
Subcomplete forcing and its forcing principles

Gunter Fuchs

CUNY College of Staten Island and the CUNY Graduate Center

August 3, 2017
Conference in honor of Ronald Jensen’s 80th birthday



Forcing principles

I want to look at the following forcing principles:

Forcing axioms
Bounded forcing axioms
Resurrection axioms

Focus: subcomplete forcing



Forcing principles

I want to look at the following forcing principles:
Forcing axioms
Bounded forcing axioms
Resurrection axioms

Focus: subcomplete forcing



Martin’s Axiom
For a class Γ of forcings, FAΓ says that for any ω1-sized
collection of dense subsets of a forcing in Γ, there is a filter that
meets each of the dense sets in the collection.

Familiar instances:

Martin’s Axiom at ω1, MAω1 (Γ �the collection of all
c.c.c. forcings)
PFA (Γ �the collection of all proper forcings)
SPFA (Γ �the collection of all semi-proper forcings)
MM (Γ �the collection of all stationary set preserving
forcings), equivalent to SPFA (Shelah)

MAω1 is equiconsistent with ZFC, while PFA, SPFA and MM
have considerable consistency strength.
The instance I’m mainly interested in here:

The Subcomplete Forcing Axiom, SCFA (Γ �the collection
of all subcomplete forcings)
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Properties of subcomplete forcing

Subcomplete forcing adds no new reals.

It preserves stationary subsets of ω1. So MM ùñ SCFA.
Can be iterated with revised countable support.
Every countably closed forcing is subcomplete.
Under CH, Namba forcing, changing the cofinality of ω2 to
ω, is subcomplete.
Přı́krý forcing is subcomplete.
Generalized Přı́krý forcing is subcomplete. (Minden)
Magidor forcing (of length ω1) is subcomplete. (F.)
Every ω2-distributive forcing is equivalent to a subcomplete
forcing. (F.)
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Přı́krý forcing is subcomplete.
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Forcing SCFA

Assuming the existence of a supercompact cardinal κ, one
can iterate proper forcings with countable support, with
iterands given by a Laver function for the
supercompactness of κ, producing a model in which
PFA� κ � ω2 � 2ω holds. (Baumgartner)
This can be modified to work for SPFA, by iterating
semi-proper forcings with rcs, inserting collapses to ω1
after each step in the iteration. (Foreman-Magidor-Shelah)
This can be modified to work for SCFA, by iterating
subcomplete forcings. During the iteration, CH will be
forced, and since no reals are added, the final model will
satisfy SCFA� κ � ω2 � CH. (Jensen)
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Lower bounds on the consistency strength of these forcing
axioms can be proved by showing that these principles imply
the failure of l principles.



l-principles

Definition (Jensen)
Let κ be a cardinal. lκ says that there is a lκ-sequence, that
is, a sequence xCα | κ   α   κ�, α limity such that each Cα is
club in α, otppCαq ¤ κ and for each β that is a limit point of Cα,
Cβ � Cα X β.

If λ is also a cardinal, then lκ,λ is the assertion that there is a
lκ,λ-sequence, i.e., a sequence xCα | κ   α   κ�, α limity
such that each Cα has size at most λ, and each C P Cα is club
in α, has order-type at most κ, and satisfies the coherency
condition that if β is a limit point of C, then C X β P Cβ.
lκ,κ is known as weak square, denoted by l�

κ.

lκ,κ� holds trivially, so l�
κ is the weakest nontrivial principle

here.
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Strength from the failure of l

Jensen has shown that in L, lκ holds for every cardinal κ.

His Covering Lemma implies that if 0# does not exist, then L
computes successors of singular cardinals correctly.
Thus, if we can show that a statement we’re interested in
implies the failure of lκ for some singular cardinal κ, then 0#

must exist (or else, by covering, the lκ-sequence from L would
be a lκ sequence in V).
This kind of argument can be generalized to higher core
models, mining more strength.
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Stationary reflection

lκ implies a strong failure of stationary reflection at κ�.

