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Abstract. We present a new proof for the following theorem, orig-

inally proved in [CHMR14]: if any oriented complete (non compact)

hyperbolic three-manifold of finite volume M3 admits a closed, oriented,

embedded and incompressible surface S with genus greater than one,

then M3 admits a closed embedded incompressible minimal surface Σ

which is of least area in the isotopy class of S. Our argument highlights

how special structures of these three-manifolds prevent such a minimal

surface going too deep into the cusped region.

1. Introduction

1.1. Minimal surfaces in hyperbolic three-manifolds. Minimal sur-
faces are fundamental objects in geometry. In three-manifold theory, the
existence and multiplicity of minimal surfaces often offer important geo-
metrical insight into the structure of the ambient three-manifold (see for
instance [Rub05, Mee06]), they also have important applications in Te-
ichmüller theory, Lorentzian geometry and many other mathematical fields
(see for example [Rub07, KS07]). By Thurston’s geometrization theory,
the most common geometry in a three-manifold is hyperbolic ([Thu80]),
and this paper is a part of a larger goal of studying closed incompressible
minimal surfaces in hyperbolic three-manifolds.

Before we state our main result, we briefly motivate our effort by mak-
ing some historic notes on minimal surface theory in three different types
of hyperbolic three-manifolds, namely, compact hyperbolic three-manifolds,
quasi-Fuchsian manifolds, and cusped hyperbolic three-manifolds (complete,
noncompact, and of finite volume).

Let M3 be a Riemannian three-manifold, and let Σ be a closed surface
which is immersed or embedded in M3, then Σ is called a minimal surface
if its mean curvature vanishes identically, further we call it least area if the
area of Σ with respect to the induced metric from M3 is no greater than
that of any other surface which is homotopic or isotopic to Σ in M3.
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A closed surface is called incompressible in M3 if the induced map be-
tween the fundamental groups is injective. Throughout this paper, we al-
ways assume a closed incompressible surface is of genus at least two and is
oriented.

In the case when M3 is compact, Schoen and Yau ([SY79]) and Sacks
and Uhlenbeck ([SU82]) showed that if S ⊂ M3 is a closed incompressible
surface, then S is homotopic to an immersed least area minimal surface Σ in
M3. The techniques of [SY79, SU82] extend to the case M3 is a compact
(negatively curved) three-manifold with mean convex boundary (i.e. ∂M3

has non-negative mean curvature with respect to the inward normal vector),
then there still exists an immersed least area minimal surface Σ in any
isotopy class of incompressible surfaces (see [Uhl83, MSY82, HS88]).

Recall that a quasi-Fuchsian manifold is a complete (of infinite volume)
hyperbolic three-manifold diffeomorphic to the product of a closed surface
and R. Since the convex core of any geometrically finite quasi-Fuchsian
manifold is compact with mean convex boundary, one finds the existence
of closed incompressible surface of least area in this class of hyperbolic
three-manifolds. In [Uhl83], Uhlenbeck initiated a systematic study of the
moduli theory of minimal surfaces in hyperbolic three-manifolds, where she
also studied a subclass of quasi-Fuchsian manifolds which we call almost
Fuchsian. M3 is called almost Fuchsian if it admits a closed minimal sur-
face of principal curvatures less than one in magnitude. Such a minimal
surface is unique and embedded in the almost Fuchsian manifold (see also
[FHS83]), and therefore one can study the parameterization of the mod-
uli of almost Fuchsian manifolds via data on the minimal surface (see for
instance [GHW10, HW13, San13]). For the uniqueness and multiplicity
questions of minimal surfaces in quasi-Fuchsian manifolds, or in general hy-
perbolic three-manifolds, one can refer to [And83, Wan12, HL12, HW15]
and references within.

This paper will address the existence question for embedded closed incom-
pressible minimal surfaces in another important class of hyperbolic three-
manifolds: cusped hyperbolic three-manifolds. M3 is called a cusped hy-
perbolic three-manifold if it is a complete non-compact hyperbolic three-
manifold of finite volume. There are many examples of this type, frequently
the complements of knots and links in the 3-sphere S3. Mostow rigidity
theorem ([Mos73]) extends to this class of hyperbolic three-manifolds by
Prasad ([Pra73]), however the techniques used in [SY79, SU82] to find
incompressible minimal surfaces do not. It is well-known that any cusped
hyperbolic three-manifold admits infinitely many immersed closed minimal
surfaces ([Rub05]), however, they may not be embedded, nor incompress-
ible. Using min-max theory, very recently, Collin, Hauswirth, Mazet and
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Rosenberg in [CHMR14, Theorem A] proved the existence of an embed-
ded (not necessarily incompressible) compact minimal surface in M3. It has
been a challenge to show the existence of closed embedded incompressible
minimal surface in hyperbolic three-manifolds.

For the rest of the paper, we always assume M3 is an oriented cusped
hyperbolic three-manifold.

1.2. Main result. In three-manifold theory, it is a question of basic interest
to ask if one can deform an embedded surface in its isotopy class to some
minimal surface. Among several remarkable results on minimal surface in
cusped hyperbolic three-manifold, Collin, Hauswirth, Mazet and Rosenberg
proved the following existence theorem:

Theorem 1.1 ([CHMR14, Theorem B]). Let S be a closed orientable
embedded surface in a cusped hyperbolic three-manifold which is not a 2-
sphere or a torus. If S is incompressible and non-separating, then S is
isotopic to an embedded least area minimal surface.

