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ON THE TAIL OF JONES POLYNOMIALS

OF CLOSED BRAIDS WITH A FULL TWIST

ABHIJIT CHAMPANERKAR AND ILYA KOFMAN

Abstract. For a closed n–braid L with a full positive twist and with ℓ nega-
tive crossings, 0 ≤ ℓ ≤ n, we determine the first n − ℓ + 1 terms of the Jones
polynomial VL(t). We show that VL(t) satisfies a braid index constraint, which
is a gap of length at least n − ℓ between the first two nonzero coefficients of
(1−t2)VL(t). For a closed positive n–braid with a full positive twist, we extend
our results to the colored Jones polynomials. For N > n−1, we determine the
first n(N − 1) + 1 terms of the normalized N–th colored Jones polynomial.

1. Introduction

The tail (resp. head) of a polynomial will denote the sequence of its lowest
(resp. highest) degree terms, up to some specified length. In this note, we precisely
determine the tail of the Jones polynomial for a closed n–braid with a full positive
twist, and with up to n negative crossings. We also precisely determine the tails
of the colored Jones polynomials for a closed positive n–braid with a full positive
twist.

It is natural to consider quantum and geometric invariants of links that are closed
braids with a full twist. For example, Lorenz links, all of which are closed positive
braids with a full twist, dominate the census of the simplest hyperbolic knots, and
their Jones polynomials are relatively simple [2, 5]. The full twist arises as ±1
Dehn surgery on the braid axis, considered as an augmented unknot in S3. Hence,
adding full twists is a natural geometric operation on links. On the other hand,
the full twist is in the center of the braid group, so its image in any irreducible
representation is a scalar. Most known closed formulas for Jones polynomials of
infinite link families essentially rely on this fact.

For any closed braid, we showed in [4] that after sufficiently many full twists on
a subset of strands, the coefficient vector for any colored Jones polynomial decom-
poses into fixed blocks, separated by blocks of zeros that increase by a constant
length for every twist. So once the non-zero blocks separate, they simply move
apart unchanged with every additional full twist. In Theorem 1.1 below, we com-
pletely determine the first block for full twists on all strands. In this case, the first
block separates after only one full twist.

Dasbach and Lin [6] showed that for alternating knots, and more generally A–
adequate knots, the first three coefficients in the tail of the normalized N -th colored
Jones polynomials are independent of the color for N ≥ 3. In Corollary 1.4, for
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N > n − 1, we determine the tail of length n(N − 1) + 1 for the normalized N–th
colored Jones polynomial of closed positive braids with a full twist. More precisely,
these coefficients consist of (n − 1) blocks of length (N + 1), where each block is a
±1 followed by N zeros. Armond [1] proved related results about tails of colored
Jones polynomials for any closed positive braid.

Theorem 1.3 implies that given M ≥ 2, for all colors N ≥ M , the coefficients
of the tail of length M stabilize up to sign. Garoufalidis [10] proved that any
finite-depth coefficient of the colored Jones polynomial satisfies a linear recursion
with constant coefficients. From this point of view, Theorem 1.3 implies that these
particular colored Jones coefficients satisfy a trivial linear recursion with constant
coefficients.

Dasbach and Lin also showed that the second coefficients of the head and tail
together provide a linear bound for the hyperbolic volume of alternating knots.
Futer, Kalfagianni and Purcell [8, 9] showed this as well for hyperbolic closed 3–
braids and many classes of hyperbolic adequate links, but that it fails to hold for
other such classes (see [9]). In contrast, the coefficients of the tail of length N as in
Theorem 1.3 for closed positive braids with a full twist are all {−1, 0, 1}. Moreover,
the tail of length n(N − 1) as in Corollary 1.4, also has coefficients only {−1, 0, 1}.
These coefficients and the dependence on the braid index indicates that, for this
class of knots, these tails by themselves are unrelated to the hyperbolic volume of
the closed braid. For example, 3–braids have unbounded hyperbolic volume [9],
and the positive twisted torus knots T (p, q, 2, s) with p, q > 2, s > 0, have bounded
hyperbolic volume but unbounded braid index [3].