Definition
Let λ be an uncountable regular cardinal, and let S � λ be
stationary. S reflects at an ordinal α   κ of uncountable
cofinality iff S X α is stationary in α. It reflects iff it reflects at
some such α.
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Stationary reflection and l

Observation
Suppose lκ holds. Then every stationary subset S � κ� has a
stationary subset T that does not reflect.

Proof.

If ~C is a lκ-sequence, then by Fodor’s Theorem, we can let
T � S be stationary so that all Cβ, for β P T , have the same
order type, say γ.
Now suppose that α   κ� has uncountable cofinality and T X α
is stationary. Then C1

α, the set of limit points of Cα, is club in α,
and whenever β P C1

α X T , Cβ � Cα X β has order type γ.
This cannot be, since the Cα X βs are longer and longer initial
segments of Cα.
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Friedman’s Principle

Definition
Let κ ¡ ω1 be a regular cardinal.
For regular τ   κ, write Sκ

τ for the set of α   κ with cfpαq � τ .

Friedman’s principle FPκ says that for every stationary set
S � Sκ

ω, there is a normal function f : ω1 ÝÑ S.

Note
In the context of this definition, S reflects to α � sup f “ω1,
because S X α contains the club C � f “ω1.

Observation
Let κ be a cardinal. Then FPκ� implies the failure of lκ.

Otherwise, the set of ordinals below κ� of countable cofinality
would have to have a stationary subset that does not reflect.
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The failure of l under SCFA

Fact (Jensen)
If κ ¡ ω1 is a regular cardinal and A � κ is a stationary set
consisting of ordinals of countable cofinality, then the forcing PA
to shoot a club of order type ω1 through A is subcomplete.
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SCFA implies FPκ, for every regular cardinal κ ¥ ω1.
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The strong Friedman property

So, for regular κ ¡ ω1, SCFA implies FPκ, which implies that
every stationary subset of Sκ

ω reflects, which implies that lκ̄
fails, if κ � κ̄�.

Towards reaching the failure of weak square principles,
stronger principles of stationary reflection will be useful.

Theorem (Jensen)
Assume SCFA. Let κ ¡ ω1 be a regular cardinal. Then the
Strong Friedman Principle SFPκ holds at κ:
Let xAi | i   ω1y be a sequence of stationary subsets of Sκ

ω. Let
xDi | i   ω1y be a partition of ω1 into stationary sets. Then there
is a normal function f : ω1 ÝÑ τ such that for every i   ω1,
f “Di � Ai .
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Simultaneous stationary reflection

Definition (Cummings-Magidor)
Let µ be a cardinal, let λ be an uncountable regular cardinal,
and let S � λ be stationary. The simultaneous reflection
principle Reflpµ,Sq holds iff for every sequence xTi | i   µy of
stationary subsets of S, there exists an α   κ of uncountable
cofinality such that for all i   µ, Ti reflects to α (“~T reflects
simultaneously at α”).

The principle Reflp µ,Sq says that Reflpµ̄,Sq holds, for every
µ̄   µ.

Observation
Let κ ¡ ω1 be a regular cardinal. Then SFPκ implies
Reflpω1,Sκ

ωq.
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Simultaneous reflection and weak l
Lemma (Cummings, Magidor)
If κ is singular and lκ,µ holds for some µ   κ, then every
stationary subset of κ� has a collection of cfpκq many
stationary subsets which do no reflect simultaneously at any
point of uncountable cofinality.

This lemma, together with our observations on SFPκ� , shows
that if SCFA holds and κ is singular with cfpκq ¤ ω1, then lκ,µ

fails for every µ   κ.

Lemma (Cummings, Magidor)
If κ is an uncountable cardinal and lκ,µ holds for some
µ   cfpκq, then every stationary subset of κ� has a stationary
subset which does not reflect at any point of uncountable
cofinality.

This lemma shows that SCFA implies that for every
uncountable cardinal κ and every µ   cfpκq, lκ,µ fails.
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SCFA and CH

A feature of SCFA which sets it apart from MM and PFA is that
SCFA is compatible with CH, and indeed, CH holds in the
“canonical” model of SCFA.

