has volume at least V .

In the proof of Theorem 1.8, we construct links by twisting along annuli. This
theorem can be compared with related work of Baker [3]. He showed that the class
of Berge knots, which contains some twisted torus knots, contains knots which have
arbitrarily large volume. However, Baker’s examples are not necessarily twisted torus
knots. Nor are the examples produced to prove Theorem 1.8 necessarily Berge knots.

2. Positive roots of the full twist in Bn

Twisting is a natural geometric operation on links because any full twist comes
from ±1 Dehn surgery on an unknot in S3. However, to define a twisted torus link
without full twists, as in Definition 1.1, we must first choose a particular root of the
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Table 1. All eight 5-th roots, repeated three times in each diagram.
The corresponding braidword and subset {j1, . . . , jr} are given below
each one.

4321 1432 2143 3214
{∅} {1} {2} {3}

1243 1324 2134 1234
{1, 2} {1, 3} {2, 3} {1, 2, 3}

full twist. The link type generally changes with different choices of roots. Braids
provide a natural notation for this choice, and in this section we give an elementary
proof of the classification of braid isotopy classes of roots in Theorem 2.1. This result
also follows from Corollary 12 of [5], which uses the Garside structure of the braid
group.

Recall that a positive root β is a positive n–braid whose n–th power is ∆2 in Bn.
Since ∆2 has length n(n−1) in the braid generators, a positive root must have length
n − 1. Moreover, since all n − 1 generators must be involved, β must have the form

β = σi1 . . . σin−1

with i1, . . . , in−1 a permutation of 1, . . . , n − 1. This list of (n − 1)! braid words
includes all positive roots, but with multiplicity because many of these are isotopic
braids.

Theorem 2.1. There are 2n−2 braid isotopy classes of positive n-th roots, all of which

are conjugate in Bn to the standard root δn = σ1 · · ·σn−1.

Proof. Using the fact that σiσj = σjσi whenever |i − j| ≥ 2, we can move any σik

with ik < ik−1 to the left in the above expression unless ik = ik−1−1. After repeating
this until no further such moves are possible, the indices i1, i2, . . . in−1 will form the
concatenation of some number (r + 1) of monotone decreasing chains,

(2) j1, j1−1, . . . , 1; j2, j2−1, . . . , j1+1; j3, j3−1, . . . , j2+1; . . . ; n−1, n−2, . . . , jr+1.

This gives a normal form for β up to braid isotopy that is determined by {j1, j2, . . . , jr}
which is a subset of {1, . . . , n − 2}. Every subset corresponds to a normal form
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expression, so there are 2n−2 possible normal form expressions. (The empty set
corresponds to the chain n − 1, n − 2, . . . , 1.)

We claim that these normal forms give 2n−2 different roots. Indeed, a simple
calculation shows that their images in the permutation group Sn are distinct, so they
are distinct.

Now, identify braids in this list if they are equivalent under cyclic permutation
plus the braid relation σiσj = σjσi for |i − j| ≥ 2. It is easy to see that every braid
given in the normal form is cyclically equivalent to either δn or δ̄n = σn−1 · · ·σ1.
Moreover, δ̄n is conjugate to δn by ∆. Therefore, every braid given by this normal
form is conjugate to δn, and hence is an n–th root. �

From a picture, it becomes clear that these braids are roots. We illustrate this in
Table 1. In this table, braids should be read counterclockwise, starting at 120◦ on
the circle.

The following lemma is immediate from the normal form for β, particularly the
form of the indices i1, i2, . . . , in−1 in equation (2). We record it here, since we will
use it in the next section.

Lemma 2.2. In the normal form for β = σi1σi2 . . . σin−1
:

(a) The generator σj appears before σj−1 and σj+1, 1 < j < n − 1, if and only

if the index j is the first entry of a decreasing chain of length at least two in

equation (2).
(b) Similarly, σj appears after both σj−1 and σj+1 if and only if the index j is

the last entry of a decreasing chain of length at least two in equation (2).
(c) The generator σ1 appears before σ2 if and only if σ1 is the first generator of

the braid word, with the index 1 forming a chain of length one. The generator

σ1 appears after σ2 if and only if the index 1 is the last entry of a decreasing

chain of length at least two in equation (2).
(d) The generator σn−1 appears before σn−2 if and only if the index (n − 1) is

first in a chain of length at least two; and σn−1 appears after σn−2 if and only

if σn−1 is the last generator in the braid word, with the index (n− 1) forming

a chain of length one. �

3. Upper volume bounds

In this section, we prove Theorems 1.3, 1.4 and 1.7, establishing upper bounds on
the volumes of twisted torus links and T –links.

3.1. Twisted torus links. First, we define M(p, q, r, s), which is a surgery parent
manifold to T (p, q, r, s).

Definition 3.1. Start with integers p, q > 0 and r so that 0 < r ≤ p + q. Let C1

be an unknot in S3, so S3
rC1 is the solid torus S1 × D2, where we view D2 as the

unit disk. Let C2 be the core of this solid torus, C2 = S1 × {0}. Let T (p, q) be the
(p, q)–torus link sitting on S1×S1

1/2
, where S1

1/2
is the circle at radius 1/2 in the disk

D2. Augment T (p, q) with an unknotted circle L that encircles the first r strands.
For any given positive root β ∈ Br, and integer s, replace the r strands of T (p, q)
encircled by L with the braid βs, and call the result K(p, q, r, s, β). Let M(p, q, r, s)
be the link complement S3

r(C1∪C2∪L∪K(p, q, r, s, β)). (As usual, we suppress β.)
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Observe the following facts about M(p, q, r, s). Let I = (−1, 1). First, since C1∪C2

is the Hopf link, S3
r(C1 ∪ C2) ∼= T 2 × I. Hence, M(p, q, r, s) is homeomorphic to

the complement of a link of at least two components in T 2 × I, one component cor-
responding to L, and the others to K(p, q, r, s, β) of Definition 3.1. We will illustrate
examples of M(p, q, r, s) by drawing links in T 2 × I. We will also use the framings
induced from T 2 × {0} on C1 and C2.