To state our main results, we adopt the following standard convention. Let VL(t)
denote the Jones polynomial, such that

t−1VL+ − tVL−
=
(

t1/2 − t−1/2
)

VL0 and V©(t) = 1.

Theorem 1.1. Let β′ be a n–braid of length c with ℓ negative crossings with

0 ≤ ℓ ≤ n and β = ∆2
n β′, where ∆2

n is the positive full twist in the braid group

Bn. Then

Vβ(t) = (−1)n+c+1 t
(n−1)2+c−2ℓ

2

(
1 + tn−ℓ+1 p(β; t)

1 − t2

)

= (−1)n+c+1 t
(n−1)2+c−2ℓ

2





[(n−ℓ)/2]
∑

i=0

t2i + tn−ℓ+1q(β; t)





where p(β; t) and q(β; t) are polynomials in t.

The latter expression gives the tail of Vβ(t) of length n − ℓ + 1. An interesting
consequence is that the Jones polynomial satisfies a braid index constraint, which
is a gap of length at least n − ℓ between the first two nonzero coefficients of (1 −
t2) ·Vβ(t). If ℓ = 0 in Theorem 1.1, then β is a positive n–braid with a full twist. In

this case, the MFW inequality [14, 7] is sharp so the braid index of β is n. However,
the gap between the first two nonzero coefficients of (1− t2)Vβ(t) can be more than

n. For example, if β′ = σ2
2σ1 ∈ B4 then β = ∆2

4β
′ and

Vβ(t) = t6 + t8 + t10 + t12 =⇒ (1 − t2)Vβ(t) = t6 − t14.

Another consequence of Theorem 1.1 is related to a conjecture of V. Jones [12],
which remains open in general: The writhe w(β), which is the algebraic crossing
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number of β, is a topological invariant of β whenever n is the minimal braid index
of β (see [15]). When the MFW inequality is sharp, the Jones conjecture is known
to hold, which is the case for positive braids, ℓ = 0. If ℓ = 1, β is conjugate to a
positive braid. For ℓ > 1, although we do not know when the MFW inequality is
sharp, we can prove the Jones conjecture:

Corollary 1.2. For β as in Theorem 1.1,

2 min deg(Vβ(t)) = w(β) − n + 1.

Thus, if n is the minimal braid index of β, then w(β) is a topological invariant of

β.

Proof. 2 mindeg(Vβ(t)) = (n−1)2+c−2ℓ = n(n−1)+c−2ℓ−n+1 = w(β)−n+1. �

Let JN (L; t) be the colored Jones polynomial of L, colored by the N -dimensional
irreducible representation of sl2(C), with the normalization

J2(L; t) = (t1/2 + t−1/2)VL(t) and JN (©; t) =
tN/2 − t−N/2

t1/2 − t−1/2
= [N ].

The colored Jones polynomials are weighted sums of Jones polynomials of cablings,
and the following formula is given in [13]. Let L(r) be the 0-framed r-cable of L;
i.e., if L is 0-framed, then L(r) is the link obtained by replacing L with r parallel
copies. (See below for a formula modified for other framings.)

(1.1) JN+1(L; t) =

[N/2]
∑

j=0

(−1)j

(
N − j

j

)

J2(L
(N−2j); t)

The normalized colored Jones polynomial J ′
N (L; t) is defined by

J ′
N (L; t) =

JN (L; t)

[N ]
and J ′

N (©; t) = 1.

Theorem 1.3. Let β′ be a positive n–braid of length c and β = ∆2
n β′, where ∆2

n

is the positive full twist in the braid group Bn. Then

J ′
N+1(β; t) = (−1)N(n+c+1)t

N((n−1)2+c)
2

(
1 + tnN+1pN (β; t)

1 − tN+1

)

= (−1)N(n+c+1)t
N((n−1)2+c)

2

(
n−1∑

i=0

ti(N+1) + tnN+1qN (β; t)

)

where pN (β; t) and qN (β; t) are polynomials in t.