Fact
CH implies that l�

ω1
holds.

(Because CH implies the existence of a special ω2-Aronszajn
tree, and the existence of a special κ�-Aronszajn tree is
equivalent to l�

κ.)
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The extent of weak l under SCFA

Theorem

Assume SCFA, and let λ be an uncountable cardinal.
1 If cfpλq ¤ ω1, then lλ,µ fails, for every µ   λ.
2 If cfpλq ¥ ω2, then lλ,µ fails for every µ   cfpλq.
3 If CH holds, then l�

ω1
holds.

The situation is as with MM, except that:
MM implies that CH fails, and that l�

ω1
fails, and

MM implies that if cfpλq � ω, then l�
λ fails, while I don’t

know the status of l�
λ under SCFA.

It can be shown (using an argument of Cummings-Magidor)
that the above results are optimal, i.e., from a supercompact
cardinal, one can produce a model of SCFA in which, if
cfpλq � ω1, then l�

λ holds, etc.
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Generalized stationary reflection

There is a principle of reflection of stationary subsets of rHλs
ω,

for regular λ ¥ ω2, that follows from MM. If cfpκq � ω, and the
reflection principle holds for stationary subsets of rHκ�s

ω, then
l�
κ fails.

This principle follows from MA�pσ-closedq, and hence also from
SCFA�.
It’s unclear how much of this type of stationary reflection can be
derived from SCFA alone.
Todorčević’s strong reflection principle is too much, since it
implies that the nonstationary ideal on ω1 is saturated, while
SCFA is consistent with ♦.
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Another kind of l

Definition (Todorcevic, Jensen (?))

Let λ be a limit of limit ordinals. A sequence ~C � xCα |
α   λ, α limity is coherent if for every limit α   λ, Cα � H and
for every C P Cα, C is club in α, and for every limit point β of C,
C X β P Cβ.

A thread through ~C is a set T such that ~C"tT u is coherent.
A coherent sequence is maximal if it has no thread.
If κ is a cardinal, then the principle lpλ, κq says that there is a
maximal coherent sequence of length λ all of whose elements
have size less than κ, and such a sequence is called a
lpλ, κq-sequence.
The principle lpλ, κq says that there is a maximal coherent
sequence of length λ all of whose elements have size at most
κ, and such a sequence is called a lpλ, κq-sequence.
The principle lpλ,1q is denoted lpλq.
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It’s easy to see that every lκ,µ-sequence is a
lpκ�, µq-sequence.

Theorem (Todorcevic)
PFA implies the failure of lpκq, for every regular cardinal κ.

His argument used the forcing to specialize an Aronszajn tree,
which is not subcomplete, so one can’t argue like that in the
context of SCFA.
But it turns out that there is a route using stationary reflection.
The goal is to determine the extent of lpκ, λq under SCFA.
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Diagonal reflection
Definition (P. Larson)

The principle OSRω2 says that whenever xTα | α   ω2y is a
sequence of stationary subsets of ω2, each consisting of
ordinals of countable cofinality, then there is a γ   ω2 with
cfpγq � ω1 at which Tα reflects, for all α   γ.

Definition (F.)

Let λ be a regular cardinal, let S � λ be stationary in λ, and let
κ   λ. The diagonal reflection principle DSRp κ,Sq says that
whenever xSα,i | α   λ, i   jαy is a sequence of stationary
subsets of S, where jα   κ for every α   λ, then there is a
γ   λ of uncountable cofinality, and there is a club F � γ such
that for every α P F and every i   jα, Sα,i X γ is stationary in γ.
The version of the principle in which jα ¤ κ is denoted
DSRpκ,Sq.
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The point of diagonal stationary reflection in the present context
are the following two theorems.

Theorem (F.)

Let λ be regular, κ   λ a cardinal, and assume that DSRp κ,Sq
holds, for some stationary S � λ. Then lpλ, κq fails.

Fortunately, diagonal reflection follows from SCFA.

Theorem (F.)
SCFA implies that for every regular λ ¡ ω1, DSRpω1,Sλ

ωq holds.
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Effects of SCFA

Lemma (F.)