Second, the twisted torus link T (p, q, r, s) is obtained from M(p, q, r, s) by Dehn
filling along slopes (0, 1) and (1, 0) on C1 and C2, respectively, and along the slope
(1, 0) on L. More generally, we obtain a twisted torus link of the form T (p′, q′, r, Nr+
s) by Dehn filling L along the slope (1, N) for any integer N , and Dehn filling C1

and C2 along slopes with geometric intersection number 1. For example, see [15].
Since volume only decreases under Dehn filling [16], we wish to bound the volume of
M(p, q, r, s).

Finally, the homeomorphism type of M(p, q, r, s) is summarized by the following
lemma.

Lemma 3.2. If r > gcd(p, q), M(p, q, r, s) is homeomorphic to M(n, m, r, s′) or

M(m, n, r, s′) where s′ = s mod r, 0 ≤ s′ < r, and n and m come from a truncated

continued fraction expansion of p/q. Precisely, n and m are integers satisfying 0 <
n < r, 0 < m < r, n + m ≥ r, and

p

q
= a0 +

1

a1 +
1

. . .
1

ak + m/n

.

where ai are positive integers for 1 ≤ i ≤ k.

Proof. First, since L is an unlink encircling the r strands of the braid βs, M(p, q, r, s)
is homeomorphic to M(p, q, r, s + jr) for any integer j. Thus in particular it is
homeomorphic to M(p, q, r, s′) where s′ = s mod r and 0 ≤ s′ < r.

Next, since M(p, q, r, s) is a link complement in T 2 × I, it will be homeomorphic
to the link complement obtained by Dehn twisting an integer number of times about
the meridian or longitude of T 2. Thus applying the (truncated) Euclidean algorithm
to the slope p/q on T 2, we may reduce the slope to some m/n with m < r, n < r,
m + n ≥ r. The process gives the truncated continued fraction expansion of p/q. �

Figure 3 illustrates the proof of Lemma 3.2 when p = 3, q = 7, r = 5, and s = 0.
In that figure, Dehn twist about the horizontal curve (0, 1), and isotope to obtain
M(3, 4, 5, 0).

Our goal is to bound the simplicial volume of M(p, q, r, s). Recall that for any
compact 3–manifold M , whether closed or with boundary, the simplicial volume is
defined to be Vol(M) = v3 ||M ||, where ||M || is the Gromov norm of M . See [16,
Chapter 6] for background on the Gromov norm. For our purposes, we will need three
properties:

• ||M || is bounded above by the number of (compact or ideal) tetrahedra needed
to triangulate M .

• ||M || is non-increasing under Dehn filling.
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Figure 3. M(3, 7, 5, 0) is homeomorphic to M(3, 4, 5, 0).

• If M is hyperbolic, then v3 ||M || is the hyperbolic volume of M . Thus there
is no ambiguity in the notation Vol(M).

Combining these properties, we conclude that v3 times the number of ideal tetra-
hedra in a triangulation of M(p, q, r, s) provides an upper bound on the volume of
any of its hyperbolic Dehn fillings. This upper bound applies regardless of whether
M(p, q, r, s) is hyperbolic.

The following straightforward lemma will assist us in counting the number of tetra-
hedra in an ideal triangulation of M(p, q, r, s).

Lemma 3.3. Two pyramids glued along a common base, a polygon with t sides, may

be subdivided into t tetrahedra. In the case t = 3, the pyramids may be subdivided into

2 tetrahedra.

Proof. If t = 3, each pyramid is a tetrahedron, and there is nothing to prove. If t > 3,
then remove the base polygon, and add an edge running between the two tips of the
pyramids. Perform stellar subdivision, obtaining one tetrahedron for each of the t
edges of the base polygon. �

Lemma 3.4. Let n, m, and r be integers such that n < r, m < r, and n + m ≥ r.
The manifold M(n, m, r, 0) can be decomposed into t ideal tetrahedra, where

t =






10 if r = 2,

2r + 8 if n + m = r and r > 2,

2r + 10 otherwise.

Proof. Recall M(n, m, r, 0) is the complement of a link in T 2× (−1, 1), with the torus
link T (n, m) on T 2 × {0}. Put L perpendicular to T 2 × {0}, meeting it transversely
in two points.

First, cut along the torus T 2 × {0}, as shown in Figure 4 (left). This divides
the manifold into two pieces. By cutting along the torus, the disk bounded by the
component L has been cut into two. Slice up the middle of each half–disk and open
it out, flattening it onto T 2 × {0}, as in Figure 4 (middle). Each half–disk has been
sliced open into two parts, each of which is an (r + 1)–gon. In Figure 4 (right), an
example is shown for r = 5.

Outside the flattened half–disk, regions are bigons, which we collapse to ideal edges
as in Figure 4 (right), and either two quadrilaterals or a single hexagon adjacent to
the ends of the half-disks. This can be seen as follows. View T 2 × {0} as a rectangle
with the usual side identifications to form the torus. Any region U outside the half–
disk (as in Figure 4 (middle)) will either meet a single edge of the half–disk, two
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Figure 4. To decompose M(p, q, r, 0) into tetrahedra, a half-disk is
sliced and flattened onto T 2 × {0}. Thick lines are components of
the link. Dotted lines are edges of a polyhedral decomposition. One
or two polygons remain after collapsing the shaded bigons.

edges if U is adjacent to an end of the half–disk, or zero edges if U is not adjacent
to the half–disk. Such regions are glued according to the identifications for a torus.
Consider the regions meeting ends of the half–disk. Each of these two regions is glued
to exactly two other regions. Either each of the two regions glue up to regions meeting
only a single edge of the half–disk, in which case both regions are quadrilaterals, or
the two regions may glue to meet each other. In this second case, the regions must
additionally glue to regions meeting exactly one edge, so we have a hexagon.

The case of two quadrilaterals is the case of Figure 4. Since we obtain a hexagon
only when both ends of the flattened half-disk belong to the same complementary
region, this occurs if and only if n + m = r. Finally, any remaining regions meet one
or zero edges, and must glue to form bigons; two bigons are shaded dark in Figure 4
(right).

Now cone each sliced half–disk, quadrilateral, and hexagon to the boundary com-
ponent T 2 × {1}, as well as to the boundary component T 2 × {−1}. This gives a
decomposition of the manifold M(n, m, r, 0) into pyramids. Since the half disks are
identified to each other and the outside regions are identified along the two pieces,
the pyramids are glued in pairs along the regions on T 2 × {0}. By Lemma 3.3, we
may subdivide into:

• 2(r + 1) tetrahedra for two pairs of (r + 1)–gons if r > 2. If r = 2, improve
this to 4 tetrahedra.

