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Abstract

The main result of this paper is a combinatorial characterization of
Magidor-generic sequences. Using this characterization, I show that the
critical sequences of certain iterations are Magidor-generic over the target
model. I then employ these results in order to analyze which other Ma-
gidor sequences exist in a Magidor extension. One result in this direction
is that if we temporarily identify Magidor sequences with their ranges,
then Magidor sequences are maximal, in the sense that they contain any
other Magidor sequence that is present in their forcing extension, even if
the other sequence is generic for a different Magidor forcing. A stronger
result holds if both sequences come from the same forcing: I show that a
Magidor sequence is almost unique in its forcing extension, in the sense
that any other sequence generic for the same forcing which is present in
the same forcing extension coincides with the original sequence at all but
finitely many coordinates, and at all limit coordinates. Further, I ask the
question: If d ∈ V[c], where c and d are Magidor-generic over V, then
which Magidor forcing can d be generic for? It turns out that it must
essentially be a collapsed version of the Magidor forcing for which c was
generic. I treat several related questions as well. Finally, I introduce
a special case of Magidor forcing which I call minimal Magidor forcing.
This approach simplifies the forcing, and I prove that it doesn’t restrict
the class of possible Magidor sequences. I.e., if c is generic for a Magidor
forcing over V, then it is generic for a minimal Magidor forcing over V.

1 Introduction

Magidor forcing was introduced in [Mag78] with the purpose of collapsing the
cofinality of a measurable cardinal to an uncountable regular cardinal, without
collapsing cardinals. It was known before how to collapse the cofinality of a
measurable cardinal to ω, by Př́ıkrý forcing (see [Př́ı70]), a method that is by
now commonplace in set theory. When looking at the definitions of these forcing
notions, it is obvious that they are related in some way, and I am investigating
the similarities more closely in this work.

∗This article was published in the Journal of Symbolic Logic 79(4):1286-1314 (2014) DOI:
https://doi.org/10.1017/jsl.2014.33. The copyright is owned by the ASL.
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There are three results on Př́ıkrý forcing that go together very well, that I
am particularly interested in, and that were wanting analogs in the context of
Magidor forcing. The first of these is due to Mathias ([Mat73]). It says that the
ω-sequences added by Př́ıkrý forcing with respect to a normal measure U on κ
are exactly those whose range is almost contained in any A ∈ U . This is what
I call the Characterization Theorem. The second result, which was observed
by Solovay, is that the sequence of critical points resulting from iterating U
ω many times satisfies this criterion, over the ω-th model of the iteration. So
the sequence of critical points is Př́ıkrý-generic over the direct limit model.
The third result is that if c is Př́ıkrý-generic over V and d ∈ V[c] is also Př́ıkrý-
generic, then ran(d) is almost contained in ran(c). This is what I call Maximality.

These three results, the combinatorial characterization, the genericity of the
critical sequence, and the maximality of Př́ıkrý sequences, are closely connected:
the genericity of the critical sequence follows immediately from the combinato-
rial characterization, and the maximality of Př́ıkrý sequences can be shown
quite elegantly using the fact that the critical sequence is Př́ıkrý-generic. I have
previously proven analogs of these facts for a class of generalizations of Př́ıkrý
forcing, which includes what is sometimes referred to as diagonal Př́ıkrý forcing
(see [Git10, Section 1.3]) – this was done in [Fuc05].

I prove analogs of these results for Magidor forcing in the present paper. I
give some background and basic results on Magidor forcing in Section 2. Most
of the results in that section are known from [Mag78], but I introduce some new
concepts.

In Section 3, I develop the technical tools to prove the main result, the
Characterization Theorem, utilizing some machinery which was introduced by
Magidor in [Mag78].

In Section 4, I state and prove the Characterization Theorem. To understand
this characterization, I have to give some context first. The starting point is a
sequence 〈Uγ | γ < α〉 of normal ultrafilters on a measurable cardinal κ which
is increasing in the Mitchell order. For γ < δ, a function fδγ is fixed which

witnesses that Uγ is below Uδ in the Mitchell order, i.e., so that Uγ = [fδγ ]Uδ .
Magidor forcing will add a function g : α −→ κ so that (in case α is a limit
ordinal) the range of g is cofinal in κ, without collapsing cardinals. I show that
essentially, g is characterized by two combinatorial properties. Firstly, whenever
〈Xγ | γ < α〉 is a sequence in the ground model such that for all γ < α, Xγ ∈ Uγ ,
then for sufficiently large ξ, g(ξ) ∈ Xξ. Secondly, whenever λ < α is a limit
ordinal and 〈Yγ | γ < λ〉 is a sequence in the ground model such that for all
γ < λ, Yγ ∈ fλγ (g(λ)), then for sufficiently large ξ < λ, g(ξ) ∈ Yξ. The precise
statement can be found in Theorem 4.4.

It is then fairly straightforward to deduce that the critical sequence of an
adequate iteration satisfies this characterization, and is hence Magidor-generic
over the limit model. This is done in section 5. It was known that the cri-
tical sequence of such an iteration is Magidor-generic over the final model, as
shown by Dehornoy in [Deh83], without using a combinatorial characterization
of Magidor genericity, and using a tree version of Magidor forcing. It turns out,
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though, that in order to prove the maximality of Magidor sequences, I need more
flexibility when iterating - basically, given a condition p in Magidor forcing, I
have to iterate in such a way that if π : V −→ M is the resulting embedding,
π(p) belongs to the generic filter associated to the critical sequence.

This leads to the method of “iterating along a condition”, which I use in
Section 6. I develop this method in the proof of the Maximality Theorem,
Theorem 6.1. A strong form of the theorem says that the range of any Magidor
sequence d in a given Magidor-generic extension V[c] is almost contained in the
range of c - even if d comes from a different Magidor forcing.

In Section 7 on uniqueness, I improve the result of the Maximality Theorem
in the case that d ∈ V[c] and both c and d are generic for the same Magidor
forcing over V. The result is that in this situation, for almost all ξ, and for
all limit ξ, c(ξ) = d(ξ). So not only does the range of c almost contain every
Magidor sequence d ∈ V[c] which is generic for the same forcing, but in fact,
c(ξ) = d(ξ) for almost all ξ. In particular, V[c] = V[d]. This is Theorem 7.5 and
Corollary 7.6. There are also some miscellaneous results in this section that use
an argument introduced there. The theme is the question what other Př́ıkrý-
type or Magidor sequences can exist in V[c], where c is a Magidor sequence.
I show that a Magidor extension contains no Př́ıkrý sequence. I also analyze
what can be said in the general case that d ∈ V[c], where both d and c are
Magidor generic, but possibly for different Magidor forcings, about pointwise
equality between c and d, and about the relationship between the sequences of
ultrafilters and representing functions used in the two forcings. The most general
result here is Lemma 7.11. I also introduce collapses of Magidor forcings and
show in Theorem 7.16 that the Magidor sequences present in V[c] are (modulo
finite) exactly those that are generic for a collapse of the Magidor forcing giving
rise to the sequence c.