Assume SCFA.
1 The principle lpω2, ωq fails, but it is consistent that

lpω2, ω1q holds.

2 If λ ¡ ω2 is a regular cardinal, then lpλ, ω1q fails.



Maximizing l

Lemma (F.)

If the existence of a supercompact cardinal is consistent, then
so is the existence of a supercompact cardinal κ such that for
every regular cardinal λ ¡ κ, the principle lpλ, κq holds.

The point is that in a model in which κ is supercompact and its
supercompactness is indestructible by κ-directed closed forcing
and GCH holds above κ, one can iterate to add a version of
indexed square sequences of width κ at every λ ¡ κ, using a
forcing, due to Lambie-Hanson, that’s κ-directed closed and
λ-strategically closed.
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The extent of lp�, �q under SCFA

Theorem (F.)

Assume the consistency of the existence of a supercompact
cardinal. It is consistent that

1 SCFA� CH�♦ holds
2 for every regular λ ¡ ω2, lpλ, ω2q holds.

But in any model of SCFA� CH, necessarily, lpλ, ω1q fails for
all regular λ ¡ ω2, lpω2, ωq fails, and lpω2, ω1q holds.

Sketch: Starting in a model where κ is supercompact and
lpλ, κq holds, for every regular cardinal λ ¡ κ, run the
Baumgartner iteration. The resulting model will satisfy
SCFA�♦� κ � ω2. The forcing is κ-c.c., so the lpλ, κq
sequences will survive and become lpλ, ω2q sequences.
lpω2, ω1q follows from CH. The claimed failure of l principles
follows from the lemma from two slides earlier.
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Effects of PFA

PFA does not imply Reflpω1,Sλ
ωq, since PFA is compatible with

lκ,ω2 , for every κ ¥ ω2; compare with the effects of
simultaneous stationary reflection on the failure of weak
squares by Cummings-Magidor. In particular, it does not imply
DSRpω1,Sλ

ωq. So the argument using PFA necessarily has to be
different. But it turns out that the original Todorčević argument
for lpλq generalizes.

Lemma

Assume PFA. Then the principle lpλ, ω1q fails for every regular
λ ¡ ω1.

Maximizing works exactly as before.
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The extent of lp�, �q under PFA or MM

Theorem (F.)

Assume the consistency of the existence of a supercompact
cardinal. Then it is consistent that

1 MM or PFA holds
2 for every regular λ ¥ ω2, lpλ, ω2q holds.

In a model of (1), necessarily, lpλ, ω1q fails, for every λ ¥ ω2.



A limitation

One might hope that diagonal stationary reflection can be used
to settle the question about l�

ℵω under SCFA. This is not so.

Theorem (F.)

Assuming the consistency of infinitely many supercompact
cardinals, it is consistent that for every nonzero n   ω,
DSRpℵn,S

ℵω�1
 ℵn

,ℵnq holds, and moreover, l�
ℵω holds.

There is a model constructed by Foreman-Cummings-Magidor
in which l�

ℵω holds and also Reflpℵn,S
ℵω�1
 ℵn

,ℵnq holds. One can

check that that model actually satisfies DSRpℵn,S
ℵω�1
 ℵn

,ℵnq, for
all n   ω.
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Bounded forcing axioms

Definition (Goldstern-Shelah)

Let Γ be a class of forcings, and λ be a cardinal. Then
BFApΓ,¤λq is the statement that if P is a forcing in Γ, B is its
complete Boolean algebra, and A is a collection of at most ω1
many maximal antichains in B, each of which has size at most
λ, then there is a filter in B that meets each antichain in A. If Γ
is the class of proper, semi-proper, stationary set preserving or
subcomplete forcings, I write BPFA, BSPFA, BMM, BSCFA
(respectively) for BFApΓ,¤ω1q. In general, for a cardinal λ,
BPFAp¤λq, BSPFAp¤λq, BMMp¤λq, BSCFAp¤λq, then have the
obvious meaning.