Corollary 1.4. If β′ is a positive n–braid of length c and β = ∆2
n β′, then for

N > n − 2,

J ′
N+1(β; t) = (−1)N(n+c+1)t

N((n−1)2+c)
2

(
n−1∑

i=0

ti(N+1) + {terms of degree ≥ nN + 1}

)

.

Proof. In Theorem 1.3,
∑n−1

i=0 ti(N+1) and tnN+1qN (β; t) can overlap only when
(n − 1)(N + 1) ≥ nN + 1, i.e. when N ≤ n − 2. �

For N > n − 1, Corollary 1.4 determines the tail of length n(N − 1) + 1 for the
normalized N–th colored Jones polynomial.
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2. Proof of Theorem 1.1

Generalizing the well-known formula for torus knots, the Jones polynomial of
any torus link T (p, q) is given by the following sum, with d = gcd(p, q) [11].

(2.1) VT (p,q)(t) = (−1)d+1 t(p−1)(q−1)/2

1 − t2

d∑

i=0

(
d

i

)

t
p
d
(1+ q

d
i)(d−i)

(

t
q
d
(d−i) − t1+

q
d

i
)

For n = 2, the claim follows from (2.1), which in this case simplifies to

VT (2,q)(t) = (−1)q+1 t(q−1)/2

(1 − t2)
(1 − t3 + (−1)q(t1+q − t2+q)).

Henceforth, let n > 2. The Jones polynomial VL(t) is obtained from the Kauff-
man bracket 〈L〉 by substituting t = A−4 and multiplying by (−A3)−w to adjust for
the writhe w of L. We will show that the right-most part of the coefficient vector
of the Kauffman bracket ~c = {ci | 〈L〉 = A∗

∑
ci A4i } has the following form:

∗ 0 1 . . . 0 1
︸ ︷︷ ︸

n+1

if n is odd ∗ −1 0 − 1 . . . 0 − 1
︸ ︷︷ ︸

n+1

if n is even

We will call this part of the Kauffman bracket the gap block. Multiplying by 1−t2 =
1 − A−8, the coefficient vector changes as follows:

Case: n odd Case: n even
(
(−1)n+1〈L〉

)
∗ ∗ ∗ 0 1 . . . 0 1 0 1 ∗ ∗ ∗ 1 0 1 . . . 0 1 0 1

(
(−1)n+1A−8〈L〉

)
∗ 0 1 0 1 . . . 0 1 1 0 1 0 1 . . . 0 1

(
(−1)n+1(1 − A−8)〈L〉

)
∗ ∗ ∗ 0 0 . . . 0 0 0

︸ ︷︷ ︸

n

1 ∗ ∗ ∗ 0 0 . . . 0 0 0
︸ ︷︷ ︸

n

1

When p = q = n in (2.1), we obtain the Jones polynomial of (n, n) torus link,

which is the closure of the full twist in the braid group Bn; i.e., ∆2
n.

V∆2
n
(t) = (−1)n+1 t

1
2 (n−1)2

1 − t2

n∑

i=0

(
n

i

)

t(1+i)(n−i)
(
tn−i − t1+i

)

= (−1)n+1 t
1
2 (n−1)2

1 − t2
(
1 + (n − 2)tn+1 + {higher order terms}

)
(2.2)

The Kauffman bracket of ∆2
n is obtained from (2.2) by substituing t = A−4 and

to adjust for the writhe, multiplying by (−A)3n(n−1) = A3n2−3n. The first two
terms of (1 − t2) · V (t) change as follows:

A3n2−3n · A−2(n−1)2
(

1 + (n − 2)A−4(n+1)
)

= An2+n−2 + (n − 2)An2−3n−6

After dividing by 1 − A−8 we obtain a sum that depends on the parity of n. We
see that the Kauffman bracket of the positive full twist on n-strands has a gap
block with top degree n2 + n − 2, and its smallest non-zero coefficient has degree
n2 − 3n ± 2, according to whether n is even or odd. However, when n is odd, the
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zero “term” is the first one in the gap block, so we say that the gap block has
bottom degree n2 − 3n− 2; i.e.