We present a new proof of this theorem by using relatively elementary
tools. In the proof, we obtain quantitative estimates on how deep this least
area minimal surface can reach into the cusped region of M3 (see Remark 2.2
and Corollary 5.5). The geometric structures both in the upper-half space
H3 and the cusped hyperbolic three-manifold M3 play crucial role in our
arguments to keep the least area minimal surface in the region not arbitrarily
far into the cusp.

While there exist some cusped hyperbolic three-manifolds which do not
admit any closed embedded essential surfaces ([MR92]), it has been shown
recently that any cusped hyperbolic three-manifold must admit an immersed
closed essential quasi-Fuchsian surface ([MZ08, BC15]).

1.3. Outline of the proof. There are essentially two parts for our proof
of Theorem 1.1. First we modify the hyperbolic metric in H3 to obtain
a submanifold of M3 in the quotient with sufficiently long cusped regions,
and the modified metric around all boundaries so that the submanifold is a
compact negatively curved manifold with totally geodesic boundaries. By
results of [MSY82, HS88, Uhl83], there is a least area minimal surface Σ
(with respect to the new metric, not the hyperbolic metric) in the isotopy
class of a closed incompressible surface S in this compact submanifold. The
heart of the argument is then to guarantee it does not drift into infinity of
M3. We deploy a co-area formula (see Lemma 5.6) as our main tool for
this. We can then show that Σ is actually contained in the subregion of the
submanifold which is still equipped with the hyperbolic metric. Hence Σ
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is a least area minimal surface with respect to the hyperbolic metric. It is
oriented as well since the surface S is non-separating.

The organization of the paper is as follows: in §2, we cover necessary
background material and fix some notations; in §3, we modify the upper-half
space model of H3 to set up semi-spheres as barriers for minimal surfaces
in H3; in §4, we move down to the cusped hyperbolic three-manifold M3

and its maximal cusped regions. Using the modification in previous section
we obtain a truncated Riemannian three-manifold of negative curvature.
Finally in §5, we prove our main result.

1.4. Acknowledgement. We would like to thank Richard Canary for help-
ful discussions. We also thank the support from PSC-CUNY research awards.
Z. H. acknowledges supports from U.S. NSF grants DMS 1107452, 1107263,
1107367 “RNMS: Geometric Structures and Representation varieties” (the
GEAR Network). It was a pleasure to discuss some aspects of this project
at Intensive Period on Teichmüller theory and three-manifold at Centro De
Giorgi, Pisa, Italy, and Workshop on Minimal Surfaces and Hyperbolic Ge-
ometry at IMPA, Rio, Brazil.

2. Preliminary

2.1. Kleinian groups and cusped hyperbolic three-manifolds. We
will work with the upper-half space model of the hyperbolic space H3, i.e.

H3 = {(x, y, t) ∈ R3 | t > 0} ,

equipped with metric

(2.1) ds2 =
dx2 + dy2 + dt2

t2
.

The hyperbolic space H3 has a natural compactification: H3 = H3∪Ĉ, where
Ĉ = C ∪ {∞} is the Riemann sphere. The orientation preserving isometry
group of the upper-half space H3 is given by PSL2(C), which consists of
linear fractional transformations that preserve the upper-half space.

A (torsion free) discrete subgroup Γ of PSL2(C) is called a Kleinian group,
and the quotient space M3 = H3/Γ is a complete hyperbolic three-manifold
whose fundamental group π1(M3) is isomorphic to Γ. Conversely, if M3

is a complete hyperbolic three-manifold, then there exists a holonomy ρ :
π1(M3) → PSL2(C) such that Γ = ρ(π1(M3)) is a (torsion free) Kleinian
group and M3 = H3/ρ(π1(M3)).

Mostow-Prasad’s Rigidity Theorems imply that hyperbolic volume is a
topological invariant for hyperbolic three-manifolds of finite volume, that
is to say, these hyperbolic three-manifolds are completely determined by
their fundamental groups. Jørgensen and Thurston (see [Thu80, Chapter
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5–6]) proved that the set of volumes of orientable hyperbolic three-manifolds
is well ordered and of order type ωω. Since any non-orientable hyperbolic
three-manifold is double-covered by an orientable hyperbolic three-manifold,
then the set of volumes of all hyperbolic three-manifolds is also well ordered.

Many examples of the cusped hyperbolic three-manifold come from the
complements of hyperbolic knots [Thu82, Corollary 2.5] on S3. In general
cusped hyperbolic three-manifolds can be described as follows (see [Thu80,
Theorem 5.11.1]):

Theorem 2.1. A cusped hyperbolic three-manifold is the union of a compact
submanifold which is bounded by tori and a finite collection of horoballs
modulo Z⊕ Z actions.

2.2. Maximal cusps and maximal cusped regions. In this subsection,
we briefly describe the maximal cusps and maximal cusped regions of the
cusped hyperbolic three-manifold M3, and they will play important roles
in our construction. For more details, one can go to for instance [Ada05,
Mar07].

Suppose that M3 has been decomposed into a compact component (which
is called the compact core of M3) and a finite set of cusps (or ends), each
homeomorphic to T 2 × [0,∞), where T 2 represents a torus. Each cusp can
be realized geometrically as the image of some horoball H in H3 under the
covering map from H3 to M3. If we lift any such cusp to the upper-half
space model H3 of the hyperbolic space, we obtain a parameter family of
disjoint horoballs.

Assume first that M3 has exactly one cusp, and we lift it to the corre-
sponding set of disjoint horoballs, each of which is the image of any other
by some group element. Expand the horoballs equivariantly until two first
become tangent. The projection of these expanded horoballs back to M3 is
called the maximal cusped region of M3, denoted by C.