Definition (Goldstern-Shelah)

A regular cardinal κ is reflecting if for every a P Hκ and every
formula ϕpxq, the following holds: if there is a regular cardinal
θ ¥ κ such that Hθ |ù ϕpaq, then there is a cardinal θ̄   κ such
that Hθ̄ |ù ϕpaq.

Theorem (Goldstern-Shelah)
BPFA is equiconsistent with the existence of a reflecting
cardinal.



Definition (Goldstern-Shelah)

A regular cardinal κ is reflecting if for every a P Hκ and every
formula ϕpxq, the following holds: if there is a regular cardinal
θ ¥ κ such that Hθ |ù ϕpaq, then there is a cardinal θ̄   κ such
that Hθ̄ |ù ϕpaq.

Theorem (Goldstern-Shelah)
BPFA is equiconsistent with the existence of a reflecting
cardinal.



There is a proof of one direction of this equiconsistency result
(showing that ωV

2 is reflecting in L), due to Todorčević, the idea
of which generalizes from proper forcing to subcomplete
forcing. The other direction generalizes very easily, given the
iterability of subcomplete forcing.

Theorem (F.)
BSCFA is equiconsistent with the existence of a reflecting
cardinal.
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Lemma (F.)

BSCFA implies that ω2 is reflecting in L.

Proof. We may assume that 0# does not exist, as otherwise,
every Silver indiscernible is reflecting in L. Let κ � ω2, fix
a P Lκ � pHκq

L, a formula ϕpxq, a singular cardinal γ ¡ κ, and
let θ � γ� � pγ�qL, by covering. Assume that Lθ |ù ϕpaq. It
suffices to show that there is an L-cardinal θ̄   κ such that
Lθ̄ |ù ϕpaq.
Let xCξ | ξ is a singular ordinal in Ly be the canonical global l
sequence for L. It is Σ1-definable in L and has the properties
that for every L-singular ordinal ξ, the order type of Cξ is less
than ξ, and if ζ is a limit point of Cξ, then ζ is singular in L and
Cζ � Cξ X ζ.
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Let B � tξ   θ | κ   ξ   θ and cfpξq � ωu. By covering, every
ξ P B is singular in L. So Cξ is defined for every ξ P B, and
since the function ξ ÞÑ otppCξq is regressive, there is a
stationary subset A of B on which this function is constant.

Since A consists of ordinals of cofinality ω and is stationary in a
regular cardinal greater than ω1, the forcing PA, which adds a
normal function F : ω1 ÝÑ A cofinal in θ, is subcomplete.
In VrF s, the Σ1 statement “there is an ordinal α and a set C
such that Lα |ù ϕpaq, C is club in α, otppCq � ω1, for every
ξ P C, Cξ is defined, and for all ξ, ζ P C, otppCξq � otppCζq”
holds, as witnessed by α � θ and C � ranpF q.
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This is a Σ1 statement about the parameters ω1 and a. So by
BSCFA, the same statement is true in V. Let θ̄, C̄ witness this.
Since ω1,a P Hω2 , such witnesses for a Σ1 formula can be
found in Hω2 , so we may take θ̄   ω2 � κ.

The point is now that θ̄ must be regular in L. The reason is that
if θ̄ were singular in L, then Cθ̄ would be defined. Note that
cfpθ̄q � ω1. So, letting C1

θ̄
be the set of limit points of Cθ̄, C1

θ̄
X C̄

is club in θ̄. Now take ξ   ζ, both in C1
θ̄
X C̄. Then, since

ξ, ζ P C̄, Cξ and Cζ have the same order type, but since both
are limit points of Cθ̄, Cξ � Cθ̄ X ξ, which is a proper initial
segment of Cζ � Cθ̄ X ζ.
So θ̄ is a regular cardinal in L, θ̄   ω2, and HL

θ̄
� Lθ̄ |ù ϕpaq,

showing that ω2 is reflecting in L.
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Miyamoto has analyzed the strength of these principles for
proper forcing and introduced the following large cardinal
concept.