• 6 tetrahedra for the single hexagon, if n+m = r. Otherwise, 8 tetrahedra for
two quadrilaterals.

Observe that if r = 2, then n = m = 1 so we will have a hexagon in this case. Adding
together these counts gives the result. �

Lemma 3.5. Let r > 2. Let n, m, r and s be integers such that n < r, m < r,
n + m ≥ r, and 0 < s < r. For any positive root β ∈ Br, the manifold M(n, m, r, s)
can be decomposed into at most t ideal tetrahedra, where

t =

{
rs + 3r − s + 9 if β = δr or δ̄r,

rs + 6r − s + 3 otherwise.
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γ

γ

(a) (b) (c)

Figure 5. (a) Decompose M(n, m, r, s) into tetrahedra, here r = 5,
s = 3 and β = δ̄5. Thick lines are link components, dotted lines
are polygon edges. This figure differs from Figure 4 (middle) only
in the encircled region. (b) For β = δ̄5, schematic figure for β3 with
triangles and quadrilaterals indicated. (c) The disk triangulated with
the projection of β3.

Proof. This proof is similar in spirit to that of Lemma 3.4: we subdivide M(n, m, r, s)
into two “polyhedral” pieces along a 2–complex roughly corresponding to the projec-
tion torus T 2×{0}. Each of these pieces can be subdivided into tetrahedra by coning
to T 2 × {±1}.

As above, the disk bounded by L gets cut into two, each half–disk gets sliced up the
middle and flattened out into two (r+1)–gons on T 2×{0}. However, when s 6= 0, we
now have a braid βs, which can be seen as crossings on the torus T 2 × {0}. Encircle
the braid βs in T 2 × {0} with a simple closed curve γ, separating this braid from
the rest of the diagram. (See Figure 5.) Note that the diagram outside this curve γ
agrees with the diagram of M(n, m, r, 0). From here, the argument will proceed in
four steps:

Step 1. Count and characterize the polygons inside γ. This is done in Lemma 3.6.
Step 2. At each quadrilateral bounded by the projection of βs, insert a medial tetra-

hedron, as in Figure 7.
Step 3. Glue the faces of medial tetrahedra to certain adjacent triangles. This “col-

lapsing” process, carried out in Lemma 3.7 (see Figures 6 and 7), reduces the
number of faces visible from T 2 × {±1}.

Step 4. Cone all remaining faces to T 2 × {±1}, and count the resulting tetrahedra.
This will complete the proof.

To begin the argument, we add an edge for every crossing of βs. We also add edges,
called peripheral edges, at the start and end of the braid, as in Figure 5 (b). Every
face bounded by these edges must be a quadrilateral, a triangle, or a bigon. No other
polygons can occur because β = σi1σi2 . . . σin−1

is a word formed by a permutation
of the n − 1 generators σ1, . . . , σn−1, hence in the word βs, no generator σj appears
twice before a single appearance of σj+1 or σj−1. Moreover, bigons can only occur
adjacent to the start or end of the braid.

Quadrilaterals and triangles that contain peripheral edges (i.e., that are adjacent to
the start or end of the braid) will be called peripheral faces, and otherwise they will be
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called inner faces. Inner triangles can only occur on the sides of the region of βs. Let
Qi, Qp, Ti, Tp denote the number of inner quadrilaterals, peripheral quadrilaterals,
inner triangles, and peripheral triangles, respectively. For example, in Figure 5 (b),
Qi = 4, Qp = 0, Ti = 4, Tp = 6.

Lemma 3.6. For any positive root β ∈ Br, the region inside the curve γ of βs

contains

• Qi = (r − 3)(s − 1) inner quadrilaterals,

• Qp ≤ (r − 2) peripheral quadrilaterals, and

• Tp + Qp ≤ 2(r − 2) peripheral faces that are not bigons.

If β = δr or δ̄r, there are no peripheral quadrilaterals and Tp = 2(r − 2) peripheral

triangles.

Proof. Let T = Ti + Tp and Q = Qi + Qp, and let B be the number of bigons. The
triangles, quadrilaterals, and bigons of T 2 × {0} are nearly in one-to-one correspon-
dence with triangles, quadrilaterals, and bigons of the projection graph of βs, except
at the start and end of the braid. We make the correspondence complete by pulling all
strands at the start of the braid projection graph into a single vertex, and all strands
at the end of the braid projection graph into a single vertex. The result is a graph on
a 2–disk D, decomposed into quadrilaterals, triangles, and bigons. See Figure 5 (c).

Let c = s(r − 1) denote the number of crossings of βs. Let v = 2 + c denote the
number of vertices on D. Let e = 2c + r be the number of edges, and f = B + T + Q
be the number of faces. Now, χ(D) = v − e + f = 1 implies B + T + Q = c + r − 1.
Moreover, 2e = 4c+2r = 2B +3T +4Q+2(s+1). We now subtract these equations:

2B + 3T + 4Q = 4c + 2r − 2s − 2

3B + 3T + 3Q = 3c + 3r − 3

− B + Q = c − r − 2s + 1.

Using the formula c = s(r − 1), the last equation simplifies to

(3) Q = (B − 2) + (r − 3)(s − 1).

We claim that Qp = B − 2, which will be proved using the normal form for β =
σi1σi2 . . . σin−1

, particularly Lemma 2.2.
Note we obtain a bigon at the start of the braid βs, between the j-th and (j +1)-st

strands, 1 < j < n − 1, if and only if in the word of β, σj appears before both σj−1

and σj+1. For the n-th and (n + 1)-st strands, there will be a bigon if and only if
σn−1 appears before σn−2. Finally, there will be a bigon between the first two strands
if and only if σ1 appears first in the word β. By Lemma 2.2, we pick up a bigon on
top for the first chain in the indices of β, in equation (2), and one for each additional
chain of length at least two.

Next, we obtain a quadrilateral at the start of βs, between the j-th and (j + 1)-st
strands, 1 < j < n−1, if and only if σj appears after both σj−1 and σj+1 in the word
of β. There can be no quadrilaterals in the first or last strand positions. By Lemma
2.2, we pick up a quadrilateral for each chain in the indices of β which has length at
least two, except the first. In particular, the peripheral quadrilaterals at the start of
the braid are in bijection with all but one of the bigons at the start of the braid. A
similar analysis applies at the end of the braid.
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Figure 6. Collapsing two triangles with two common edges to an
edge. Left: Shown on T 2 × 0 with edges of βs. Right: Shown
with ideal vertices.