Assume that one such horoballH is centered about∞. We may normalize
the horoball H so that ∂H is a horizontal plane with Euclidean height one
above the xy-plane. Thus H = {(x, y, t) | t ≥ 1}.

Let ρ : π1(M3)→ PSL2(C) be the holonomy of M3. Then Γ = ρ(π1(M3))
is a (torsin free) Kleinian group with parabolic elements. Let Γ∞ be the
parabolic subgroup of Γ which fixes ∞, it’s then well-known that Γ∞ is
generated by two elements z → z + µ and z → z + ν, where µ and ν are
non-trivial complex numbers which are not real multiples of each other.
Obviously H is invariant under Γ∞, and the quotient H/Γ∞ is just the
maximal cusped region C of M3 described above. Also T 2 = ∂H/Γ∞ is a
torus.
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The fundamental domain of the parabolic group Γ∞ in the horoball H is
denoted by A × [1,∞), where A ⊂ ∂H is a parallelogram spanned by the
complex numbers µ and ν. It is not hard to see that the Euclidean area of
A, which is given by Re(µν̄), is the same as that of the torus T 2.

Recall that we may equip the horoball H with the warped product metric
ds2 = e−2τ (dx2 + dy2) + dτ2, by letting τ = log t for t ≥ 1. Then the metric
on the maximal cusped region C can be written in the form

(2.2) ds2 = e−2τ ds2
eucl + dτ2 ,

where ds2
eucl is the standard flat metric on the torus T 2 induced from that

of ∂H.
If M3 has more than one cusp, we define the maximal cusped region for

each cusp exactly as above. It’s possible that the maximal cusped regions
in a cusped hyperbolic three-manifold can intersect.

Now suppose that the cusped hyperbolic three-manifold M3 has k cusps,
whose maximal cusped regions are denoted by Ci = T 2

i × [0,∞), i = 1, . . . , k.
Let τ0 > 0 be the smallest number such that each maximal cusped region
T 2
i × (τ0,∞), i = 1, 2, . . . , k, is disjoint from any other maximal cusped

regions of M3.
For any constant τ ≥ τ0, let M3(τ) be the compact subdomain of M3

which is given by

(2.3) M3(τ) = M3 −
k⋃
i=1

(
T 2
i × (τ,∞)

)
.

By this construction, M3(τ) is a compact submanifold of M3 with concave
boundary components with respect to the inward normal vectors.

For each i with 1 ≤ i ≤ k, we lift M3 to the upper-half space model
of the hyperbolic space H3 such that one horoball Hi corresponding to the
maximal cusped region Ci is centered at∞ and ∂Hi passes through the point
(0, 0, 1). Suppose that Γi∞ is the subgroup of Γ, which is generated by two
elements z → z+µi and z → z+νi, where µi and νi are non-trivial complex
numbers that are not real multiples of each other.

Now we may define a constant as follows:

(2.4) L0 = max
{
eτ0 , |µ1|+ |ν1|, . . . , |µk|+ |νk|

}
> 0.

Remark 2.2. Note that this constant only depends on M3. We will prove
that the closed incompressible least area minimal surface Σ in Theorem 1.1
is contained in M3(τ3), where τ3 = log(3L0), if the prescribed embedded
incompressible surface S is contained in M3(τ1).
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3. Constructing Barriers in Hyperbolic Three-space

In this section we work entirely in the hyperbolic space H3 instead of the
quotient cusped hyperbolic three-manifold M3. Our goal will be to construct
semi-spheres in H3 which can be used as barriers for minimal surfaces. To
do this, we will first modify the standard hyperbolic metric on H3 to get
a new metric which is non-positively curved. This procedure gives us the
flexibility we need to obtain barriers.

3.1. Modifying the hyperbolic space. For fixed constants L2 > L1 > 0,
we define a smooth cut-off function ϕ : (0,∞)→ [0,∞) as follows:

(i) ϕ(t) = 1
t , if 0 < t ≤ L1;

(ii) ϕ(t) is is strictly decreasing on [L1, L2), with ϕ(L1) = 1
L1

and
ϕ(L2) = 0;

(iii) ϕ(t) ≡ 0 if t ≥ L2;
(iv) We also require ϕ to satisfy the following inequality:

(3.1) 0 ≤ ϕ(t) ≤ 1
t
, for all t > 0 .

t

y

L1

1/L1

L2

y = ϕ(t)

Figure 1. A graph of ϕ(t)

We now define another smooth function f(t) : (0,∞) → (0,∞) by solving
the following equation:

(3.2)
f ′(t)
f(t)

= ϕ(t) , for all t > 0 .

And it is then easy to see that we may require f(t) to satisfy the following:
(i) f(t) = t, if 0 < t ≤ L1;
(ii) f(t) is strictly increasing on the interval (L1, L2);

(iii) f(t) is a constant, if t ≥ L2.
Now we consider an upper-half space model of the modified hyperbolic

space (U3, ḡ), constructed as follows:
(i) U3 = R3

+ = {(x, y, t) ∈ R3 | t > 0},
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t

y

L1

L1

L2

y = L1 exp

Ç∫ L2

L1

ϕ(t)dt

å

Figure 2. A graph of f(t)

(ii) with the new metric given by

(3.3) ḡ(x, y, t) =
dx2 + dy2 + dt2

(f(t))2
.

Comparing with the standard hyperbolic metric (2.1) on H3, one sees that
ḡ is just the hyperbolic metric for t ∈ (0, L1], and flat beyond t = L2. In
fact, we have the following result, which was not explicitly listed but can be
derived from the proof of [Zho99, Theorem 4.1]. We include a proof here
for the sake of completeness.