Definition (Miyamoto)

Let κ be a regular cardinal, α an ordinal, and λ � κ�α. Then κ
is Hλ-reflecting, or I will say �α-reflecting, iff for every a P Hλ

and any formula ϕpxq, the following holds: if there is a cardinal
θ such that Hθ |ù ϕpaq, then the set of N   Hλ such that

1 N has size less than κ,
2 a P N,
3 if πN : N ÝÑ H is the Mostowski-collapse of N, then there

is a cardinal θ̄   κ such that Hθ̄ |ù ϕpπNpaqq
is stationary in PκpHλq.
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Being reflecting is the same as being �0-reflecting.

The �1-reflecting cardinals are also known as strongly
unfoldable cardinals, introduced independently by Villaveces.
In the context of bounded forcing axioms, it seems to make the
most sense to emphasize that they generalize reflecting
cardinals, so I will stick to calling them �1-reflecting.

Theorem (Miyamoto)
BPFAp¤ω2q is equiconsistent with the existence of a
�1-reflecting cardinal.

Miyamoto’s proof generalizes the original Goldstern-Shelah
argument for BPFA, but the idea of Todorčević’s argument
generalizes to the subcomplete context.
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Theorem (F.)
BSCFAp¤ω2q is equiconsistent with the existence of a
�1-reflecting cardinal.

Just as with the BPFA hierarchy, a leap occurs at ω3.

Observation

BSCFAp¤ω3q implies ADLpRq.

Proof.
BSCFAp¤ω3q implies SFPω2 and SFPω3 , which implies the
failure of lpω2q and lpω3q, and also 2ω ¤ ω2. This constellation
implies that the axiom of determinacy holds in LpRq, by
Schimmerling and Steel.
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The weak hierarchy

So I’m looking for strengthenings of BFAΓp¤ω2q that are weaker
than BFAΓp¤ω3q, in consistency strength.

Fact (Claverie-Schindler)

BFAptQu,¤κq is equivalent to the following statement: if
M � x|M|, P, xRi | i   ω1yy is a transitive model for the language
of set theory with ω1 many predicate symbols x 9Ri | i   ω1y, of
size κ, and ϕpxq is a Σ1-formula, such that ,Q ϕpM̌q, then there
is in V a transitive M̄ � x|M̄|, P, xR̄i | i   ω1yy and an elementary
embedding j : M̄   M such that ϕpM̄q holds.

Inspired this characterization, Bagaria, Gitman and Schindler
introduced the weak proper forcing axiom, wPFA. By keeping
track of the size of the model in question, one arrives at a
hierarchy of these weak forcing axioms.
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The weak hierarchy
Definition

Let Γ be a class of forcings, and let κ be an uncountable
cardinal. The weak κ-bounded forcing axiom for Γ,
wBFApΓ,¤κq, says that whenever M � x|M|, P, . . . ,Ri , . . .yi ω1

is a transitive model of size κ for a language L with ω1 many
predicates x 9Ri | i   ω1y and the binary relation symbol 9P, and if
ϕpxq is a Σ1-formula and P is a forcing in Γ that forces that
ϕpM̌q holds, then there is (in V) a transitive model
M̄ � x|M̄|, P, xR̄i | i   ω1yy for L such that ϕpM̄q holds (in V),
and such that in VColpω,|M̄|q, there is an elementary embedding
j : M̄   M.
If Γ is the class of subcomplete forcings, then wBSCFAp¤κq is
wBFApΓ,¤κq. Similarly, we abbreviate these axioms for the
class of proper forcings by wBPFAp¤κq.
wBFApΓ, κq says that wBFApΓ,¤ κ̄q holds for every κ̄   κ, and
wBSCFAp κq, wBPFAp κq have the obvious meaning.



The large cardinal for wPFA turns out to be:

Definition (Schindler)

A regular cardinal κ is remarkable if for every regular λ ¡ κ,
there is a regular cardinal λ̄   κ such that in VColpω,Hλ̄q, there is
an elementary embedding j : HV

λ̄
  HV

λ with jpcritpjqq � κ.

Theorem (Bagaria-Gitman-Schindler)
wPFA is equiconsistent with the existence of a remarkable
cardinal.