In Section 8, I introduce a very natural version of Magidor forcing, which I
call minimal Magidor forcing. It simplifies the combinatorics of Magidor forcing,
since it allows to work with functions gγ instead of fδγ . The main result of this
section is that any Magidor sequence is generic for a minimal Magidor forcing.
This result is Theorem 8.2.

I would like to than Ronald Jensen for discussing Př́ıkrý forcing and Magidor
forcing with me many years ago. I would also like to thank the unknown referee
for reading an earlier version of this paper very carefully, and for making very
useful suggestions.

2 Basics on Magidor Forcing

Let κ be measurable of Mitchell order α, and let ~U = 〈Uγ | γ < α〉 be a sequence
of normal ultrafilters on κ, increasing in the Mitchell order C. For µ < ν < α,
let fνµ : κ −→ V be a function representing Uµ in the ultrapower of V by Uν ,
i.e.,

Uµ = [fνµ ]Uν .

3



Magidor [Mag78] created a notion of forcing M = M(〈Uγ | γ < α〉, 〈fνµ | µ < ν < α〉)
in this setting, with regular α, which, if α is a limit ordinal, adds an α-sequence
cofinal in κ without collapsing cardinals. I will write ~f for the sequence 〈fνµ |
µ < ν < α〉 of functions. Also, I will say that the forcing has length α and is
based at κ. I will not require in general that α is a limit ordinal (even though
originally the point of the forcing was to change the cofinality of κ to α, so α
was assumed to be a regular cardinal).

In order to define the forcing M, Magidor first noted that for 0 < γ < α, the
following two sets belong to Uγ .

Aγ = {δ < κ | ∀µ < ν < γ fγµ (δ) C fγν (δ) are normal ultrafilters on δ}
Bγ = {δ ∈ Aγ | ∀µ < ν < γ [fνµ�δ]fγν (δ) = fγµ (δ)}

Of course, B0 := {δ < κ | δ is inaccessible} ∈ U0 also.

Definition 2.1. For a ∈ [α]<ω, define functions la : α −→ α ∪ {−1} and
ra : α −→ α+ 1 by

la(γ) =

{
max(a ∩ γ) if a ∩ γ 6= ∅
−1 otherwise.

ra(γ) = min((a ∪ {α}) \ (γ + 1)).

I will define the forcing M = M(~U, ~f, α̃), the Magidor forcing wrt. ~U, ~f above

α̃, for lh(~U) = α ≤ α̃ < κ as follows. The usual Magidor forcing M(~U, ~f) will be

M(~U, ~f, α), i.e., Magidor forcing above α. I will say that the length of M(~U, ~f)

is α, i.e., the domain of ~U , and I will say that the forcing is at κ, the measurable
cardinal on which the normal ultrafilters from ~U live.

Conditions are pairs of functions 〈g,G〉 such that

1. dom(g) is a finite subset of α, and dom(G) = α \ dom(g),

2. For all γ ∈ dom(g), g(γ) ∈ Bγ , g(γ) > α̃, and g is strictly increasing,

3. For all γ ∈ dom(G), if θ := rdom(g)(γ) < α, then G(γ) ∈ fθγ (g(θ)), and if
θ = α, then G(γ) ∈ Uγ ,

4. If γ < δ < α, γ ∈ dom(g) and δ ∈ dom(G), then g(γ) ∩G(δ) = ∅.

The ordering on M is defined by saying that 〈g′, G′〉 ≤ 〈g,G〉 iff

1. g ⊆ g′,

2. For all γ ∈ dom(G′), G′(γ) ⊆ G(γ),

3. For all γ ∈ dom(g′) \ dom(g), g′(γ) ∈ G(γ).
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The reason for introducing the Magidor forcing above α̃ is purely technical,
and will only be relevant in the proof of the Characterization Theorem. Note
that the only occurrence of α̃ is in point 2. of the definition of what a condition
is. I will regard ~U , ~f , α̃ and M = M(~U, ~f, α̃) as fixed through section 4.

Lemma 2.2. Suppose γ < α, δ < κ, and 〈g,G〉 ∈ M is a condition with
γ /∈ a := dom(g) such that there is an extension 〈g′, G′〉 ≤ 〈g,G〉 with g′ =
g ∪ {〈γ, δ〉}. Then there is a weakest condition 〈f, F 〉 = 〈g,G〉〈γ,δ〉 with these

properties (i.e., 〈f, F 〉 ≤ 〈g,G〉, f(γ) = δ and 〈g′, G′〉 ≤ 〈f, F 〉). This condition
is defined by

f = g ∪ {〈γ, δ〉},
dom(F ) = α \ (a ∪ {γ}),

F (ξ) =

 G(ξ) ∩ δ if ra∪{γ}(ξ) = γ,
G(ξ) \ (δ + 1) if la∪{γ}(ξ) = γ,
G(ξ) if ξ ∈ α \ (a ∪ {γ}) and the above cases fail.

Lemma 2.3. Let 〈g,G〉 be a condition, let γ ∈ α\dom(g), and let δ < κ. Then
there is a condition 〈g ∪ {〈γ, δ〉}, G′〉 ≤ 〈g,G〉 iff δ ∈ G(γ) and for all ξ < γ
with rdom(g)(ξ) = γ, G(ξ) ∩ δ ∈ fγξ (δ).

Lemma 2.4. Suppose α0 < . . . < αn−1 < α, δ0 < . . . < δn−1 < κ, and
〈g,G〉 ∈ M is a condition with γ0, . . . , γn−1 /∈ a := dom(g) such that there
is an extension 〈g′, G′〉 ≤ 〈g,G〉 with g′ = g ∪ h, where h = {〈γi, δi〉 | i <
n}. Then there is a weakest condition with these properties, which I denote by
〈g,G〉〈γ0,δ0〉,...,〈γn−1,δn−1〉 or 〈g,G〉h.

Proof. The condition in question can be obtained by applying the definition
given in the previous lemma n times. More precisely, define 〈〈gi, Gi〉 | i < n〉
by setting 〈g0, G0〉 = 〈g,G〉〈α0,δ0〉, and 〈gi+1, Gi+1〉 = 〈gi, Gi〉〈αi+1,δi+1〉, for

i+ 1 < n. Then 〈g,G〉h = 〈gn−1, Gn−1〉.
The proof of [Mag78, Lemma 3.2] actually shows the following, even though

it doesn’t state it that way.

Lemma 2.5. Let 〈g,H〉 ∈M, and let γ ∈ α\dom(g). Then there is a condition
〈g,H+γ〉 ≤ 〈g,H〉 such that for all ρ ∈ α\ (dom(g)∪{γ}), H+γ(ρ) = H(ρ), and
such that for every ξ ∈ H+γ(γ), there is a condition of the form 〈g ∪ {〈γ, ξ〉}, Z〉
extending 〈g,H+γ〉 – i.e., equivalently, 〈g,H+γ〉〈γ,ξ〉 ∈M.