Therefore, we conclude that the peripheral quadrilaterals are in bijection with all
but two of the (peripheral) bigons, so that Qp = B − 2. It follows from equation (3)
that Qi = (r−3)(s−1). Moreover, there are r−1 faces at the start of the braid, and
r − 1 faces at the end of the braid, so Qp + Tp + B = 2(r − 1). Thus,

Qp + B ≤ 2r − 2 ⇒ Qp + (Qp + 2) ≤ 2r − 2 ⇒ Qp ≤ r − 2.

Finally, at least 2 peripheral faces are bigons, so Qp +Tp ≤ 2r−4. When β = δr or δ̄r,
there is only one chain in equation (2), hence B = 2, Qp = 0 and Tp = 2(r − 2). �

Recall that the root β of ∆2 is a positive braid. Thus every inner quadrilateral, as in
Lemma 3.6, is formed by two parallel over–strands crossing two parallel under–strands.
At every inner quadrilateral, we insert a tetrahedron, called a medial tetrahedron. See
Figure 7, left. Two faces of every medial tetrahedron can be seen from T 2 × {1}
(“top”), and the remaining two faces can be seen from T 2 × {−1} (“bottom”).

We also insert a medial tetrahedron at every peripheral quadrilateral of the braid
βs. These look exactly the same as the tetrahedron in Figure 7, left, except with
one corner truncated. Again, two faces can be seen from the top, and two from the
bottom.

A consequence of inserting these medial tetrahedra is that when we view the region
of βs from above (or below), all faces are triangles or bigons. Every bigon will collapse
to an ideal edge, and almost all of the triangles can be glued in pairs:

Lemma 3.7. Inside the region of βs, let t be a triangular face that is visible from the

top and contains no peripheral edges, possibly a non-peripheral top face of a medial

tetrahedron. Then t shares two edges with an adjacent triangle t′. The third edges of

t and t′ are isotopic in M(n, m, r, s). Thus t can be glued to t′, identifying their third

edges. When this gluing operation is viewed from T 2 ×{1}, the two triangles collapse

to a single edge. See Figure 6.

A similar statement holds for a triangular face visible from T 2 × {−1}.

Proof. If t is not peripheral, then all three sides of t are inside the region of βs

determined by γ. Because βs is a positive braid, two ideal edges of t connect to
a strand of the projection diagram between consecutive under-crossings. These two
edges are shared with an adjacent triangle t′, as in Figure 6.

Now, observe that every edge of t is isotopic in M(n, m, r, s) to a corresponding
edge of t′. Therefore, we may glue these two triangles together, by folding them
toward the top. After the gluing, all that is visible from the top is a single ideal
edge. �

See Figure 7, right, for an illustration of this gluing, in the case where t and t′ both
belong to medial tetrahedra.
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Figure 7. Left: Medial tetrahedron inserted at every inner quadri-
lateral. Right: Adjacent medial tetrahedra are glued together when
their triangular faces with common edges are collapsed.

Figure 8. For a twisted torus braid with s 6= 0 and β = δ̄r, attach
medial tetrahedra as in Figure 6 right, and repeatedly collapse using
Lemma 3.7. In the top row, T 2 × {0} is seen from the top, and in
the bottom row from the bottom. Thick black lines indicate ideal
vertices.

We now return to the proof of Lemma 3.5. As in the proof of Lemma 3.4, outside
both the flattened half–disks and the curve γ encircling βs, regions on T 2 × {0} are
either bigons, in which case they collapse, or meet one or both of the intersections of
the link L with T 2 × {0}. In this case, the regions also meet the s edges on either
side of the s overpasses. There are either two (s + 4)–gons, or a single (2s + 6)–gon.
One (s + 4)–gon is shown as a shaded region in Figure 5 (a).

Case: β = δr or δ̄r. We now add 2(s− 2) edges on T 2×{0}, as shown in Figure
8, subdividing the two (s+4)–gons or single (2s+6)–gon into two hexagons or a single
decagon, respectively, as well as 2(s−2) triangles adjacent to the braid. Viewed from
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(a) (b)

Figure 9. After collapsing as in Figure 8, regions on T 2 × {0} seen
from the top in (a) and from the bottom in (b).

the top, all inner faces can be glued in pairs to collapse to edges, and then triangles
adjacent to the braid can also be glued in pairs, to collapse to a single edge. This
is shown in the top row of Figure 8. Thus, from the top, all that is left of the two
(s+4)–gons or single (2s+6)–gon are two hexagons or a single decagon, respectively,
as in Figure 9. Viewed from the bottom, after the inner quadrilaterals are collapsed,
the 2(s − 2) new triangles remain, as well as the two hexagons or single decagon.
When we cone to top and bottom, pyramids over the two hexagons or single decagon
will be glued along those faces, and so we may perform stellar subdivision. Lemmas
3.3 and 3.6 apply, and we count:

• 2(r + 1) tetrahedra from each pair of half–disks, which are (r + 1)–gons.
• 12 tetrahedra from the two hexagons, or 10 tetrahedra from the single decagon.
• (r − 3)(s − 1) medial tetrahedra.
• 2(r − 2) tetrahedra from coning peripheral triangles to the top.
• 2(s − 2) tetrahedra from coning other triangles to the bottom.

In this case, all the (r−3)(s−1) medial tetrahedra are incident to the single collapsed
edge seen from the top (the edge shown in the top right of Figure 8 and middle of
Figure 9(a) ).

Case: β is any positive root. For simplicity (and unlike the previous case),
we will not attempt to collapse any additional triangles, beyond what was done in
Lemma 3.7. Instead, the two (s + 4)–gons or the single (2s + 6)–gon will simply
be coned to T 2 × {±1}, and subdivided into tetrahedra by stellar subdivision as in
Lemma 3.3. Also, by Lemma 3.7, for each peripheral quadrilateral, only one triangular
face of a medial tetrahedron will be visible from the top, and one from the bottom,
after collapsing. Thus, peripheral triangles and quadrilaterals each contribute two
tetrahedra by coning one triangle to the top, and one to the bottom. We count:

• 2(r + 1) tetrahedra from each pair of half–disks, which are (r + 1)–gons.
• 2(s+4) tetrahedra from stellar subdivision, assuming worst case of two (s+4)–

gons.
• Qi = (r − 3)(s − 1) medial tetrahedra from inner quadrilaterals.
• Qp ≤ (r − 2) medial tetrahedra from peripheral quadrilaterals.
• 2(Qp + Tp) ≤ 4(r − 2) tetrahedra from coning peripheral faces to the top and

bottom.