Their proof is based on the Todorčević approach, and again, a
similar idea works with subcomplete forcing.

Theorem (F.)
wSCFA is equiconsistent with the existence of a remarkable
cardinal.



The large cardinal for wPFA turns out to be:

Definition (Schindler)

A regular cardinal κ is remarkable if for every regular λ ¡ κ,
there is a regular cardinal λ̄   κ such that in VColpω,Hλ̄q, there is
an elementary embedding j : HV

λ̄
  HV

λ with jpcritpjqq � κ.

Theorem (Bagaria-Gitman-Schindler)
wPFA is equiconsistent with the existence of a remarkable
cardinal.

Their proof is based on the Todorčević approach, and again, a
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There is a hierarchy of large cardinals, growing from the
reflecting ones to the remarkable ones, corresponding to the
weak bounded forcing axioms.

Definition (F.)

Let κ be an inaccessible cardinal and let λ ¥ κ be a cardinal. κ
is remarkably ¤λ-reflecting if the following holds: for any
X � Hλ and any formula ϕpxq, if there is a regular cardinal
θ ¡ λ such that xHθ, Py |ù ϕpX q, then there are cardinals
κ̄ ¤ λ̄   θ̄   κ such that θ̄ is regular, and there is a set X̄ � Hλ̄

such that xHθ̄, Py |ù ϕpX̄ q, and a generic embedding
j : xHλ̄, P, X̄ , κ̄y   xHλ, P,X , κy (meaning that j exists in
VColpω,Hλ̄q) such that jæκ̄ � id.
κ is remarkably  λ-reflecting iff it is remarkably ¤λ̄-reflecting,
for every cardinal λ̄   λ with κ ¤ λ̄.
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Equiconsistencies for the weak
hierarchy

Theorem (F.)

Let λ be a cardinal.
1 If λ ¥ ω2 and wBSCFAp¤λq holds, then ω2 is remarkably
¤λ-reflecting in L.

2 If λ ¥ ω2 and wBSCFAp λq holds, then ω2 is remarkably
 λ-reflecting in L.

3 If κ is remarkably ¤λ-reflecting, where κ ¤ λ, then
wBSCFAp¤λq holds in a κ-c.c. subcomplete forcing
extension.

4 If κ is remarkably  λ-reflecting, where λ ¡ κ, then
wBSCFAp λq holds in a κ-c.c. subcomplete forcing
extension.



Resurrection
There is another way to strengthen the bounded forcing axiom.

The motivation is as follows: by a result of Bagaria, the
bounded forcing axiom for Γ is equivalent to saying that for
every P P Γ,

xHω2 , Py  Σ1 xHω2 , Py
VP

The resurrection axiom for Γ, introduced by Hamkins and
Johnstone, strengthens this by saying that for every P P Γ, there
is a 9Q such that ,P 9Q P Γ and

xHω2 , Py  Σω xHω2 , Py
VP� 9Q

Actually, their formulation used 2ω in place of ω2, which is not
useful for the subcomplete context. This change doesn’t cause
a change in consistency strength, and yields a very similar
principle.
These principles can be strengthened and generalized to Hκ,
with κ ¡ ω2, by using elementary embeddings rather than
elementary substructures.
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Definition (after Hamkins, Johnstone, Tsaprounis)

Let κ ¥ ω2 be a cardinal, and let Γ be a class of forcings. The
resurrection axiom for Γ at Hκ, RAΓpHκq, says that whenever G
is generic over V for some forcing P P Γ, then there is a
Q P ΓVrGs and a λ such that whenever H is Q-generic over
VrGs, then in VrGsrHs, λ is a cardinal and there is an
elementary embedding

j : xHV
κ , Py   xHVrGsrHs

λ , Py

The principle RA
�

ΓpHκq says that for every A � Hκ and every G
as above, there is a Q as above such that for every H as above,
in VrGsrHs, there are a B and a j such that

j : xHV
κ , P,Ay   xHVrGsrHs

λ , P,By,

and such that if κ is regular, then λ is regular in VrGsrHs.