Proposition 3.1. [Zho99] The upper-half space (U3, ḡ) is non-positively
curved.

Proof. Recalling from (3.3), we may choose a local coordinate system such
that ḡij = δij

f(t)2
, for {i, j} = {1, 2, 3}. We can then workout the Christoffel

symbols {Γ̄kij} with respect to this metric ḡ according to the formula:

Γ̄kij =
1
2
ḡkm(ḡmi,j + ḡmj,i − ḡij,m).

We find these Christoffel symbols are:

(i) Γ1
13 = Γ1

31 = Γ2
23 = Γ2

32 = Γ3
33 = −f ′(t)

f(t) ,

(ii) Γ3
11 = Γ3

22 = f ′(t)
f(t) , and

(iii) all others are equal to 0.

One can then verify the sectional curvatures of the space (U3, ḡ) at a point
(x, y, t) are given by

(3.4) K12 = −(f ′(t))2 , and K13 = K23 = f ′′(t)f(t)− (f ′(t))2 .

Note that, by (3.2), we have

f ′′(t)f(t)− (f ′(t))2

f2(t)
=
(
f ′(t)
f(t)

)′
= ϕ′(t) ≤ 0 , for all t > 0 .

Therefore the space (U3, ḡ) is non-positively curved.
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We need to calculate the principal curvatures of some surfaces immersed
in (U3, ḡ), if these surfaces are special with respect to to a metric that is
conformal to ḡ in U3. The tool can be found in the following more general
lemma:

Lemma 3.2 ([Lóp13]). For m ≥ 3, let (M, g) be an m-dimensional Rie-
mannian manifold and let σ : M → R+ be a smooth positive function on
M. Define the metric ḡ = σ2g. Let ι : S → M be an immersion of an
orientable hypersurface. If κ is a principal curvature of (S, ι∗g) with respect
to the unit normal vector field N , and then

(3.5) κ̄ =
κ

σ
− 1
σ2
∇Nσ

is a principal curvature of (S, ι∗ḡ) with respect to the unit normal vector field
N = N/σ, and ∇Nσ is the covariant derivative of σ along N .

By Proposition 3.1, we know that the space (U3, ḡ) is non-positively
curved. We now want to understand the structure of some special figures in
(U3, ḡ). This will become important in Theorems 4.1 and 4.2: we need to
construct a submanifold in M3 is of negative curvature and it is a quotient
from a subregion in H3 by the same Kleinian group.

Theorem 3.3. The subspace {(x, y, t) ∈ U3 | 0 < t ≤ L2} is a negatively
curved space (with respect to the metric ḡ), with a totally geodesic boundary
{(x, y, t) ∈ U3 | t = L2}. Furthermore, any horizontal plane in (U3, ḡ) is
either convex with respect to the upward normal vector N = (0, 0, 1), or
totally geodesic.

Proof. To apply Lemma 3.2, on the space U3, the metric g will be designated
as the Euclidean metric, and the conformal factor σ(x, y, t) = 1

f(t) , where
f(t) is defined previously, and ḡ = g

f2(t)
is the modified metric on U3 which

is nonpositively curved in Proposition 3.1.
For any horizontal plane that passes through (0, 0, t), its unit normal

vector at the point (x, y, t) with respect to the Euclidean metric g is given
by N(x, y, t) = (0, 0, 1).

Since

∇N (1/f(t)) = grad(1/f(t)) ·N = − f
′(t)

f2(t)
,

where grad is the gradient with respect to the Euclidean metric g and ·
denotes the Euclidean inner product of vectors, then by (3.5), we find the
principal curvatures of the plane with respect to the new metric ḡ

κi(x, y, t) = 0− f2(t)(− f
′(t)

f2(t)
) = f ′(t) , i = 1, 2 .

By the construction of the function f(t), we have
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• f ′(t) > 0 if 0 < t < L2, and
• f ′(t) ≡ 0 if t ≥ L2.

Therefore any horizontal plane through the (0, 0, t) is either convex with
respect to the normal vector N = (0, 0, 1) if 0 < t < L2, or totally geodesic
if t ≥ L2.

Remark 3.4. Similarly one can show that any vertical plane is totally ge-
odesic, and any vertical straight line is a geodesic with respect to the new
metric ḡ.

3.2. Barriers. The following result guarantees that semi-spheres in (U3, ḡ)
can be used as the barrier surfaces to prevent the least area minimal surface
Σ from entering into each cusped region of M3 too far.

Theorem 3.5. For any positive constant r, let

S2
+(r) = {(x, y, t) | x2 + y2 + t2 = r2, t > 0}

be a semi-sphere in (U3, ḡ) with radius r. Then S2
+(r) is non-concave with

respect to the inward normal vector field, i.e. the principal curvatures of
S2

+(r) are nonnegative with respect to the inward normal vector field.

Proof. Let g again denote the standard Euclidean metric on R3
+. At a point

p =
(
x, y,

√
r2 − x2 − y2

)
on S2

+(r), the inward normal vector field on the

semi-sphere S2
+(r) with respect to the Euclidean metric g is given by

N(p) =

(
−x
r
,−y

r
,−
√
r2 − x2 − y2

r

)
.

The principal curvatures κ1 and κ2 of S2
+(r) ⊂ (R3

+, g) with respect to the
normal vector N are identically equal to 1

r .
As in the proof of Theorem 3.3, we set σ(x, y, t) = 1

f(t) , where the positive
function f(t) is defined by solving the equation (3.2). Let κi (i = 1, 2) be the
principal curvatures of S2

+(r) ⊂ (U3, ḡ) at p with respect to an orientation

N(p) = f
(√

r2 − x2 − y2
)
N(p).