Adding these counts together completes the proof of Lemma 3.5. �
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Figure 10. M(1, 1, 2, 0), shown in center, is covered by the infinite
chain–link–fence complement.

We can now prove the upper volume bounds of Theorem 1.3.

Proof of Theorem 1.3. The link complement S3
rT (p, q, r, s) is obtained by Dehn fill-

ing the manifold M(p, q, r, s), so Vol(T (p, q, r, s)) is bounded above by the volume of
M(p, q, r, s) [16]. By Lemma 3.2, the volume of M(p, q, r, s) is the same as that of
M(m, n, r, s′) or M(n, m, r, s′), where s′ = s mod r, 0 ≤ s′ < r and n, m are as in
the statement of that lemma.

The volume of any ideal tetrahedron is at most v3. If r = 2 and s = 0, Lemma
3.4 implies that M(1, 1, 2, 0) can be decomposed into 10 ideal tetrahedra, hence
Vol(M(1, 1, 2, 0)) ≤ 10v3. Notice that M(1, 1, 2, 1) differs from M(1, 1, 2, 0) by a
single half–twist in a 2–punctured disk. Hence these two manifolds have the same
volume [1]. Thus Vol(T (p, q, 2, s)) < Vol(M(1, 1, 2, 0)) ≤ 10v3.

If r > 2 and s = 0 mod r, Lemma 3.4 implies the manifold M(n, m, r, 0) (or
M(m, n, r, 0)) can be decomposed into 2(r + 4) tetrahedra, or 2(r + 5) tetrahedra,
depending on whether n + m = r or not, respectively.

Finally if r > 2 and s 6= 0 mod r, then Lemma 3.5 applies, and the manifold can
be decomposed into at most rs′ +3r− s′ +9 = (r− 1)s′ +3r +9 tetrahedra if β = δr,
and rs′ + 6r − s′ + 3 = (r − 1)s′ + 6r + 3 otherwise. Since 0 < s′ < r, we obtain
volume bounds v3(r

2 + r + 10) and v3(r
2 + 4r + 4), respectively. �

When r = 2, the bound of Theorem 1.3 is sharp. In the special case when s = 0
mod r and m + n = r, the above proof gives the better bound v3(2r + 8).

3.2. Links with volume approaching 10v3. The following construction gives an
explicit family of twisted torus knots with r = 2 whose volumes approach 10v3. This
will prove Theorem 1.4, and demonstrate the sharpness of Theorem 1.3 when r = 2.

Proof of Theorem 1.4. The manifold S3
rT (p, q, 2, 2N) is obtained by Dehn filling

M(p, q, 2, 2N). By Lemma 3.2, M(p, q, 2, 2N) is homeomorphic to M(1, 1, 2, 0). We
begin the proof by showing that M(1, 1, 2, 0) is a hyperbolic manifold obtained by
gluing 10 regular ideal tetrahedra, hence has volume exactly 10v3.

Notice that the manifold M(1, 1, 2, 0) has a Z
2 cover by the infinite chain–link–

fence complement, Figure 10. The infinite chain–link–fence complement is studied in
detail by Agol and Thurston in [13, Appendix]. In particular, they find a subdivision
of this link complement into regular ideal tetrahedra.
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This subdivision is obtained first by slicing the chain–link–fence complement in
half along the projection plane, then slicing up half–disks bounded by crossing circles
as in our proof of Lemma 3.4 above, and opening them up and flattening them. These
are coned to points above or below the projection plane, yielding four tetrahedra per
crossing disk. The remainder of the chain–link–fence complement consists of pyramids
over regular hexagons. This is illustrated in Figure 17 of [13], where shaded triangles
come from disks bounded by circles. To finish the decomposition into tetrahedra,
Agol and Thurston replace two pyramids glued over a hexagon face with a stellar
subdivision into six tetrahedra, as in Lemma 3.3.

All these tetrahedra in the decomposition of the chain–link–fence complement are
now seen by a circle packing argument to be regular ideal tetrahedra. Notice that
the subdivision is invariant under the action of Z

2 corresponding to our covering
transformation. Thus the regular ideal tetrahedra descend to give a decomposition of
M(1, 1, 2, 0) into ideal tetrahedra. Tracing through the proof of Lemma 3.4, we see
that these ideal tetrahedra agree with those of our decomposition. Since there are 10
such tetrahedra, the volume of M(1, 1, 2, 0) is 10v3.

Another way to see that all tetrahedra are regular follows from the fact that all the
edges of this triangulation are 6–valent. In this case, the ideal tetrahedra satisfying
the gluing equations have all dihedral angles π/3, so they are regular ideal tetrahedra.
Since all links of tetrahedra are equilateral triangles, they are all similar, and all edges
of any triangle are scaled by the same factor under dilations. Hence, the holonomy
for every loop in the cusp has to expand and contract by the same factor (i.e., it is
scaled by unity), so it is a Euclidean isometry. This implies that the regular ideal
tetrahedra are also a solution to the completeness equations.

Finally, recall that every knot T (p, q, 2, 2N) is obtained by Dehn filling three of the
four boundary tori of M(1, 1, 2, 0). Two of these tori correspond to the components
of the Hopf link, or equivalently the top and bottom boundary components of T 2 × I
in M(1, 1, 2, 0), while the third is the crossing circle encircling the two strands of the
knot of slope (1, 1) on T 2 × {0}.

Now, choose a pair of (large) integers p and q, such that gcd(p, q) = 1. In other
words, there exist integers (u, v), such that uq − pv = 1. We may embed T 2 × I into
the complement of the Hopf link via the matrix

A =

[
u p − u
v q − v

]
. Note that

[
u p − u
v q − v

] [
1
1

]
=

[
p
q

]
,

hence this embedding sends the curve of slope (1, 1) on T 2 to a (p, q) torus knot in
S3.