Proof. The proof is in [Mag78], but I would like to review the definition of H+γ .
Clearly, it suffices to define H+γ(γ). Let a = dom(g), β = ra(γ), µ = la(γ).
Then H+γ(γ) = H(γ) ∩

⋂
µ<η<γ Dη, where in case β < α,

Dη = {δ < g(β) | H(η) ∩ δ ∈ fγη (δ)},

for µ < η < γ, and in case β = α,

Dη = {δ < κ | H(η) ∩ δ ∈ fγη (δ)}.
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In the more involved case β < α, the point here is that Dη ∈ fβγ (θ), where θ =

g(β). This follows since θ ∈ Bβ , because this implies that fβη (θ) = [fγη �θ]fβγ (θ).

Since H(η) ∈ fβη (θ), this means that {δ < θ | H(η) ∩ δ ∈ fγη (δ)} = Dη ∈ fβγ (θ).
So H+γ(γ) depends only on H�(γ + 1) and g.

Definition 2.6. A condition 〈g,G〉 ∈ M is pruned if for any α0 < . . . <
αn−1 < α with αi /∈ dom(g), and any δ0 ∈ G(α0), . . ., δn−1 ∈ G(αn−1) with
δ0 < δ1 < . . . < δn−1, there is a condition

〈g ∪ {〈α0, δ0〉, . . . , 〈αn−1, δn−1〉}, H〉 ≤ 〈g,G〉.

Lemma 2.7. A condition 〈g,G〉 ∈ M is pruned iff for any α0 < α with α0 /∈
dom(g) and any δ0 ∈ G(α0), there is a condition 〈g ∪ {〈α0, δ0〉}, H〉 ≤ 〈g,G〉.
This, in turn, is equivalent to saying that 〈g,G〉〈α0,δ0〉 ∈M.

Proof. For the purpose of this proof, let’s say that 〈g,G〉 is weakly pruned if for
any α0 < α with α0 /∈ dom(g) and any δ0 ∈ G(α0), 〈g,G〉〈α0,δ0〉 ∈ M. Clearly,

if 〈g,G〉 is pruned, then it is weakly pruned. For the converse, assume that
〈g,G〉 is weakly pruned. To show it is pruned, let α0 < α1 < . . . < αn−1 < α
be given, so that αi /∈ dom(g), and let δ0 < δ1 < . . . < δn−1 be such that
δi ∈ G(α1). Let h = {〈αi, δi〉 | i < n}. Since 〈g,G〉 is weakly pruned, we
know that 〈g ∪ {〈αi, δi〉}, Hαi〉 := 〈g,G〉〈αi,δi〉 ∈ M, for all i < n. Let’s use the

definition of 〈g ∪ h,H〉 := 〈g,G〉h, even though we haven’t shown that this is a
condition yet. To see that it is a condition, note that it is clear that g ∪ h is
strictly monotonous, since if µ < ν and µ, ν ∈ dom(g∪h), then either both µ and
ν are in the domain of g, in which case g(µ) < g(ν) since 〈g,G〉 is a condition, or
both are in the domain of h, in which case h(µ) < h(ν) by assumption, or one is
in the domain of g and the other is in the domain of h - say ξ is the one that is
in the domain of h, then (g∪h)(µ) < (g∪h)(ν) because 〈g,G〉〈ξ,h(ξ)〉 ∈M. The

only other point that needs to be verified is that for all ξ ∈ α\dom(g∪h), H(ξ)
has measure one with respect to the appropriate normal ultrafilter. To see this,
fix such a ξ. If ξ > αn−1, then H(ξ) = Hαn−1

(ξ), and the appropriate ultrafilter

is either Uξ or f
rdom(g)(ξ)

ξ (g(rdom(g)(ξ))). If αi < ξ < αi+1, then the relevant
ultrafilter in 〈g,H〉 is the same as in 〈g,Hαi+1

〉, and H(ξ) = Hαi+1
(ξ) \ (δi + 1),

which clearly belongs to that ultrafilter. If ξ < α0, then H(ξ) = Hα0
(ξ), which

again belongs to the right ultrafilter.

Lemma 2.8. Any condition 〈g,G〉 ∈ M has an extension 〈g,G′〉 which is pru-
ned.

Proof. By recursion on γ < α, define a sequence 〈Gγ | γ < α〉, so that 〈g,Gγ〉 ∈
M, as follows: If 0 /∈ dom(g), then 〈g,G0〉 = 〈g,G+0〉 (the condition from
Lemma 2.5). Otherwise, if 0 ∈ dom(g), then G0 = G.

If 〈Gγ | γ < ξ〉 is already defined, then define, for µ /∈ dom(g): Ḡξ(µ) =
Gµ(µ), for µ < ξ, and let Ḡξ(µ) = G(µ), for ξ ≤ µ ≤ α. Inductively, 〈g, Ḡξ〉 ∈
M. Now, if ξ ∈ dom(g), then let Gξ = Ḡξ, and if ξ /∈ dom(g), then let

〈g,Gξ〉 = 〈g, Ḡ+ξ
ξ 〉.
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Finally, let G′(ξ) = Gξ(ξ), for ξ ∈ α \ dom(g).
To see that 〈g,G′〉 is as desired, first note that it is easy to see that it is a

valid condition. To see that it is pruned, it suffices by Lemma 2.7 to show that if
α0 ∈ α\dom(g) and δ0 ∈ G′(α0), then 〈g,G′〉〈α0,δ0〉 ∈M. To see this, note that

G′�(α0 + 1) = Gα0�(α0 + 1) and G′�α0 = Ḡα0 . Since 〈g,Gα0〉 = 〈g, Ḡ+α0
α0
〉, it

follows that for any δ ∈ G′(α0) = Gα0
(α0) and any ξ < α0 with rdom(g)(ξ) = α0,

G′(ξ) ∩ δ = Gα0
(ξ) ∩ δ ∈ fα0

ξ (δ). This suffices, by Lemma 2.3. In particular,
this is true for δ.

Definition 2.9. For a condition 〈g,G〉 ∈M and an ordinal β < α, let

〈g,G〉β = 〈g�(β + 1), G�(β + 1)〉,

〈g,G〉β = 〈g�(α \ (β + 1)), G�(α \ (β + 1))〉.

If 〈g,G〉 and 〈h,H〉 are conditions with β ∈ dom(g)∩ dom(h) and g(β) = h(β),

then let 〈g,G〉β_〈h,H〉
β

be the unique condition 〈i, I〉 with 〈i, I〉β = 〈g,G〉β
and 〈i, I〉β = 〈h,H〉β (it is easy to see that there is such a condition).

The main combinatorial result from [Mag78] I shall use is the following
diagonalization lemma.