Now we apply (3.5), the principal curvatures κi (i = 1, 2) at p are then
given by:

κi(p) = f
(√

r2 − x2 − y2
)
· 1
r
− f ′

(√
r2 − x2 − y2

)
·
√
r2 − x2 − y2

r

=
f
(√

r2 − x2 − y2
)

r

{
1− ϕ

(√
r2 − x2 − y2

)√
r2 − x2 − y2

}
≥ 0 ,

where we use the property (3.1). This completes the proof.
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4. Truncating Cusped Hyperbolic three-manifold

We want to construct a submanifold in a cusped hyperbolic three-manifold
M3 whose boundary components are concave with respect to the inward
normal vectors. The idea is to remove some horoballs of certain sizes from
H3 in §4.1, then modify the hyperbolic metric in the remaining regions
according to previous section, and we have to of course verify, in §4.2, that
the Kleinian group Γ of M3 preserves the new metric (otherwise we get a
different hyperbolic three-manifold in the quotient).

4.1. Truncated hyperbolic space. As before we assume that the cusped
hyperbolic three-manifold M3 has k cusps, whose maximal cusped regions
are denoted by Ci = T 2

i × [0,∞), i = 1, . . . , k. We also denote ρ : π1(M3)→
PSL2(C) as the holonomy so that Γ = ρ(π1(M3)) is a Kleinian group.

For the i-th cusped region T 2
i × [τ,∞), let Hi(τ) be the correspond-

ing horoball centered at ∞, whose boundary is a horizontal plane passing
through the point (0, 0, eτ ), i.e.

(4.1) Hi(τ) = {(x, y, t) ∈ H3 | t ≥ eτ}.

In particular, Hi(0) is the corresponding (maximal) horoball Hi centered at
∞. We also denote H◦i (τ) as the interior of (4.1).

Recall that τ0 > 0 is the smallest number such that each maximal cusped
region T 2

i ×(τ0,∞), i = 1, 2, . . . , k, is disjoint from any other maximal cusped
regions of M3. When τ ≥ τ0, the subset Ω(τ) of H3 is obtained by removing
a disjoint collection of open horoballs, namely,

(4.2) Ω(τ) = H3 −
k⋃
i=1

⋃
γ∈Γ

γ (H◦i (τ))

is called a truncated hyperbolic 3-space (see [BH99, p.362]).
It is clear that Ω(τ) is invariant under Γ, so

(4.3) Ω(τ)/Γ = M3(τ) .

We define four constants

(4.4) τj = log(j · L0) , for j = 1, 2, 3, 4 ,

where the constant L0 is defined by (2.4). Note that by this definition (4.4)
and by (2.4), we have τ4 > τ3 > τ2 > τ1 ≥ τ0 > 0.

We are particularly interested in the subregion Ω(τ4), and we define a
new metric on it as follows:

(i) We equip the subregion Ω(τ3) with the standard hyperbolic metric.
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(ii) The subregion Ω(τ4)\Ω◦(τ3) (where Ω◦(τ3) is the interior of Ω(τ3))
consists of countably infinitely many disjoint subregions which can
be divided into k families H1, . . . ,Hk, such that each family Hi is
the lift of the cusped subregion T 2

i × [τ3, τ4].

For an element Ui ∈Hi, we may assume that it can be described as

(4.5) Ui = {(x, y, t) ∈ H3 | 3L0 ≤ t ≤ 4L0} .

We equip the region Ui with the new metric

(4.6) ds2 =
dx2 + dy2 + dt2

(f(t))2
,

where the function f is defined on [3L0, 4L0] just as in §2 (i.e. L1 = 3L0

and L2 = 4L0). Similarly we may define the same new metric on the other
elements in Hi, and so on the elements from the other families.

We denote ḡ the new metric on the space Ω(τ4). Now we apply Theo-
rem 3.3 to arrive at the following:

Theorem 4.1. The compact space (Ω(τ4), ḡ) is a negatively curved space
with (countably infinitely many) totally geodesic boundary components.

4.2. The Kleinian group. We now show the Kleinian group Γ preserves
the new metric ḡ on Ω(τ4). More precisely,

Theorem 4.2. The group Γ is a subgroup of Isom(Ω(τ4), ḡ), the isometry
group of Ω(τ4) with respect to the negatively curved metric ḡ.

Proof. Let p and q be two points in Ω(τ4), and we need to show that
d(p, q) = d(γ(p), γ(q)) for any element γ ∈ Γ, where d(·, ·) denotes the
distance function with respect to the new metric ḡ.

By Theorem 4.1, the manifold (Ω(τ4), ḡ) is negatively curved. Then there
is a unique geodesic c : [0, L]→ (Ω(τ4), ḡ) parameterized by arc length, such
that c(0) = p and c(L) = q. If the geodesic c([0, L]) is totally contained in
Ω(τ3), we are done by the definition of the function f(t) (note that f(t) = t

for t ∈ (0, 3L0)). If c([0, L]) is entirely contained in any component of
Ω(τ4) − Ω◦(τ3), then f(t) is a strictly increasing function and γ preserves
the distance.

In general the geodesic c is expressed as a chain of non-trivial paths
c1, . . . , cn, each parameterized by arc length, such that

(i) each of the paths ci is either a hyperbolic geodesic or else its image
is contained in one component of Ω(τ4)− Ω◦(τ3);

(ii) if ci is a hyperbolic geodesic then the image of ci+1 is contained in
one component of Ω(τ4)− Ω◦(τ3), and vice versa.
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Suppose that each geodesic segment ci is parameterized by ci(s) = c(s)
for s ∈ [si−1, si], where 0 = s0 < s1 < · · · < sn = L is a partition of
the interval [0, L]. Then we write c = c1 ∗ c2 ∗ · · · ∗ cn in the sense that
c(s) = ci(s) if s ∈ [si−1, si]. By the above argument, we have that each
curve γ ◦ ci : [si−1, si]→ (Ω(τ4), ḡ) is a geodesic for i = 1, . . . , n.