Consider the Dehn filling slopes in this construction. We will perform (1, N) Dehn
filling on the crossing circle in T 2 × I, thereby inserting 2N crossings between a pair
of strands in the (p, q) torus knot. As for the top and bottom tori of T 2 × I, we will
fill them along the slopes that become meridians of the Hopf link after embedding via
the matrix A. In other words, in the original framing on T 2 × I, the top and bottom
Dehn filling slopes are

A−1

[
1
0

]
=

[
q − v
−v

]
and A−1

[
0
1

]
=

[
u − p

u

]
.
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Figure 11. T-link with all s′i = 0, and all half–disks flattened. U is
the shaded region. A polygon remains after collapsing bigons.

Thus, so long as N is large and p = pN and q = qN are also large, the Dehn
filling slopes will be long. As (pN , qN ) → (∞,∞), the length of the slopes approaches
∞. Thus the volume of the Dehn filled manifold, S3

rT (pN , qN , 2, 2N), will approach
Vol(M(1, 1, 2, 0)) = 10v3. �

3.3. T–links. Let K be T ((p, q), (r1, s1), . . . , (rk, sk)). Let C1 ∪C2 be the Hopf link
as above. For i = 1, . . . , k, augment the link K with unknots Li that encircle the ri

strands of the i-th braid βi. Let s′i = si mod ri, so that 0 ≤ s′i < ri. Let

M(p, q, r1, s
′

1, . . . , rk, s′k) = S3
r
(
C1 ∪ C2 ∪ (∪k

i=1Li) ∪ K
)
.

Note S3
rK is homeomorphic to a Dehn filling on M(p, q, r1, s

′
1, . . . , rk, s′k).

Lemma 3.8. Suppose s′i = 0, i = 1, . . . , k. Then M(p, q, r1, 0, . . . , rk, 0) can be

decomposed into at most r2
1 + 9r1 − 8 ideal tetrahedra.

Proof. As above, we will decompose M(p, q, r1, 0, . . . , rk, 0) into tetrahedra by first
cutting the manifold into two pieces along the torus T 2×{0}. The common boundary
of these two pieces is shown in Figure 11. After cutting along T 2×{0}, the punctured
disks Di bounded by Li are cut into two, sliced and flattened onto T 2 × {0}. Each
half–disk Di can be divided into two (ri + 1)-gons. We obtain 2(ri + 1) tetrahedra
from each of these, as above, by first coning to the boundary T 2 ×{1} or T 2 ×{−1},
obtaining two pyramids for each half–disk, and then applying Lemma 3.3. (If some
ri = 2, we can improve this bound, but we won’t use this fact.) This gives a total of∑k

i=1
2(ri + 1) tetrahedra from half–disks.

Now we consider regions other than half–disks. Each such region is either a bigon,
in which case it contributes no tetrahedra, or meets at least two edges on the end
of some Di. In particular, one region U (the “top left corner” of Figure 11, shown
shaded) will meet 2k such edges, two for the end of each Di meeting in that region,
as well as additional edges as the region connects to other regions by identifications
on the torus.

The total number of tetrahedra for all these regions will be as large as possible
when each region meets as few edges of the Di as possible. This will happen when
U meets only the 2k edges corresponding to side edges of each Di, and then just
two more edges, either both from D1 or one from D1 and one from Dj , to close off.
Additionally, the other end of each Di will be in a region meeting no other end of
another disk and this region will meet exactly two edges from the end of Di and
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=

Figure 12. Schematic figure of a general T-link, with triangles and
quadrilaterals indicated for the root δ̄5.

exactly two other edges of some other disks to close off. Hence each such region has
four edges total. Thus when we have the maximum number of tetrahedra possible,
we will have one region with 2k + 2 edges, and k quadrilaterals.

As before, cone these to pyramids lying above and below T 2 × {0}. Lemma 3.3
implies this can be divided into at most (2k + 2) + 4k = 6k + 2 tetrahedra.

Since the ri’s are strictly decreasing and rk ≥ 2, it follows that k ≤ r1 − 1 and∑k
i=1

ri ≤
∑r1

i=2
i = (r2

1 + r1 − 2)/2. Hence the number of tetrahedra is bounded by:

k∑

i=1

2(ri + 1) + (6k + 2) = (6k + 2) + 2k + 2

k∑

i=1

ri

≤ 8(r1 − 1) + 2 + (r2
1 + r1 − 2) = r2

1 + 9r1 − 8

This completes the proof of Lemma 3.8. �

Lemma 3.9. Suppose s′i 6= 0 for some i, 1 ≤ i ≤ k. Then M(p, q, (r1, s
′
1), . . . , (rk, s′k))

can be decomposed into t ideal tetrahedra, where t is at most 1

3
r3
1 + 5

2
r2
1 + 5r1 − 5.

Proof. See Figure 12, which generalizes both Figure 5 and Figure 11. First assume

that s′i 6= 0, ∀ i = 1, . . . , k. Each region with β
s′

i

i , such as the s′i overpasses in Figure
12, can be subdivided as in Lemma 3.6. Thus, we can repeatedly apply the methods
of Lemma 3.5 in the general case that {βi} are any positive roots. We count:

•
∑k

i=1
2(ri + 1) tetrahedra from each pair of half–disks Di.

•
∑k

i=1
[(ri − 3)(s′i − 1) + (ri − 2)] medial tetrahedra.

•
∑k

i=1
4(ri − 2) tetrahedra from coning remaining at most 2(ri − 2) peripheral

triangles to the top and bottom.

To count the triangles in the unbounded regions in Figure 12, we recall from the
proof of Lemma 3.8 that all regions outside the half–disks in Figure 11 together

contribute at most 6k + 2 tetrahedra. However, in Figure 12, there are 2
∑k

i=1
s′i

additional side edges from the regions with overpasses. Because these side edges are
adjacent, the number of unbounded regions in Figure 12 is the same as in the case
where all s′i = 0. Since we subdivide these regions into tetrahedra, one for each edge,
it follows that the number of tetrahedra from these regions is at most the previous

count plus the number of additional side edges: 6k+2+2
∑k

i=1
s′i. (Whenever βi = δri

or δ̄ri
, this triangulation can be improved by the methods of Lemma 3.5.)
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Therefore, using s′i ≤ ri − 1 and k ≤ r1 − 1, the total number of tetrahedra is
bounded by:

t ≤
k∑

i=1

(
2(ri + 1) + (ri − 3)(s′i − 1) + 5(ri − 2) + 2s′i

)
+ 6k + 2

≤
k∑

i=1

(
2(ri + 1) + (ri − 3)(ri − 2) + 5(ri − 2) + 2(ri − 1)

)
+ 6k + 2

=

k∑

i=1

(
r2
i + 4ri

)
+ 2k + 2 ≤

r1∑

i=2

(
i2 + 4i

)
+ 2r1

= 1

3
r3
1 + 5

2
r2
1 + 25

6
r1 − 5 < 1

3
r3
1 + 5

2
r2
1 + 5r1 − 5.