Lemma 2.10 (Diagonalization, [Mag78, Lemma 4.2]). Let 〈g,G〉 ∈ M, γ ∈
α \ dom(g). Let ρ = rdom(g)(γ), η = g(ρ), Z = fργ (η) (where as usual, g(α) is
understood to be κ and fαγ (κ) is understood to be Uγ). Let A ∈ Z, and for every

ξ ∈ A, let 〈g ∪ {〈γ, ξ〉}, Hξ〉 ≤ 〈g,G〉.
Then there exists a condition 〈g,H〉 ≤ 〈g,G〉 such that for every 〈j, J〉 ≤

〈g,H〉 with γ ∈ dom(j), it follows that 〈j, J〉 ≤ 〈g ∪ {〈γ, j(γ)〉}, Hj(γ)〉.
If, moreover, β ∈ γ ∩ dom(g) is such that for every ξ ∈ A, Hξ�β = G�β,

then 〈g,H〉 can be chosen so that 〈g,H〉β = 〈g,G〉β.

One main fact from [Mag78] about Magidor forcing that I shall need is the
following.

Fact 2.11. If G is M-generic, then letting c =
⋃
{s | ∃T 〈s, T 〉 ∈ G}, it follows

that V[G] = V[c], and V[c] has no new subsets of c(0).

3 Capturing dense open sets

In this section, I develop the technical tools needed for the proof of the Charac-
terization Theorem 4.4 in the next section. Let ∆ be a dense open subset of M,
fixed for this section.

Lemma 3.1. Let 〈g,G〉 ∈ M, a = dom(g), and let α0 < . . . < αn−1 < α,
αi /∈ a. Then there exists a condition 〈g,H〉 ≤ 〈g,G〉 such that

(∗) If there exists a 〈j, J〉 ≤ 〈g,H〉 such that 〈j, J〉 ∈ ∆ and dom(j)\dom(g) =
{α0, . . . , αn−1}, then for all 〈s,B〉 ≤ 〈g,H〉 with {α0, . . . , αn−1} ⊆ (dom(s)\
dom(g)), it follows that 〈s,B〉 ∈ ∆.
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Proof. It may be assumed that 〈g,G〉 is pruned, for otherwise, one could instead
work with a pruned 〈g,G′〉 ≤ 〈g,G〉.

I prove the claim by induction on n.
In the case n = 0, no αs are given. If there is an extension 〈g, J〉 ≤ 〈g,G〉

with 〈g, J〉 ∈ ∆, then let 〈g,H〉 be such an extension of 〈g,G〉, and we are done,
since then, any extension 〈s,B〉 ≤ 〈g,H〉 belongs to ∆, since ∆ is open. If there
is no such extension of 〈g,G〉, then we can let 〈g,H〉 = 〈g,G〉. This choice
makes (∗) vacuously true.

Now suppose the claim has been proven for n− 1. For ξ ∈ G(α0), let

〈gξ, Gξ〉 = 〈g,G〉〈α0,ξ〉.

Apply the inductive assumption to 〈gξ, Gξ〉, in order to get a condition 〈gξ, Hξ〉 ≤
〈gξ, Gξ〉 with

(∗ξ) if there is an 〈i, I〉 ≤ 〈gξ, Hξ〉 with 〈i, I〉 ∈ ∆ and dom(i) \ dom(gξ) =
{α1, . . . , αn−1}, then for all 〈s,B〉 ≤ 〈gξ, Hξ〉 with {α1, . . . , αn−1} ⊆
dom(s), it follows that 〈s,B〉 ∈ ∆.

Let Z = f
ra(α0)
α0 (g(ra(α0))). Let C be the set of all ξ ∈ G(α0) such that there

is a condition 〈s,B〉 ≤ 〈gξ, Hξ〉 with dom(s) \ dom(gξ) = {α1, . . . , αn−1} and
〈s,B〉 ∈ ∆. If C ∈ Z, then let A = C, and otherwise, let A = G(α0) \ C ∈ Z.

Now apply the Diagonalization Lemma to 〈g,G〉 and 〈〈gξ, Hξ〉 | ξ ∈ A〉. Let
the resulting condition be 〈g,H〉. I claim 〈g,H〉 satisfies (∗). To see this, let
〈j, J〉 ≤ 〈g,H〉 be such that dom(j) \ dom(g) = {α0, . . . , αn−1} and 〈j, J〉 ∈ ∆.
Let ξ = j(α0). Then 〈j, J〉 ≤ 〈gξ, Hξ〉, by the choice of 〈g,H〉 according to the
Diagonalization Lemma. Moreover, dom(j) \ dom(gξ) = {α1, . . . , αn−1} and
〈j, J〉 ∈ ∆. So ξ ∈ C, which means that A = C.

Now let 〈s,B〉 ≤ 〈g,H〉 be any condition with {α0, . . . , αn−1} ⊆ dom(s). I
have to show that 〈s,B〉 ∈ ∆. Let ξ′ = s(α0). It follows that 〈s,B〉 ≤ 〈gξ′ , Hξ′〉
and ξ′ ∈ A = C. Since ξ′ ∈ C, there is a condition 〈i, I〉 ≤ 〈gξ′ , Hξ′〉 with
dom(i) \ dom(gξ

′
) = {α1, . . . , αn−1} and 〈i, I〉 ∈ ∆. By (∗ξ′), it follows that

〈s,B〉 ∈ ∆.
The construction of the previous lemma can be modified so as to preserve

initial segments of the conditions involved.

Lemma 3.2. Let 〈g,G〉 ∈ M, a = dom(g), and let β < α0 < . . . < αn−1 <
α, αi /∈ a, β ∈ dom(g). Then there exists a condition 〈g,H〉 ≤ 〈g,G〉 with
〈g,H〉β = 〈g,G〉β such that

(∗) If there exists a 〈j, J〉 ≤ 〈g,H〉 such that 〈j, J〉 ∈ ∆, dom(j) \ dom(g) =
{α0, . . . , αn−1} and 〈j, J〉β = 〈g,G〉β, then for all 〈s,B〉 ≤ 〈g,H〉 with
{α0, . . . , αn−1} ⊆ (dom(s) \ dom(g)) it follows that 〈s,B〉 ∈ ∆.

Proof. We may assume that 〈g,G〉 is pruned above β (meaning that for all
γ ∈ α \ (β + 1) and for all ξ ∈ G(γ), 〈g,G〉〈γ,ξ〉 ∈ M). The proof is again by
induction on n.
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In the case n = 0, if there is an extension 〈g, J〉 ≤ 〈g,G〉 with 〈g, J〉 ∈ ∆ and
〈g, J〉β = 〈g,G〉β , let 〈g,H〉 be such an extension of 〈g,G〉, and we are done.
Otherwise setting 〈g,H〉 = 〈g,G〉 works as before.

Now suppose the claim has been proven for n − 1. For ξ ∈ G(α0), let
〈gξ, Gξ〉 = 〈g,G〉〈α0,ξ〉. Apply the inductive assumption to 〈gξ, Gξ〉, noting

that 〈gξ, Gξ〉β = 〈g,G〉β (because β < α0 and β ∈ dom(g)), in order to get a

condition 〈gξ, Hξ〉 ≤ 〈gξ, Gξ〉 with 〈gξ, Hξ〉β = 〈gξ, Gξ〉β = 〈g,G〉β , such that

(∗ξ) if there is an 〈i, I〉 ≤ 〈gξ, Hξ〉 with 〈i, I〉 ∈ ∆, dom(i) \ dom(gξ) =
{α1, . . . , αn−1} and 〈i, I〉β = 〈g,G〉β , then for all 〈s,B〉 ≤ 〈gξ, Hξ〉 with
{α1, . . . , αn−1} ⊆ dom(s) it follows that 〈s,B〉 ∈ ∆.