(2.3) (−1)n+1〈∆2
n〉 = q2(A) + an An2−3n−2 + An2−3n+2 + . . . + An2+n−2

where q2(A) is a Laurent polynomial with degree strictly less than n2 − 3n− 2 and
an = (1 + (−1)n)/2. We will show that adding a sufficiently positive braid β′ to
∆2

n does not affect the gap block.
The Temperley-Lieb algebra TLn is closely related to the Jones polynomial. In

usual notation, TLn is the algebra over Z[A±1] with generators {1, e1, e2, . . . , en−1}
and relations, with δ = −A2 − A−2,

e2
i = δei, eiei±1ei = ei, eiej = ejei if |i − j| ≥ 2

As a free Z[A±1]-module, TLn has a basis that consists of all diagrams with
no crossings and no closed curves, with dimension equal to the Catalan number
Cn = 1

n+1

(
2n
n

)
. We will refer to this particular basis as the standard basis {hi | i =

0, . . . , Cn − 1 } with h0 = 1. Each hi can be expressed as a product of distinct
generators: hi = ej1 . . . ejr

.
Let Aa−b be the contribution from any smoothing s of β′ where a and b are the

number of A and B smoothings of β′, respectively. Passing to the representation
of β′ in TLn,

β′ =
∑

s
Aa(s)−b(s) ©|s| hi(s)

where hi(s) is the basis element obtained from a smoothing s, and |s| is the number
of loops in the smoothing of β′ (not the closure of β′).

Let c = length(β′). For 0 ≤ ℓ ≤ n, the (unique) state which gives h0 has ℓ
B–smoothings, for which a − b = (c − ℓ) − ℓ = c − 2ℓ. We define q1(A) as follows:

(−1)n+1q1(A) = 〈∆2
nβ′〉 − Ac−2ℓ〈∆2

nh0〉

=
∑

s with i(s) 6=0

Aa(s)−b(s)〈©|s| ∆2
nhi(s)〉

=
∑

s with i(s) 6=0

Aa(s)−b(s)δ|s|〈 ∆2
nhi(s)〉

By Lemma 2.3, which is proved below, for i > 0 the highest power in 〈 ∆2
nhi〉 is

n2 − 3n − 4. This implies the following:

Lemma 2.1. If 0 ≤ ℓ ≤ n, the degree of q1(A) is at most c + n2 − 3n− 6 + 2ℓ.

Proof. First, suppose ℓ = 0. We claim that to get k loops in any smoothing of
β′ we need at least (k + 1) B–smoothings. Since β′ is a positive braid, every B–
smoothing adds at most one loop, but the first B–smoothing does not result in any
loops. Hence, (k + 1) B–smoothings (and the remaining A–smoothings) result in
at most k loops.

It follows that 1 ≤ k + 1 ≤ b and a ≤ c − k − 1. Hence, a − b ≤ c − 2k − 2 and
the highest power in δk is 2k. Thus, for ℓ = 0, the highest power in Aa(s)−b(s)δ|s|

is c − 2k − 2 + 2k = c − 2.
If ℓ > 0, we claim that to get k loops in any smoothing of β′ we need at least

(k +1− ℓ) B–smoothings. As for a positive braid, (k +1) smoothings that produce
a cup-cap give at most k loops. But now, some of these smoothings could be A–
smoothings at a negative crossing, so (k +1− ℓ) B–smoothings (and the remaining
A–smoothings) result in at most k loops.
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It follows that b ≥ k +1− ℓ and a ≤ c− k− 1+ ℓ. Hence, a− b ≤ c− 2k− 2+2ℓ.
Since the highest power in δk is 2k, the highest power in Aa(s)−b(s)δ|s| is c − 2k −
2 + 2ℓ + 2k = c + 2ℓ − 2.