If s′i = 0 for some i, 1 ≤ i ≤ k, this region does not contribute to the count of
medial tetrahedra or tetrahedra from coning peripheral triangles. Hence, t is bounded
as above. �

Proof of Theorem 1.7. Let L be the following T –link

L = T ((p, q), (r1, s1, β1), . . . , (rk, sk, βk)).

If si = 0 mod ri for all i, then S3
rL is obtained by Dehn filling M(p, q, r1, 0, . . . , rk, 0),

and by Lemma 3.8, M can be decomposed into at most r2
1 +9r1−8 tetrahedra. Hence,

Vol(L) < v3(r
2
1 + 9r1 − 8).

If some si 6= 0 mod ri, then by Lemma 3.9, S3
rL is obtained by Dehn filling a

manifold which decomposes into at most 1

3
r3
1 + 5

2
r2
1 + 5r1 − 5 tetrahedra. Thus,

Vol(L) < v3

(
1

3
r3
1 + 5

2
r2
1 + 5r1 − 5

)
.

�

4. Twisted torus knots with large volume

In this section, we prove Theorem 1.8, showing that there exist twisted torus links
with arbitrarily large volume.

Proof of Theorem 1.8. We will find a link LN in S3 with volume at least V + ε, then
show that twisted torus knots are obtained by arbitrarily high Dehn fillings of the
components of the link. By work of Jørgensen and Thurston, for high enough Dehn
filling we will obtain a twisted torus knot with volume at least V .

Consider again the Hopf link complement S3
r(C1 ∪ C2), which is homeomorphic

to T 2 × (−1, 1). Consider T 2 as the unit square [−1, 1]× [−1, 1] with sides identified.
Let L be the link defined as the union of line segments {−1/2}×{1/2}× [−1/2, 1/2],
{1/2} × {−1/2} × [−1/2, 1/2], and lines from (−1/2, 1/2) to (1/2,−1/2) on the tori
T 2 × {−1/2} and T 2 × {1/2}.

Chose N ∈ Z such that v3 (2N + 4) > V , where v3 is the volume of a regular
hyperbolic ideal tetrahedron. Let K0 be the curve on T 2 × {0} with slope 0, running
through the center (0, 0) of T 2 = [−1, 1]× [−1, 1]/ ∼. Note K0 does not meet L.

Now, for i = 1, . . . , N , if i is odd, let Ki and K−i be curves of slope 1/0 on
T 2 ×{i/(2N + 2)} and T 2 ×{−i/(2N + 2)}, respectively. If i is even, let Ki and K−i

be curves of slope 0/1 on T 2 × {i/(2N + 2)} and T 2 × {−i/(2N + 2)}, respectively.
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Figure 13. Left: Portion of L2 shown. Middle: Perform 1/2 and
−1/2 Dehn filling on K1 and K−1, respectively. Right: Then perform
1 and −1 Dehn filling on K2 and K−2, respectively.

Each K±i is required to be a straight line on T 2, running through the center (0, 0) of
T 2 = [−1, 1]× [−1, 1]/ ∼. An example for N = 2 is shown in Figure 13 (left).

Define the link L̃N in T 2 × (−1, 1) by

L̃N =

(
L ∪ K0 ∪

(
N⋃

i=1

(Ki ∪ K−i)

))
.

We identify S3
r(C1 ∪C2) ∼= T 2 × (−1, 1), and let LN denote L̃N ∪C1 ∪C2 in S3, so

that LN is a link in S3 with 4 + 2N components.

Lemma 4.1. S3
rLN is hyperbolic, for any N .

For readability, we will postpone the proof of Lemma 4.1 until we have finished
proving Theorem 1.8. Assuming this lemma, since S3

rLN is a hyperbolic manifold
with 4 + 2N cusps, its volume is at least (4 + 2N) v3 > V by work of Adams [2].

For any positive integers n1, . . . , nN , perform Dehn filling on LN as follows. First,
perform 1/n1 Dehn filling on K1 and −1/n1 filling on K−1. The effect of this pair
of Dehn fillings is to twist along the annulus bounded by K1 and K−1. See, for
example, Baker [3] for an explanation of twisting along an annulus. Since K0 is the
only link component meeting this annulus, this Dehn filling performs n1 Dehn twists
of K0 about the slope 1/0 (corresponding to K1 and K−1), removes K1 and K−1, but
otherwise leaves the link unchanged.

Now perform 1/n2 filling on K2, and −1/n2 filling on K−2. Again the effect is a
Dehn twist. Continue for each i, i = 1, . . . , N . The result is a manifold M(p, q, r, 0),
where p/q has continued fraction expansion [n1, . . . , nN ], and r also depends on N
and the integers n1, . . . , nN . See Figure 13. By choosing n1, . . . , nN to be large, we
can ensure that M(p, q, r, 0) is hyperbolic, and its volume is arbitrarily close to that
of S3

rLN .

Now obtain a twisted torus knot by performing 1/m Dehn filling on L in M(p, q, r, 0)
and by performing Dehn filling on the Hopf link C1 ∪ C2 in M(p, q, r, 0) along slopes
with intersection number 1. Since there are infinitely many of these, we may choose
these slopes high enough that the result has volume arbitrarily close to that of S3

rLN .
Since the volume of S3

rLN is greater than V , this finishes the proof of Theorem
1.8. �
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Proof of Lemma 4.1. The proof is by induction. One can check (by drawing the link
explicitly and triangulating by hand or computer [8]) that S3

rL1 is hyperbolic. The
manifold S3

rLN is obtained from S3
rLN−1 by removing the two closed curves KN

and K−N . We show that the manifold obtained by removing KN from S3
rLN−1 is

hyperbolic, and similarly the manifold obtained by removing K−N from S3
r(LN−1∪

KN) is hyperbolic, assuming hyperbolicity of the previous manifold. The proofs for
KN and for K−N are identical, so we do them simultaneously. To establish notation,
call the initial manifold MN . Assuming MN is hyperbolic, we show that MNrK is
hyperbolic, where K = KN or K = K−N . Recall that to show a link complement is
hyperbolic, we need only show it is irreducible, boundary irreducible, atoroidal and
an-annular.