Let Z be the same ultrafilter as before, and let C be the set of all ξ ∈
G(α0) such that there is a condition 〈s,B〉 ≤ 〈gξ, Hξ〉 with dom(s) \dom(gξ) =
{α1, . . . , αn−1}, 〈s,B〉β = 〈g,G〉β , and 〈s,B〉 ∈ ∆. If C ∈ Z, then let A = C,
and otherwise, let A = G(α0) \ C ∈ Z.

Apply the Diagonalization Lemma (the “moreover” part) to 〈g,G〉, β and
〈〈gξ, Hξ〉 | ξ ∈ A〉. To see that the resulting condition, 〈g,H〉, satisfies (∗), let
〈j, J〉 ≤ 〈g,H〉 be such that dom(j)\dom(g) = {α0, . . . , αn−1}, 〈j, J〉β = 〈g,G〉β
and 〈j, J〉 ∈ ∆. Let ξ = j(α0). Then 〈j, J〉 ≤ 〈gξ, Hξ〉, dom(j) \ dom(gξ) =
{α1, . . . , αn−1} and 〈j, J〉 ∈ ∆. So ξ ∈ C, which means that A = C.

Now let 〈s,B〉 ≤ 〈g,H〉 be any condition with {α0, . . . , αn−1} ⊆ dom(s), and
let ξ′ = s(α0). It follows that 〈s,B〉 ≤ 〈gξ′ , Hξ′〉 and ξ′ ∈ A = C. Since ξ′ ∈ C,
there is a condition 〈i, I〉 ≤ 〈gξ′ , Hξ′〉 with dom(i) \dom(gξ

′
) = {α1, . . . , αn−1},

〈i, I〉β = 〈g,G〉β and 〈i, I〉 ∈ ∆. By (∗ξ′), it follows that 〈s,B〉 ∈ ∆.
It is easy to get the following “global” versions of the previous two lemmas.

Lemma 3.3. Let 〈g,G〉 ∈ M. Then there exists a condition 〈g,H〉 ≤ 〈g,G〉
such that the following holds: If 〈s,B〉 is an extension of 〈g,H〉 that belongs
to ∆, then for any 〈s′, B′〉 ≤ 〈g,H〉 with dom(s) ⊆ dom(s′), it follows that
〈s′, B′〉 ∈ ∆.

Proof. For any sequence ~α = 〈α0, α1, . . . , αn−1〉 with α0 < . . . < αn−1 < α and
{α0, . . . , αn−1} ∩ dom(g) = ∅, let 〈g,H~α〉 satisfy (∗) of Lemma 3.1. There are
α<ω many such sequences, and all the ultrafilters fνµ (δ), for δ ∈ Bγ , µ < ν < γ,
are δ-complete, and δ > α. So we can define a common extension 〈g,H〉 of all
the 〈g,H~α〉, by setting, for γ ∈ α \ dom(g),

H(γ) =
⋂
~α

H~α(γ).

Now if 〈s,B〉 ≤ 〈g,H〉, and 〈s,B〉 ∈ ∆, then let {α0, . . . , αn−1} = dom(s) \
dom(g). Let 〈s′, B′〉 ≤ 〈g,H〉 with dom(s′) = dom(s) - so {α0, . . . , αn−1} ⊆
dom(s′) \dom(g). Then 〈s,B〉 ≤ 〈g,H~α〉, so by (∗) with respect to ~α, it follows
that 〈s′, B′〉 ∈ ∆.
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Lemma 3.4. Let 〈g,G〉 ∈M, and let β ∈ dom(g). Then there exists a condition
〈g,H〉 ≤ 〈g,G〉 with 〈g,H〉β = 〈g,G〉β such that the following holds: If there
exists a 〈j, J〉 ≤ 〈g,H〉 such that 〈j, J〉 ∈ ∆ and 〈j, J〉β = 〈g,G〉β, then for all
〈s,B〉 ≤ 〈g,H〉 with dom(j) ⊆ dom(s), it follows that 〈s,B〉 ∈ ∆.

For future reference, let’s denote the condition 〈g,H〉 by 〈g,G〉+,β.

Proof. As in the previous proof, for a given finite increasing sequence ~α, let
〈g,H~α〉 ≤ 〈g,G〉 satisfy (∗) of Lemma 3.2, and let 〈g,H〉 be a common extension
of these. Suppose that 〈j, J〉 ≤ 〈g,H〉 is as in the lemma. Let dom(j)\dom(g) =
{~α}. Then 〈j, J〉 ≤ 〈g,H~α〉 and 〈j, J〉β = 〈g,H~α〉. Now if 〈s,B〉 ≤ 〈g,H〉, then

〈s,B〉 ≤ 〈g,H~α〉, and if in addition, dom(j) ⊆ dom(s), then this means that
{~α} ⊆ dom(s), and so, it follows from (∗) of Lemma 3.2 with respect to ~α that
〈s,B〉 ∈ ∆.

Theorem 3.5. Let 〈g,G〉 ∈ M, and let β ∈ dom(g). Then there is a condition
〈g,H〉 ≤ 〈g,G〉 with 〈g,H〉β = 〈g,G〉β, such that the following holds:

If 〈i, I〉 ≤ 〈g,H〉 and 〈i, I〉 ∈ ∆, then for any condition 〈j, J〉 ≤ 〈i, I〉β_〈g,H〉
β

with dom(i) ⊆ dom(j), it follows that 〈j, J〉 ∈ ∆.

Denote the condition 〈g,H〉 by 〈g,G〉∗,β.

Proof. Let S = {〈i, I〉β | 〈i, I〉 ≤ 〈g,G〉}, and note that S has cardinality 2g(β).
For q = 〈t, T 〉 ∈ S, let

〈t ∪ g,H ′q〉 = (q_〈g,G〉β)+,β .

Note that the latter is always a condition, because β ∈ dom(g). Let 〈g,H〉
be a common extension of the conditions 〈g,G〉β_〈g,H ′q〉

β
, for q ∈ S. This is

possible, because 2g(β) is less than the completeness of the ultrafilters to which
H ′q(γ) belongs, for γ > β.

To see that 〈g,H〉 is as wished, let 〈i, I〉 ≤ 〈g,H〉, 〈i, I〉 ∈ ∆. Assume that

〈j, J〉 ≤ 〈i, I〉β_〈g,H〉
β
, with dom(i) ⊆ dom(j). Let q = 〈i, I〉β , so q ∈ S. Then

〈i, I〉β
_〈g,H〉β ≤ (q_〈g,G〉β)+,β .

So, since 〈j, J〉 ≤ 〈i, I〉β_〈g,H〉
β
, it follows that 〈j, J〉 ≤ (q_〈g,G〉β)+,β . It now

follows from the properties of (q_〈g,G〉β)+,β (see Lemma 3.4) that 〈j, J〉 ∈ ∆,

since 〈i, I〉 ≤ (q_〈g,G〉β)+,β .