By Lemma 2.3, the highest power in 〈∆2
nhi(s)〉 is n2 − 3n − 4, so the degree of

q1(A) is at most c + n2 − 3n − 6 + 2ℓ. �

We now return to the equation, (−1)n+1q1(A) = 〈∆2
nβ′〉−Ac−2ℓ〈∆2

n〉. By Lemma
2.1, the degree of q1(A) is at most α1 = c + n2 − 3n− 6 + 2ℓ. Hence by (2.3),

(−1)n+1〈∆2
nβ′〉 = q1(A) + Ac−2ℓ

(

q2(A) +

an An2−3n−2 + An2−3n+2 + . . . + An2+n−2
)(2.4)

The highest power of A above is n2 + n− 2 + c− 2ℓ. Thus, the gap block starts
at the power α2 = c + n2 − 3n − 2 − 2ℓ. Comparing with the maximum power of
q1(A), we see that q1(A) and the gap block can overlap in at most ℓ coefficients:
α1 − α2 = 4(ℓ − 1). After multiplying by (1 − t2), we get a gap of (n − ℓ) zeros.

Let us compute the highest power of A after adjusting for the writhe. The writhe
w = n(n− 1) + (c− ℓ)− ℓ = n2 −n + c− 2ℓ. So after multiplying by (−A3)−w, the
highest power of A is

(−1)n+1An2+n−2+c−2ℓ(−1)n2−n+c−2ℓA−3(n2−n+c−2ℓ) = (−1)n+c+1(A−4)
(n−1)2+c−2ℓ

2

To get the Jones polynomial, we substitute t = A−4 and multiply by (−A3)−w.

Hence we obtain the lowest power of t to be (−1)n+c+1t
(n−1)2+c−2ℓ

2 . This completes
the proof of the first statement of Theorem 1.1.

To obtain the tail (without denominators), we note that
1 + tp(t)

1 − t2
= 1 + tq(t),

where q(t) is a polynomial. For simplicity, let ℓ = 0, but the proof is same in
the other case. Given the polynomial p(t) from the proof above, we obtain the
polynomial q(t) as follows:

n odd
1 + tn+1 p(t)

1 − t2
=

1 − tn+1

1 − t2
+

tn+1(1 + p(t))

1 − t2

=

[n/2]
∑

i=0

t2i + tn+1q(t)

n even
1 + tn+1 p(t)

1 − t2
=

1 − tn

1 − t2
+

tn(1 + tp(t))

1 − t2

=

(n−2)/2
∑

i=0

t2i + tn(1 + tq(t))

=

n/2
∑

i=0

t2i + tn+1q(t)

This completes the proof of Theorem 1.1.

Lemma 2.2. Let hi be a standard basis element of TLn. Let k = #cups in hi, and

m = # through strands in hi, so that 2k + m = n. If Hi = hi with its m through
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π

1 2 i n(i+1) (n−1)

=2 rotation

1 2 i n(i+1) (n−1)

Full Twist on (n−1) strands

Figure 1. Full twist on n strands, with two consecutive strands
grouped together as one strand.

−6
A=

−6
A=Full Twist on (n−1) strands Full Twist on (n−2) strandsFull Twist on (n−1) strands

Figure 2. ∆2
nei = A−6Ei

strands given a full right twist, then ∆2
nhi = ∆2

n if i = 0, and ∆2
nhi = A−6kHi if

i > 0.

Proof. Let B = {1, 2, . . . , 2n} denote the positions of the strands. Let cap(h) =
{u1, . . . , u2k} denote indices of strands of h which are caps; e.g., cap(ei) = {i, i+1}.
Let feet(h) = {v1, . . . , vm} denote the bottom indices of strands of h which pass
through. Note that cap(h) ⊔ feet(h) = B.