First, note that K cannot be homotopically trivial in MN ⊂ T 2 × I, because it is
parallel to the curve 1/0 or 0/1 on T 2.

Now it follows from standard arguments that MNrK is irreducible and boundary
irreducible, for any embedded essential 2–sphere in MNrK would bound a ball in MN ,
hence contain K, which would mean K is homotopically trivial in MN , contradicting
the above paragraph. Any boundary compression disk would either have boundary
on K, or would form half of an essential 2–sphere, in either case again implying K is
homotopically trivial. So MNrK is irreducible and boundary irreducible.

If MNrK contains an essential annulus, a regular neighborhood of the annulus and
the link components on which its boundary lies gives an embedded torus in MNrK.
If we can prove MNrK is atoroidal, then again standard arguments will imply it is
an-annular.

So it remains to show MNrK is atoroidal. Suppose otherwise: there exists an
essential torus T in MNrK. Since MN is hyperbolic, T is boundary–parallel or com-
pressible in MN . In either case, T must bound a “trivial” 3–dimensional submanifold
V ⊂ MN , where V is one of the following:

(1) V = T 2 × I. This occurs when T is boundary–parallel.
(2) V is a solid torus.
(3) V is a ball-with-knotted-hole, contained in a ball in MN .

The last two cases occur if T is compressible in MN . In this case, surgering T along
its compressing disk D will produce a sphere, which must bound a ball B because
MN is irreducible. If B is disjoint from the compression disk D, then V is obtained
by adding a 1–handle whose cross-section is D, and is a solid torus. If B contains
D, then V is obtained by removing the 1–handle whose cross-section is D, hence is a
ball-with-knotted-hole.

It will help to consider the intersection between T and the pair of pants P whose
three boundary components are a longitude of KN−2, a meridian of KN−1, and a
longitude of KN = K. (P forms the inner half of the 4–punctured sphere depicted in
Figure 14.) We assume that P and T have been moved by isotopy so as to minimize
the number of curves of intersection. Because P is incompressible, no curve of P ∩ T
can be trivial on T . Thus all curves of intersection run in parallel along some non-
trivial slope in T . Note that the pair of pants P contains only 3 isotopy classes of
essential closed curve: these are parallel to the three boundary components. Because
P is essential, and the three boundary circles represent distinct elements of π1(MN),
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L KN−1

∈ T 2 × {1}

KNKN−2

Figure 14. The knot K = KN lives on a four-punctured sphere in MN .

the curves of P ∩T that run in parallel on T must also run in parallel along the same
boundary component of P .

We consider the intersection P ∩ T to rule out the different types of trivial pieces
enumerated above.

Claim 4.2. The torus T cannot be boundary–parallel in MN .

Proof of claim. Suppose that T cuts off a product region V = T 2 × I, adjacent to a
boundary component of MN . Note that, since T is essential in MNrK, we must have
K ⊂ V . Consider whether KN−2 and KN−1 also intersect V .

If both KN−2 and KN−1 are disjoint from V , then T separates K from KN−2 and
KN−1. But then the circles of T ∩ P run parallel to K, and K is isotopic into T ,
hence into ∂MN . This contradicts the construction of K.

If KN−2 intersects V , then V is parallel to the boundary component of MN that
corresponds to KN−2. On the other hand, KN−1 must lie outside V , because all of
∂V is already accounted for. Thus T separates K and KN−2 from KN−1, and the
circles of T ∩ P run parallel to the meridian of KN−1. But then there must be an
essential annulus from the meridian of KN−1 to the boundary torus corresponding to
KN−2. This contradicts the assumption that MN is hyperbolic.

If KN−1 intersects V , then the argument is exactly the same, with KN−1 and
KN−2 interchanged, and the longitude of KN−2 in place of the meridian of KN−1.
Again, we get a contradiction. �

Claim 4.3. The torus T cannot bound a solid torus in MN .

Proof of claim. Suppose that T bounds a solid torus V ⊂ MN . Then, because T is
incompressible in MNrK, we must have K ⊂ V . On the other hand, because all
boundary components of MN are outside V , KN−1 and KN−2 must be outside V .
Thus all circles of T ∩ P must be parallel to K. In particular, K is parallel into the
torus T .

Say that K is an (a, b) curve on T , which goes a times around a meridian disk in
V , and b times around a longitude of V . Thus, in π1(T

2 × (−1, 1)), K represents b
times the generator of π1(V ) = Z. But by definition, K = KN is a 0/1 or 1/0 curve
on T 2, which is primitive in π1(T

2). Therefore, b = ±1, and the (a,±1) curve K is
isotopic to the core of V .

We conclude that T is the boundary of a regular neighborhood of K, contradicting
the assumption that it’s essential in MNrK. �

Claim 4.4. The torus T cannot be contained in a ball in MN .
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Proof of claim. Suppose that the trivial piece V bounded by T is a ball-with-knotted-
hole. Then V is the complement of a tubular neighborhood of a knot K ′ ⊂ S3. Note
that K ′ must truly be knotted, because by Claim 4.3, V cannot be a solid torus.

Now, consider what happens to the pair (MN , K) when we Dehn fill all boundary
components of MN along their meridians in S3. Only the knot K ⊂ S3 remains.
By construction, K is contained in S3

rV , which is a tubular neighborhood of K ′.
Furthermore, the torus T is incompressible into V , and K must intersect any com-
pression disk of T to the outside of V . Thus T is incompressible in S3

rK, and K is
a satellite knot with companion K ′.

On the other hand, recall that K = KN is a curve of slope 0/1 or 1/0 on the torus
T 2, hence parallel to one of the components of the Hopf link, and an unknot in S3.
This is a contradiction. �

By Claims 4.2, 4.3, and 4.4, T cannot be boundary–parallel or compressible in
MN . This violates the inductive hypothesis that MN is hyperbolic, and completes
the proof that MNrK is hyperbolic. �
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