4 The characterization

Definition 4.1. For β < α and δ ∈ Bβ , let

M〈β,δ〉 = {〈g,G〉β | 〈g,G〉 ∈M and g(β) = δ},
M−〈β,δ〉 = {〈g�β,G�β〉 | 〈g,G〉 ∈M〈β,δ〉}.
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The natural partial ordering of M−〈β,δ〉 is defined by saying that 〈g′, G′〉 ≤
〈g,G〉 if g ⊆ g′, G′(ξ) ⊆ G(ξ) for ξ /∈ dom(g′), and g′(ξ) ∈ G(ξ), for ξ ∈
dom(g′) \ dom(g). Equivalently, this is the case iff 〈g′ ∪ {〈β, δ〉}, G′〉_〈∅, X〉 ≤
〈g ∪ {〈β, δ〉}, G〉_〈∅, X〉, where X : α \ (β + 1) −→ P(κ) is defined by X(ξ) =
κ \ (δ + 1).

Note that since δ ∈ Bβ , it follows that δ is a measurable cardinal of Mitchell
order at least β. In fact, set

Wγ = fβγ (δ), for γ < β.

Then, since δ ∈ Aβ , it follows for µ < ν < β, Wµ and Wν are normal ultrafilters
on δ with Wµ CWν .

Define, moreover, for µ < ν < β: gνµ = fνµ�δ. Then, since β ∈ Bβ , it follows
by unraveling the definitions that Wµ = [gνµ]Wν , since this says precisely that

fβµ (δ) = [fνµ�δ]fβν (δ), and the latter is true because δ ∈ Bβ .

So the ultrafilters 〈Wγ | γ < β〉 on δ and the functions 〈gνµ | µ < ν < β〉 re-
flect the situation at κ, and they can be used to define a “smaller” version
of Magidor forcing. Since gνµ = fνµ�δ, it follows that if Āγ , B̄γ are defined
from these sequences as Aγ and Bγ were defined from 〈Uµ | µ < α〉 and 〈fνµ |
µ < ν < α〉, then

Āγ = Aγ ∩ δ, B̄γ = Bγ ∩ δ,

for γ < β. It is now easy to see that the following lemma holds.

Lemma 4.2. In the notation introduced above, M−〈β,δ〉, equipped with the natural

ordering, is the same as the Magidor forcing M(〈Wγ | γ < β〉, 〈gνµ | µ < ν < β〉, α̃),

i.e, the Magidor forcing with respect to ~W and ~g above α̃.

Definition 4.3. Let c : α −→ κ be a strictly increasing sequence such that for
every γ < α, c(γ) ∈ Bγ . A filter Fc ⊆M can be associated to c by setting

Fc = {〈g,G〉 ∈M | g ⊆ c and for all i ∈ α \ dom(g), 〈g,G〉〈i,c(i)〉 ≤ 〈g,G〉}.

If V ⊆ W is an inner model with M ∈ V, then c ∈ W is said to be M-generic
over V iff Fc is.

Theorem 4.4 (Characterization). Let V be an inner model of W , and let M =
M(〈Uγ | γ < α〉, 〈fνµ | µ < ν < α〉, α̃) ∈ V. Then c in W is M-generic over V iff
c is a strictly increasing sequence in

∏
γ<α(Bγ \ (α̃+ 1)) such that

1. For every function X ∈ V ∩
∏
γ<α Uγ , there is a ζ < α such that for all

ξ < α with ξ > ζ, c(ξ) ∈ X(ξ).

2. For every β < α, and for every function X ∈ V∩
∏
γ<β f

β
γ (c(β)), there is

a ζ < α such that for all ξ < β with ξ > ζ, c(ξ) ∈ X(ξ).
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Remark 4.5. Note that the second condition above is trivially satisfied for
successor ordinals β < α, as ζ can then be chosen to be β − 1. Note also
that if we stick with the notation fαγ (κ) = Uγ and c(α) = κ, then both conditi-
ons can be expressed in one by saying: For every β ≤ α, and for every function
X ∈

∏
γ<β f

β
γ (c(β)), there is a ζ < α such that for all ξ < β with ξ > ζ,

c(ξ) ∈ X(ξ).

Proof. For the easy direction, assume that c is generic. In particular, c ∈∏
γ<α(Bγ \ α̃ + 1) (so we wouldn’t have had to make that assumption). We

are left to show that conditions 1. and 2. hold. For 1., let X ∈
∏
γ<α Uγ be

given, and assume that α is a limit ordinal, since otherwise, there is nothing to
show. Let ∆ be the set of conditions 〈g,H〉 ∈ M such that there is a ζ < α
with dom(g) ⊆ ζ and for all ξ ∈ (ζ, α), H(ξ) ⊆ X(ξ). Obviously, ∆ is dense in
M, so let 〈g,H〉 ∈ ∆∩Fc. Let ζ be such that dom(g) ⊆ ζ and for all ξ ∈ (ζ, α),
H(ξ) ⊆ X(ξ) (such a ζ exists by definition of ∆). Then, for ξ ∈ (ζ, α), it
follows that c(ξ) ∈ G(ξ) ⊆ X(ξ), by the definition of Fc. For 2., let β < α
be a limit ordinal, and let X ∈

∏
γ<β f

β
γ (c(β)) be given. Let ∆ be the set of

conditions 〈g,H〉 in M such that β ∈ dom(g) and either g(β) = c(β) and for
all ξ ∈ (ldom(g)(β), β), H(ξ) ⊆ X(ξ), or such that g(β) 6= c(β). This is a dense
set, and letting 〈g,H〉 be in the intersection of Fc with ∆, 〈g,H〉 clearly has
to be of the first type and it follows as before that for large enough ξ < β,
c(ξ) ∈ H(ξ) ⊆ X(ξ).

Let’s now assume that c ∈
∏
γ<α(Bγ \ α̃ + 1) satisfies 1. and 2., and show

that Fc is generic. Assume the contrary. Let κ be minimal such that there is a
Magidor forcing M = M(~U, ~f) for which the claim fails and each Uγ is a normal

ultrafilter on κ. Let α be the length of the sequence ~U .
Let ∆ ⊆ M be open dense, ∆ ∈ V. I have to find a condition 〈g,G〉 ∈ ∆

such that g ⊆ c and for all i ∈ α \ dom(g), 〈g,G〉〈i,c(i)〉 ≤ 〈g,G〉. This shows
then that Fc is generic, so that M is not a counterexample after all.

Argue in V for awhile. Let constκ : On −→ {κ} be the constant function
that maps every ordinal to κ. Let 〈∅, C〉 ∈M be the condition 〈∅, constκ�α〉.

Apply Lemma 3.3 to the condition 〈∅, C〉 and ∆, resulting in a condition
〈∅, G̃∅〉 such that if 〈s,B〉 ≤ 〈∅, G̃∅〉 and 〈s,B〉 ∈ ∆, then any 〈s′, B′〉 ≤ 〈∅, G̃∅〉
with dom(s) ⊆ dom(s′) will belong to ∆. By strengthening 〈∅, G̃∅〉 if necessary,
it may be assumed to be pruned.