We will prove the claim by induction on the length of h as a product of ei’s. For
the base case, h = ei. If Ei denotes ei with its n − 2 through strands given a full
right twist, then from Figures 1 and 2 we see that ∆2

nei = A−6Ei.
Assuming the claim holds for h′ = ei1 . . . eir−1 , we must show that it holds for

h = h′eir
. For the standard TLn basis, we have that ir is distinct from i1, . . . , ir−1,

so that cap(eir
) * cap(h′). This gives us two cases (see Figure 3):

Case 1: cap(eir
) ⊆ feet(h′). In this case, |cap(h)| = |cap(h′)| + 2. The full

twist on |feet(h′)| strands is paired with eir
and results in A−6∆2

|feet(h′)|−2. Hence,

∆2
nh = A−6(k−1)H ′eir

= A−6kH .
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−6
A Full TwistFull TwistFull Twist == Full Twist

Case 2Case 1

Figure 3. Two cases for Lemma 2.2

Case 2: cap(eir
) * feet(h′). In this case, cap(eir

) is split between feet(h′) and
cap(h′). The number of caps and the number of through strands of h are both the
same as those in h′. Hence, ∆2

nh = A−6kH ′eir
= A−6kH . �

Lemma 2.3. The highest power of A in 〈∆2
nhi〉 for any i > 0 is less than or equal

to n2 − 3n − 4.

Proof. Following the notation in Lemma 2.2, k = #cups in hi, so that 1 ≤ k ≤
[n/2]. By Lemma 2.2, ∆2

nhi = A−6kHi if i > 0, where Hi also has k cups. The
closure of Hi will result in k′ cups paired with caps to produce loops, and k′′ cups
pulled through the full twist with a factor of A−6k′′

, where 0 ≤ k, k′′ ≤ k. So Hi will
have a full twist on m′ strands, where 0 ≤ m′ ≤ m. Thus, 〈∆2

nhi〉 = A−6k〈Hi〉 =

A−6(k+k′′)δk′

〈∆2
m′〉.

The highest power of A is (−6k−6k′′+2k′+(m′)2 +m′−2), which is maximized
when k′′ = 0, k′ = k and m′ = m. Since 2k + m = n, we have m2 + m − 2 − 4k =
(n − 2k)2 + (n − 2k) − 2 − 4k. The function f(k) = (n − 2k)2 + (n − 2k) − 2 − 4k
has an absolute minimum at k = n

2 + 3
4 and is decreasing for k < n

2 + 3
4 . Since

1 ≤ k ≤ [n/2] < n
2 + 3

4 , f(k) ≤ f(1) = (n− 2)2 + (n− 2)− 2− 4 = n2 − 3n− 4. �

3. Proof of Theorem 1.3

For any link diagram D, let D(r) denote its blackboard framed r–cable. Let Dn

denote the standard diagram of the closure of a full positive twist on n strands with
a positive kink on each strand.

Lemma 3.1. D(r)
n = Dnr.

Proof. The belt trick (see, e.g., §2.2-2.4 of [16]) implies:

r strands

Full twist on (r)

Thus, Dn is planar isotopic to ( )(n). Hence D(r)
n = (( )(n))(r) = ( )(nr) =

Dnr. �
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For N ≥ 0, let SN (x) be the Chebyshev polynomials defined by

SN (x) =

[N/2]
∑

j=0

(−1)j

(
N − j

j

)

xN−2j .

For a link diagram D, let SN(D) be a linear combination of blackboard cablings of
D. We can define the colored Jones polynomial, as in equation (1.1), by a related
expression in terms of the blackboard framing for D (see, e.g., [6]):

(3.1) JN+1(D; A−4) =
(

(−1)NAN2+2N
)−w(D)

(−1)N−1(A2 + A−2)〈SN (D)〉

As before, let β′ be a positive n–braid with c crossings, β = ∆2
n β′, and L = β.

Let D be a diagram of L given by the closure of β with a positive kink on every
strand after the full twist. Note that the writhe of D, w(D) = n2 + c. By Lemma
3.1, D(r) is the closure of the braid ∆2

nrβ
′(r) with a positive kink on every strand

following the full twist.