We need to show that the curve γ ◦ c = (γ ◦ c1) ∗ · · · ∗ (γ ◦ cn) is a
geodesic from γ(p) to γ(q). We will proceed by induction. To start, (γ ◦ c1)
is a geodesic segment. Now suppose that (γ ◦ c1) ∗ · · · ∗ (γ ◦ cj−1) is a
geodesic segment, and (γ ◦ c1) ∗ · · · ∗ (γ ◦ cj−1) ∗ (γ ◦ cj) is not a geodesic
segment, then there exists a (unique) geodesic c′ : [0, sj ] → (Ω(τ4), ḡ) such
that c′(0) = γ(p) and c′(sj) = γ(c(sj)), and furthermore the ḡ-length of
c′([0, sj ]) < sj . However, Γ is a subgroup of PSL(2,C), whose elements are
conformal, therefore they preserve the angle. Now three geodesic segments
(γ ◦ c1) ∗ · · · ∗ (γ ◦ cj−1)([s0, sj−1]), γ ◦ cj([sj−1, sj ]) and c′([0, sj ]) would
form a geodesic triangle whose sum of its inner angles is ≥ π. This is a
contradiction.

Therefore γ ◦ c = (γ ◦ c1) ∗ · · · ∗ (γ ◦ cn) is a geodesic segment from γ(p)
to γ(q), and then d(γ(p), γ(q)) = L = d(p, q).

As a corollary, we consider the resulting quotient manifold:

Corollary 4.3. The manifold M3(τ4) = Ω(τ4)/Γ can be equipped with a
new metric induced from the covering space, still denoted by ḡ, such that
(M3(τ4), ḡ) is a compact negatively curved three-manifold with totally geo-
desic boundary components.

By [MSY82, HS88, Uhl83], we have a closed incompressible least
area minimal surface Σ contained in (M3(τ4), ḡ), which is isotopic to S

in (M3(τ4), ḡ). It is oriented since we assumed S is nonseparating. We will
prove that actually Σ ⊂ (M3(τ3), ḡ), which means that Σ is a least area min-
imal surface with respect to the hyperbolic metric. We now make a special
remark here on the submanifold (M3(τ3), ḡ).

Remark 4.4. By the definition of f(t) and the definition of four constants
(4.4), ḡ in M3(τ3) is the hyperbolic metric. The submanifold (M3(τ3), ḡ) is a
compact hyperbolic three-manifold whose boundary components are concave
with respect to the inward normal vectors.

5. Proof of Theorem 1.1

Last section we constructed a submanifold M3(τ4) = Ω(τ4)/Γ in any
cusped hyperbolic three-manifold M3 = H3/Γ, and a modified metric ḡ,
such that (M3(τ4), ḡ) is a compact negatively curved three-manifold with to-
tally geodesic boundary components. We now have a closed incompressible
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least area minimal surface Σ in (M3(τ4), ḡ). In this section, we prove Theo-
rem 1.1 by showing that the minimal surface Σ is contained in (M3(τ3), g),
a hyperbolic subregion of (M3(τ4), ḡ).

5.1. Minimal surface intersecting toric region. As before, we assume
that the oriented cusped hyperbolic three-manifold M3 has k cusps, such
that each maximal cusped region is parametrized by Ci = T 2

i × [0,∞) for
i = 1, . . . , k. Suppose ρ : π1(M3) → PSL2(C) is the holonomy so that
Γ = ρ(π1(M3)).

Recall that there are four constants only depending on M3: τj = log(jL0),
for j = 1, 2, 3, 4. Assume that the embedded closed incompressible surface S
is contained in M3(τ1). We consider a compact submanifold M3(τ4) of M3,
equipped with the new metric ḡ (see Corollary 4.3), so that (M3(τ4), ḡ) is a
compact negatively curved three-manifold whose boundary components are
all totally geodesic. By above arguments, we have a closed incompressible
least area minimal surface Σ in (M3(τ4), ḡ). We need to show the least
area minimal surface Σ is contained in M3(τ3). If Σ does not intersect
with T 2

i × {τ2}, then we are done (since it can not be contained entirely in
the cusped region). Therefore we can just assume that Σ ∩

(
T 2
i × [0, τ2]

)
is

non-empty. We are interested in how it intersects with the region T 2
i ×[0, τ4]:

Proposition 5.1. Each component of the intersection Σ ∩
(
T 2
i × [0, τ4]

)
is

either a minimal disk whose boundary is a null-homotopic Jordan curve in
T 2
i ×{0}, or a minimal annulus whose boundary consists of essential Jordan

curves in T 2
i × {0}.

Proof. Let Σ′ be a component of Σ ∩
(
T 2
i × [0, τ4]

)
. Since (M3(τ4), ḡ) is a

compact negatively curved three-manifold with totally geodesic boundary
components, so the least area minimal surface Σ is disjoint from its bound-
ary. Therefore the boundary of Σ′ is contained in T 2

i × {0}. Since Σ is
incompressible while T 2

i is a torus, we have very few cases to consider:

(i) Case I: Σ′ is a surface of negative Euler characteristic, i.e., it a
surface (with or without boundary) of genus ≥ 2, or a torus with
more than one boundary component, or a planar surface with more
than 3 boundary components (topologically a sphere with more
than 3 points removed, i.e., genus zero). Either case contradicts
with the assumption that Σ is compressible.