Now, let N be the set of strictly increasing functions g : a −→ κ, with
a ∈ [α]<ω, such that there is a condition of the form 〈g,G〉 ∈ M. Equivalently,
g ∈ N iff 〈∅, constκ�α〉g ∈M. For g ∈ N , let

〈g,Gg〉 = 〈∅, constκ�α〉g.

For g ∈ N with g 6= ∅, let β = max(dom(g)), and set

〈g, G̃g〉 = 〈g,Gg〉∗,β ,

as defined with respect to ∆. Note that if ∅ 6= ḡ is a proper initial segment
of g, that is, β̄ := max(dom(ḡ)) < max(dom(g)) and ḡ = g�(β̄ + 1), then
〈ḡ, G̃ḡ〉β̄ = (〈∅, constκ�α〉ḡ)β̄ = (〈∅, constκ�α〉g)β̄ = 〈g, G̃g〉β̄ .
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Define a sequence X ∈
∏
γ<α Uγ as follows. For γ < α and δ < κ, let

Rγ,δ = {g ∈ N | dom(g) ⊆ γ and (g = ∅, or else g(max(dom(g))) = δ)}.

Set:

X(γ) = �T
δ<κ

 ⋂
g∈Rγ,δ

G̃g(γ)


Since for fixed δ, the size of Rγ,δ is δ<ω < κ, it follows that

⋂
g∈Rγ,δ G̃g(γ) ∈ Uγ ,

so that the diagonal intersection over all δ < κ of these sets is also in Uγ . We
may assume 〈∅, X〉 is pruned, by shrinking if necessary.

Now, by condition 1., let ζ < α be such that for all ξ ∈ (ζ, α), it follows that
c(ξ) ∈ X(ξ).

We have seen that M−〈ζ,c(ζ)〉 can be viewed as a Magidor forcing above α̃

whose sequence of measures is on c(ζ) < κ. So by the minimality assumption, it
follows that the theorem is true for M̄ := M〈ζ,c(ζ)〉. Moreover, by 2., c�ζ satisfies
1. and 2. for that forcing - both conditions relativize down properly. So c�ζ is
M̄-generic over V.

Let ν = c(ζ). Define a condition 〈{〈ζ, ν〉},M〉, where for γ < ζ, M(γ) = ν,
and for ζ < γ < α, M(γ) = X(γ) \ (ν + 1). Set

∆̄ = {〈u�ζ, V �ζ〉 | 〈u, V 〉 ∈ ∆, 〈u, V 〉 ≤ 〈{〈ζ, ν〉},M〉}.

Then ∆̄ is dense in M̄: Let 〈s,B〉 ∈ M̄. Let 〈s′, B′〉 ∈ M be defined by:
s′ = s ∪ {〈ζ, ν〉}, B′�(ζ + 1) = B and B′(γ) = X(γ) \ (ν + 1), for ζ < γ < κ.
Let 〈u, V 〉 ≤ 〈s′, B′〉, 〈u, V 〉 ∈ ∆. Then 〈u, V 〉 witnesses that 〈u�ζ, V �ζ〉 ∈ ∆̄,
showing ∆̄ is dense, since 〈u�ζ, V �ζ〉 ≤ 〈s,B〉 in M̄. Clearly, ∆̄ is also open in
M̄.

Since c�ζ is M̄-generic, let 〈i, I〉 ∈ ∆̄ be in the filter associated to c�ζ with
respect to M̄. So i ⊆ c and for all ξ ∈ ζ \ dom(i), 〈i, I〉〈ξ,c(ξ)〉 ≤ 〈i, I〉 in M̄.

Let 〈u, V 〉 ∈ ∆ witness that 〈i, I〉 is in ∆̄, so u�ζ = i, V �(ζ + 1) = I, and
〈u, V 〉 ≤ 〈{〈ζ, ν〉},M〉.

Let g = u�(ζ + 1). Then g ∈ Rζ+1,ν . I claim that

〈u, V 〉 ≤ 〈g, G̃g〉.

To see this, first note that

〈{〈ζ, ν〉},M〉g�ζ ≤ 〈g, G̃g〉

since up to and including ζ, these conditions are the same, and for ζ < γ < α,
M(γ) ⊆ G̃g(γ). For if ξ ∈ M(γ), then by definition, ξ ∈ X(γ) \ (ν + 1).

g ∈ Rζ+1,ν , and ν < ξ, so by definition of X(γ), ξ ∈ G̃g(γ). Moreover,

〈u, V 〉 ≤ 〈{〈ζ, ν〉},M〉g�ζ
since 〈u, V 〉 ≤ 〈{〈ζ, ν〉},M〉 and up to ζ, the condition on the right is the weakest
condition which has u�(ζ+1) in the first coordinate. So, putting the two previous
displayed facts together, it follows that 〈u, V 〉 ≤ 〈g, G̃g〉, as claimed.
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Now, remember that 〈g, G̃g〉 = 〈g,Gg〉∗,ζ . So we have 〈u, V 〉 ≤ 〈g,Gg〉∗,ζ and

〈u, V 〉 ∈ ∆. By the defining property of 〈g,Gg〉∗,ζ , it follows that 〈j, J〉 ∈ ∆,

for any condition 〈j, J〉 ≤ 〈u, V 〉ζ_〈g, G̃g〉
ζ

with dom(u) ⊆ dom(j). Since

〈u, V 〉ζ_〈{〈ζ, ν〉},M〉
ζ ≤ 〈u, V 〉ζ_〈g, G̃g〉

ζ
, (as for all γ > ζ with γ < α, it

follows that X(γ) \ (ν+ 1) ⊆ G̃g(γ)), the same conclusion can be drawn for any

〈j, J〉 ≤ 〈u, V 〉ζ_〈{〈ζ, ν〉},M〉
ζ
.

So let a = dom(u) \ (ζ + 1). Let 〈j, J〉 = (〈u, V 〉ζ_〈{〈ζ, ν〉},M〉
ζ
)c�a. Then

〈j, J〉 ≤ 〈u, V 〉ζ_〈{〈ζ, ν〉},M〉
ζ
, so 〈j, J〉 ∈ ∆, and 〈j, J〉 belongs to Fc, the

filter associated to c. Note that 〈j, J〉〈γ,c(γ)〉 ≤ 〈j, J〉, for all γ ∈ α \ dom(j).

This works for γ < ζ, since 〈j�ζ, J�ζ〉 belongs to the filter associated to c�ζ,
and it works for γ > ζ, since c(γ) ∈ X(γ) by choice of ζ, and since 〈∅, X〉 is
pruned.

The following corollary parallels the fact that restricting Př́ıkrý sequences
to unbounded subsets of ω results in Př́ıkrý sequences.