Let r(A) = (−1)N(w(D)+1)+1A−(N2+2N)w(D)(A2 + A−2). By equation (3.1),

(1 − A−8)JN+1(L; A−4) = (1 − A−8) r(A) ×(3.2)

[N/2]
∑

j=0

(−1)j

(
N − j

j

)

〈D(N−2j)〉

= r(A)

[N/2]
∑

j=0

(−1)j

(
N − j

j

)

(−A3)n(N−2j) ×

(1 − A−8)〈∆2
n(N−2j)β

′(N−2j)〉

By equation (2.4) with ℓ = 0,

(1 − A−8)〈∆2
nβ′〉 = (−1)n+1

(

q3(A) + (n − 2)An2−3n−6+c + An2+n−2+c
)

= (−1)n+1
(

q4(A)An2−3n−6+c + An2+n−2+c
)

(3.3)

where q3(A) and q4(A) are Laurent polynomials such that maxdeg(q3(A)) ≤ n2 −
3n− 6 + c and max deg(q4(A)) ≤ 0.

Let d1(j) = (N −2j)2(n2 +c)−6 and d2(j) = (N −2j)2(n2 +c)+4n(N −2j)−2.
Note that d1(j) and d2(j) are both quadratic functions of j. As j increases from 0
to [N/2], they decrease and d2(j) > d1(j).

Lemma 3.2. d1(j) > d2(j + 1) for 0 ≤ j ≤ [N/2]− 1.

Proof. Note that n ≥ 3 and N ≥ 3.

d1(j) − d2(j + 1) =
(
(N − 2j)2(n2 + c) − 6

)
−

(
(N − 2j − 2)2(n2 + c) + 4n(N − 2j − 2) − 2

)

= 4(N − 2j)(n2 + c) − 4(n2 + c) − 4n(N − 2j − 2) − 4

= 4n(n(N − 2j) − (N − 2j) − n) + 4c(N − 2j − 1) + 8n− 4

= 4n(n − 1)(N − 2j − 1) + 4c(N − 2j − 1) + 4(n − 1)

> 0 for 0 ≤ j ≤ [N/2] − 1

�
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Let bj = (−1)j
(
N−j

j

)
. Continuing from (3.2), (1 − A−8)JN+1(L; A−4) =

= r(A)

[N/2]
∑

j=0

bj(−A3)n(N−2j) × (1 − A−8)〈∆2
n(N−2j)β

′(N−2j)〉

= (−1)nNr(A)

[N/2]
∑

j=0

(−1)n(N−2j)+1bj

[
p̄N−2j(A)Ad1(j) + Ad2(j)

]
using (3.3)

= −r(A)

[N/2]
∑

j=0

bj

[
Ad1(j)p̄N−2j(A) + Ad2(j)

]

= −r(A)
[
Ad1(0)pN (A) + Ad2(0)

]
using Lemma 3.2

where pN(A) and p̄N−2j(A) are Laurent polynomials such that maxdeg pN(A) ≤ 0
and maxdeg(p̄N−2j(A)) ≤ 0 for 0 ≤ j ≤ [N/2], respectively.

Substituting t = A−4 and, in r(A), w(D) = n2 + c,

(1 − t2)JN+1(L; t) = (−1)−N(n2+c−1)t
(N2+2N)(n2+c)

4 (t1/2 + t−1/2) ×
(

t−d2(0)/4 + t−d1(0)/4pN (t)
)

= (−1)−N(n2+c−1)(t1/2 + t−1/2) ×
(

t
N(n2+c−2n)+1

2 + t
N(n2+c)+3

2 pN(t)

)

(1 − t)JN+1(L; t) = (−1)N(n2+c−1)t
N(n2+c−2n)

2

(
1 + tnN+1pN (t)

)

where pN(t) is a polynomial. Now, the statement of Theorem 1.3 follows from

J ′
N (L; t) =

JN (L; t)

[N ]
=

t
N−1

2 (1 − t)JN (L; t)

(1 − tN )
.