(ii) Case II: Σ′ is an annulus whose boundary consists of two Jordan
curves which are null-homotopic in T 2

i × {0}. In this case, we may
pick up a Jordan curve α ⊂ Σ′ homotopic to either component of
∂Σ′, then α is null-homotopic in T 2

i × [0, τ4] ⊂M3(τ4). Then there
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exists a minimal disk D ⊂ Σ such that ∂D = α, since Σ is in-
compressible and minimal in M3(τ4). By the argument in [MY82,
pp.155–156], this minimal disk D itself must be contained in the
compact three-manifold T 2

i × [0, τ4]. A contradiction.

Thus each component of Σ ∩
(
T 2
i × [0, τ4]

)
is either a minimal disk whose

boundary is a null-homotopic Jordan curve in T 2
i ×{0}, or a minimal annulus

whose boundary consists of two essential Jordan curves in T 2
i × {0}.

5.2. Good positioned Jordan curves on tori. We start by making a
definition of Jordan curves being in good position on a torus. This will be
important for what follows.

Definition 5.2. Let M3 be a cusped hyperbolic three-manifold and C =
T 2× [0,∞) be a maximal cusped region of M3. A Jordan curve (i.e., simple
closed) α ⊂ T 2 × {τ} is said to be in “ good position” if one of the lifts
of α to H3 is contained in A × {eτ}, where A is the fundamental domain
of the parabolic group Γ∞ = 〈z 7→ z + µ, z 7→ z + ν〉 in the horosphere
{(x, y, 1) | (x, y) ∈ R2}.

It’s easy to see from the definition, we have the following:

Proposition 5.3. A Jordan curve α ⊂ T 2 × {τ} is in good position if the
Euclidean length of α is less than min{2|µ|, 2|ν|, 2|µ± ν|}, while it is not in
good position if the Euclidean length of α is at least min{2|µ|, 2|ν|, 2|µ±ν|}.
In particular, if α ⊂ T 2 × {τ} is an essential Jordan curve, then α is not
in good position.

Recall from (4.4) that we have 4 constants: τj = log(j · L0) for j =
1, 2, 3, 4, where the constant L0 is defined in (2.4). And these constants are
ordered: τ4 > τ3 > τ2 > τ1 > 0. As in the previous subsection, we assume
Σ ∩

(
T 2
i × [0, τ2]

)
is non-empty. We first observe the following fact:

Proposition 5.4. Let Σ′ be a component of Σ ∩
(
T 2
i × [0, τ4)

)
. If there

exists some τ ∈ [0, τ2], such that Σ′ ∩
(
T 2
i × {τ}

)
consists of Jordan curves

in good position, then each component of Σ′ ∩
(
T 2
i × {τ ′}

)
is also in good

position for all τ ′ ∈ [τ, τ2].

Proof. By Theorem 4.2, we can lift (M3(τ4), ḡ) to the truncated negatively
curved space (Ω(τ4), ḡ) such that T 2

i × {0} is lifted to the horizontal plane
passing through the point (0, 0, 1). Suppose that the barycenter of the fun-
damental domain Ai of the parabolic group generated by z 7→ z + µi and
z 7→ z + νi is the point (0, 0, 1).

Suppose D is a component of Σ′ ∩
(
T 2
i × [τ, τ4]

)
such that ∂D ⊂ T 2

i ×
{τ} is in good position, then by the arguments in Proposition 5.1, and
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Proposition 5.3, D must be a disk and ∂D must be a null-homotopic Jordan
curve in T 2

i × {τ}. Let D̃ be a lift of D such that ∂D̃ ⊂ Ai × {eτ}.
We define the following:

(5.1) Bi = Ai × [eτ , 4L0] .

We want to show that D̃ must be contained in Bi. In fact, it is a minimal
disk such that ∂D̃ ⊂ Ai × {eτ} is null-homotopic. Then we are left with
very few cases:

(i) The minimal disk D̃ doesn’t have any subdisk below the horizontal
plane through the point (0, 0, eτ ), since such a plane is convex with
respect to the upward normal vectors (see the argument in [MY82,
pp. 155–156]).

(ii) Since all vertical planes are totally geodesic (see Theorem 3.3 and
Remark 3.4), the minimal disk D̃ does not have any subdisk outside
Bi by Hopf’s maximum principle.

Thus D̃ must be contained in the domain Bi. This is certainly true for the
other lifts of D which are given by γ(D̃) for γ ∈ Γ. By definition, for τ ′ ≥ τ ,
each component of Σ′ ∩

(
T 2
i × {τ ′}

)
is in good position.

As a corollary, and taking advantage of Theorem 3.5 that we can use
semi-spheres as barriers, we find

Corollary 5.5. If there exists some τ ∈ [0, τ2], such that Σ′ ∩
(
T 2
i × {τ}

)
consists of Jordan curves in good position, then Σ′ is contained in T 2

i ×[0, τ3],
i.e. Σ′ is a least area disk or annulus with respect to the hyperbolic metric.

Proof. Recall from (4.5) and (4.6), the modified metric is flat for t > 4L0,
and hyperbolic when t < 3L0. For convenience, we denote two new con-

stants: L3 =
√
e2τ + (L0

2 )2 and L4 =
√

65
2 L0. Since τ ≤ τ2 = log(2L0), so

we have

(5.2) L3 ≤
√

17
2
L0 < 3L0 < 4L0 < L4.