Equiconsistencies at ω2

Definition (Hamkins-Johnstone)
An inaccessible cardinal κ is uplifting if there are arbitrarily
large inaccessible cardinals λ such that xVκ, Py   xVλ, Py. It is
strongly uplifting if for every A � κ, there are arbitrarily large
inaccessible λ such that for some B � λ, xVκ, P,Ay   xVλ, P,By.

Theorem (Hamkins-Johnstone)
For Γ the class of proper forcing notions, RAΓpHω2q is
equiconsistent with an uplifting cardinal, and RA

�

ΓpHω2q is
equiconsistent with a strongly uplifting cardinal.

Theorem (Minden)
The same is true for the class of subcomplete forcings, and for
the class of countably closed forcings.
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At Hω3 , a leap in consistency strength occurs again.
Hence, it is natural to consider the hierarchy of the “virtual”
resurrection axioms, where the elementary embeddings are
added by some further forcing.



Virtual resurrection

Let κ ¥ ω2 be a cardinal, and let Γ be a class of forcings.

Definition

The virtual resurrection axiom for Γ at Hκ, vRAΓpHκq, says that
whenever G is generic over V for some forcing P P Γ, then there
is a Q P ΓVrGs and a λ such that whenever H is Q-generic over
VrGs, there is some further forcing R P VrGsrHs such that if I is
generic for R over VrGsrHs, then in VrGsrHsrIs, there is an
elementary embedding

j : xHV
κ , Py   xHVrGsrHs

λ , Py

I will call such an embedding virtual.



Definition
The boldface virtual resurrection axiom for Γ at Hκ, vRA

�

ΓpHκq,
says that for every A � κ and every G as before, there is a Q as
before such that for every H as before, there are a B P VrGsrHs
and an R as before such that for every I as before, there is a j
in VrGsrHsrIs such that

j : xHV
κ , P,Ay   xHVrGsrHs

λ , P,By

and such that, if κ is regular in V, then λ is regular in VrGsrHs.
Finally, the virtual unbounded resurrection axiom vURΓ says
that vRAΓpHκq holds for every cardinal κ ¥ ω2.



Virtual super extendibility

Definition

Let κ be an inaccessible cardinal and α an ordinal. Then κ is
virtually super α-extendible if there are arbitrarily large
inaccessible cardinals γ such that for some β, there is an
elementary embedding j in VColpω,Hκ�α q such that

j : xHV
κ�α , P, κy   xHV

γ�β , P, γy

where jæκ � id (equivalently, jæHκ � id). Here, κ and γ are
used as predicates in these structures, and it follows that
jpκq � γ if α ¡ 0.



Definition
κ is strongly virtually super α-extendible if for every A � κ�α,
there are arbitrarily large inaccessible cardinals γ such that for
some β and some B � Hγ�β (in V), there is an elementary
embedding j in VColpω,θq, for some large enough θ, such that

j : xHV
κ�α , P,A, κy   xHV

γ�β , P,B, γy

with jæκ � id, and such that, if κ�α is regular, then γ�β is
regular.
κ is virtually super  α-extendible if it is virtually super
ᾱ-extendible for every ᾱ   α.



Theorem (F.)

Let Γ be the class of semiproper, proper, countably closed or
subcomplete forcings.

1 If κ is virtually super  θ-extendible, then in a κ-c.c. forcing
extension by a forcing in Γ, vRAΓpHω2�θ̄

q holds, for every
θ̄   θ.

2 If κ is strongly virtually super  θ-extendible, then in a
κ-c.c. forcing extension by a forcing in Γ, vRA

�

ΓpHω2�θ̄
q

holds, for every θ̄   θ.
3 If κ is virtually extendible, then vURΓ holds in a
κ-c.c. forcing extension by a forcing in Γ.

4 If vRAΓpHω2�θq holds, then ω2 is virtually super θ-extendible
in L.

5 If vRA
�

ΓpHω2�θq holds, where cfpω2�θq ¡ ω, then ω2 is
strongly virtually super θ-extendible in L.

6 The consistency strength of vURΓ is a virtually extendible
cardinal.



Thank you, Ronald!