To obtain the tail (without denominators), we suppress β in the notation,

1 + tnN+1pN(t)

1 − t
=

1 − tnN+1

1 − t
+

tnN+1(1 + pN (t))

1 − t

=
nN∑

i=0

ti + tnN+1qN (t)

1 + tnN+1pN(t)

1 − tN+1
=

1 − tn(N+1)

1 − tN+1
+

tnN+1(tn−1 + pN (t))

1 − tN+1

=

n−1∑

i=0

ti(N+1) + tnN+1qN (t)

This completes the proof of Theorem 1.3.



ON THE TAIL OF JONES POLYNOMIALS OF CLOSED BRAIDS WITH A FULL TWIST11

References

[1] C. Armond. Walks Along Braids and the Colored Jones Polynomial, arXiv:1101.3810v1
[math.GT], 2011.

[2] J. Birman and I. Kofman. A new twist on Lorenz links. J. Topol., 2(2):227–248, 2009.
[3] A. Champanerkar, D. Futer, I. Kofman, W. Neumann, and J. Purcell. Volume bounds for

generalized twisted torus links, to appear in Math. Res. Lett, arXiv:1007.2932v4 [math.GT],
2011.

[4] A. Champanerkar and I. Kofman. On the Mahler measure of Jones polynomials under twist-
ing. Algebr. Geom. Topol., 5:1–22, 2005.

[5] A. Champanerkar, I. Kofman, and E. Patterson. The next simplest hyperbolic knots. J. Knot
Theory Ramifications, 13(7):965–987, 2004.

[6] O. Dasbach and X.-S. Lin. On the head and the tail of the colored Jones polynomial. Compos.
Math., 142(5):1332–1342, 2006.

[7] J. Franks and R. F. Williams. Braids and the Jones polynomial. Trans. Amer. Math. Soc.,
303(1):97–108, 1987.

[8] D. Futer, E. Kalfagianni, and J. Purcell. Dehn filling, volume, and the Jones polynomial. J.
Differential Geometry, 78(3):429–464, 2008.

[9] D. Futer, E. Kalfagianni, and J. Purcell. Cusp areas of Farey manifolds and applications to
knot theory. Int. Math. Res. Not. IMRN, 23:4434–4497, 2010.

[10] S. Garoufalidis. The degree of a q-holonomic sequence is a quadratic quasi-polynomial. Elec-
tron. J. Combin., 18(2):Paper 4, 23, 2011.

[11] J.-M. Isidro, J. M. F. Labastida, and A. V. Ramallo. Polynomials for torus links from Chern-
Simons gauge theories. Nuclear Phys. B, 398(1):187–236, 1993.

[12] V. Jones. Hecke algebra representations of braid groups and link polynomials. Ann. of Math.
(2), 126(2):335–388, 1987.

[13] R. Kirby and P. Melvin. The 3-manifold invariants of Witten and Reshetikhin-Turaev for
sl(2, C). Invent. Math., 105(3):473–545, 1991.

[14] H. R. Morton. Seifert circles and knot polynomials. Math. Proc. Cambridge Philos. Soc.,
99(1):107–109, 1986.

[15] A. Stoimenow. On the crossing number of positive knots and braids and braid index cri-
teria of Jones and Morton-Williams-Franks. Trans. Amer. Math. Soc., 354(10):3927–3954
(electronic), 2002.

[16] H. Wenzl. Braids and invariants of 3-manifolds. Invent. Math., 114(2):235–275, 1993.

Department of Mathematics, College of Staten Island, City University of New

York, Staten Island, New York 10314 - and - Department of Mathematics, Graduate

Center, City University of New York, 365 Fifth Avenue, New York, New York 10016

E-mail address: abhijit@math.csi.cuny.edu

Department of Mathematics, College of Staten Island, City University of New

York, Staten Island, New York 10314 - and - Department of Mathematics, Graduate

Center, City University of New York, 365 Fifth Avenue, New York, New York 10016

E-mail address: ikofman@math.csi.cuny.edu