Therefore Ai × {L4} is totally geodesic with respect to the metric ḡ.
We consider the subregion B′i of Bi, which is defined by

B′i = Bi ∩

 ⋃
L3≤r≤L4

S2
+(r)

 .

by Theorem 3.5, the subregion B′i is foliated by the non-concave spherical
caps with respect to the inward normal vectors. By the definition of L0 in
(2.4), the spherical cap Bi ∩ S2

+(L3) lies above Ai × {eτ}.
Recall from the proof of Proposition 5.4 that D is a component of Σ′ ∩(
T 2
i × [τ, τ4]

)
such that ∂D ⊂ T 2

i × {τ} is in good position, and D̃ be a lift
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of D such that ∂D̃ ⊂ Ai × {eτ}. Therefore by the maximum principle, D̃
is contained in Bi and below the spherical cap B ∩ S2

+(L3). In other words,
the Euclidean height of D̃ is at most L3.

By (5.2), we have D̃ ⊂ Ai × [eτ , 3L0]. This is true for other lifts of D
which are given by γ(D̃), for all γ ∈ Γ. Since the Kleinian group preserves
the metric ḡ (Theorem 4.2), we have D ⊂ T 2

i × [τ, τ3], and therefore

Σ′ ⊂
(
T 2
i × [0, τ ]

)
∪
(
T 2
i × [τ, τ3]

)
= T 2

i × [0, τ3] .

5.3. Completing the proof. First we need a version of the co-area formula
modified from that in [CG06, p.399]. The proof of (5.3) in the following
Lemma 5.6 can be found in [Wan12].

Lemma 5.6. If M3 is a Riemannian three-manifold with nonempty bound-
ary ∂M3, and F is a component of ∂M3 such that its s-neighborhood Ns(F ) ⊂
M3 is a trivial normal bundle over itself. If Σ1 ⊂M3 is a surface such that
Σ1 ∩Ns(F ) 6= ∅, then

(5.3) Area(Σ1 ∩Ns(F )) =
∫ s

0

∫
Σ1∩∂Nτ (F )

1
cos θ

dldτ ,

where the angle θ is defined as follows: For any point q ∈ Σ1, set θ(q) to be
the angle between the tangent space to Σ1 at q, and the radial geodesic which
is through q (emanating from q) and is perpendicular to F .

To complete the proof of the main theorem 1.1, we just need to find one
τ ∈ [0, τ2] to satisfy the assumption in Proposition 5.4. And we show this τ
may be chosen as just τ2:

Theorem 5.7. Let Σ′ be a component of Σ ∩
(
T 2
i × [0, τ4)

)
, then any com-

ponent of Σ′ ∩
(
T 2
i × {τ2}

)
is a Jordan curve in good position.

Proof. Assume that Σ′ is a component of Σ∩
(
T 2
i × [0, τ4)

)
such that at least

one component of Σ′ ∩
(
T 2
i × {τ2}

)
is not in good position, then by Propo-

sition 5.4, for each τ ∈ [0, τ2], Σ′ ∩
(
T 2
i × {τ}

)
has at least one component

that is not in good position.
By Proposition 5.3, for all τ ∈ [0, τ2], we have:

(5.4) Length
(
Σ′ ∩

(
T 2
i × {τ}

))
≥ min{2|µi|, 2|νi|, 2|µi ± νi|}e−τ .

To apply the co-area formula (5.3), we choose F = T 2
i × {0}, and for

τ ∈ [0, τ2], we set

(5.5) Nτ (F ) =
{
p ∈ T 2

i × [0, τ2] | dist(p, F ) ≤ τ
}
,
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where dist(·, ·) is the hyperbolic distance function. Now we apply the co-area
formula (5.3) to find:

Area
(
Σ′ ∩

(
T 2
i × [τ1, τ2]

))
=
∫ τ2

τ1

∫
Σ′∩∂Nτ (F )

1
cos θ

dldτ

≥
∫ τ2

τ1

Length(Σ′ ∩ ∂Nτ (F )) dτ

≥
∫ τ2

τ1

min {2|µi|, 2|νi, 2|µi ± νi||} e−τ dτ

=
min {|µi|, |νi, |µi ± νi|}

L0

>
min{|µi| · |νi|, |µi − νi| · |µi + νi|}

L2
0

= min{|µi| · |νi|, |µi − νi| · |µi + νi|}e−2τ1

≥ Area
(
T 2
i × {τ1}

)
.

Here we used the fact that L0 ≥ |µi| + |νi| ((2.4)) and τj = log(jL0) for
j = 1, 2.

By Proposition 5.1, Σ′ is either a least area disk or a least area annulus,
but by above inequality, we may use the cut-and-paste technique to find a
minimal surface in the same isotopic class of Σ′ (with the same boundary
as that of Σ′) of less area. This is a contradiction. Hence any component of
Σ′∩

(
T 2
i × {τ2}

)
is a Jordan curve in good position, and then any component

of Σ ∩
(
T 2
i × {τ2}

)
is also in good position.

We may now complete the proof:

Proof of Theorem 1.1. By Theorem 5.7, all components of Σ∩
(
T 2
i × {τ2}

)
are in good position, then by Corollary 5.5, each component of Σ ∩ (T 2

i ×
[0, τ4]) is disjoint from T 2

i × (τ3, τ4]. Therefore we have

Σ ∩ (T 2
i × [0, τ4]) ⊂ T 2

i × [0, τ3] , for i = 1, . . . , k ,

which implies that Σ is a minimal surface with respect to the hyperbolic
metric. It is embedded and oriented since it is isotopic to a closed incom-
pressible surface S which is embedded and non-separating.
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