Corollary 4.6. If c is M = M(~U, ~f, α̃)-generic over V, and d is an increasing

function in
∏
γ<α(Bγ \(α+1)), where α = dom(~U), such that for all but finitely

many γ < α, and for all limit γ, c(γ) = d(γ). Then d is also M-generic over V.

Proof. This follows immediately from Theorem 4.4, in particular the remark
following its statement.

It is well-known that if c is a Př́ıkrý-sequence for the Př́ıkrý forcing with
respect to a normal ultrafilter U on κ, then for a subset X ⊆ κ, X belongs to
U if and only if c is almost contained in X. In particular, the ultrafilter U , and
hence the forcing, can be recovered from the Př́ıkrý sequence c. It is natural to
ask to what extent this can be generalized to Magidor forcing. To what extent
does a Magidor sequence determine its forcing (in particular, the sequences ~U

and ~f on which it depends)?

Lemma 4.7. Let c be M = M(~U, ~f)-generic, where α, the length of M, is a

limit ordinal. Then the sequence ~U is unique on a tail. That is, if c is also
generic for M′ = M(~U ′, ~f ′), then for sufficiently large γ < α, Uγ = U ′γ .

Proof. Suppose c is both M- and M′-generic over V. Clearly, both forcings must
have the same height, say κ. For γ < α, pick Xγ ∈ Uγ \ U ′γ if Uγ 6= U ′γ , and
otherwise, let Xγ = κ. By the Characterization Theorem, it follows that for
large enough γ < α, c(γ) ∈ Xγ , as c is generic for M. But similarly, let Yγ = Xγ

if Xγ = κ, and let Yγ = κ \Xγ otherwise. Then it follows that for large enough
γ, c(γ) ∈ Yγ , since c is generic for M′. So for large enough γ, c(γ) ∈ Xγ ∩ Yγ ,
which implies that Uγ = U ′γ , since Xγ and Yγ are disjoint if Uγ 6= U ′γ .

Much more could be said about the sequences ~f and ~f ′, but I want to look at
this more closely a little later, in Section 7. In particular, Lemma 7.11 provides
information in a more general setting.
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5 Iterations and genericity of the critical sequence

The iteration associated to ~U is the sequence of models and embeddings 〈〈Mγ |
γ ≤ α〉, 〈πi,j | i < j ≤ α〉〉 defined by recursion as follows. M0 = V. If 〈〈Mγ | γ ≤ β〉, 〈πi,j | i < j ≤ β〉〉
has been defined already, then let ~Uβ = π0,β(~U), and let

πβ,β+1 : Mβ −→Uββ
Mβ+1,

and set πi,β+1 = πβ,β+1◦πi,β . If λ is a limit ordinal and 〈〈Mγ | γ < λ〉, 〈πi,j | i < j < λ〉〉
have been defined already, then let

〈Mλ, 〈πi,λ | i < λ〉〉 = dir lim〈〈Mγ | γ < λ〉, 〈πi,j | i < j < λ〉〉.

Let κi = crit(πi,i+1), and κα = π0,α(κ). Let Uµ = [fνµ ]Uν , for µ < ν < α.
The following result was first shown in [Deh83], using a somewhat different

approach to iterated ultrapowers and to Magidor forcing. The proof I present
uses the characterization of Magidor genericity, Theorem 4.4.

Theorem 5.1. The sequence 〈κi | i < α〉 is M(~Uα, π0,α(~f))-generic over Mα.

Proof. Let M′ = M(~Uα, π0,α(~f)), and note that M′ = π0,α(M(~U, ~f)). For γ < α,

let BM′
γ be defined in M with respect to ~Uα and π0,α(~f) just like Bγ was defined

in V with respect to ~U and ~f . Clearly then, BM′
γ = π0,α(Bγ). It is now not

hard to see that κγ ∈ BM′
γ . This is because Bγ ∈ Uγ , so that π0,γ(Bγ) ∈ Uγγ .

Since πγ,γ+1 : Mγ −→Uγγ Mγ+1, it follows that κγ ∈ π0,γ+1(Bγ), and since

crit(πγ+1,α) > κγ , this implies that κγ ∈ π0,α(Bγ) = BM′
γ .

Thus, ~κ is a strictly increasing sequence in
∏
γ<αB

M′
γ \ (α + 1), so all that

is left to do is to verify conditions 1. and 2. of Theorem 4.4.
To verify 1., let ~X = X ∈Mα ∩

∏
γ<α U

α
γ be given, and suppose α is a limit

ordinal (if not, then there is nothing to show). So Mα is the direct limit of

the previous models. It follows that κξ ∈ Xξ whenever ~X ∈ ran(πξ,α). To see

this, for such ξ, let ~X = πξ,α( ~̄X). Then, clearly, ~̄X ∈
∏
γ<α U

ξ
γ . Since πξ,ξ+1 :

Mξ −→Uξξ
Mξ+1, it follows that κξ ∈ πξ,ξ+1(X̄ξ), and so, κξ = πξ+1,α(κξ) ∈

πξ+1,α(πξ,ξ+1(X̄ξ)) = Xξ. Since ~X ∈ ran(πξ,α) for sufficiently large ξ < α, this
shows that 1. is satisfied.

To see that 2. is satisfied, I need two little observations on π0,α(~f).

(1) For all µ < ν < α, π0,α(fνµ )�κν = π0,ν(fνµ ).

Proof of (1). The domain of the function on the right hand side is π0,ν(dom(fνµ )) =
κν . So the functions on the left and the right have the same domain κν .
For ξ < κν , π0,α(fνµ )(ξ) = πν,α(π0,ν(fνµ ))(ξ) = πν,α(π0,ν(fνµ )(ξ)), since ξ <
κν = crit(πν,α). Since π0,ν(fνµ )(ξ) ∈ P(P(ξ)) and ξ < κν , it follows that
πν,α(π0,ν(fνµ )(ξ)) = π0,ν(fνµ )(ξ), which completes the proof. 2(1)

(2) For all µ < ν < α, π0,α(fνµ )(κν) = Uνµ .
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Proof of (2). Since [fνµ ]Uν = Uµ, it follows that inMν , it is true that [π0,ν(fνµ )]Uνν =
Uνµ . Since πν,ν+1 : Mν −→Uνν

Mν+1, it follows that [π0,ν(fνµ )]Uνν = π0,ν+1(fνµ )(κν).
So

π0,ν+1(fνµ )(κν) = Uνµ .

Since Uνµ ∈ P(P(κν)) and κν < κν+1 = crit(πν+1,α), we can apply πν+1,α to
both sides of this equality to get the desired identity. 2(2)

So, to verify 2., let β < α be a limit ordinal. Let ~X ∈Mα∩
∏
γ<β π0,α(fβγ )(κβ).

This means by (2) that ~X ∈
∏
γ<β U

β
γ . Since V

Mβ

κβ+1 = VMα
κβ+1, it follows that

~X ∈ Mβ . But now the same argument that established 1., with α replaced by

β, also shows that for ξ < β with ~X ∈ ran(πξ,β), it follows that κξ ∈ Xξ.

6 Maximality

Theorem 6.1 (Maximality). Let M = M(~U, ~f), and let c be M-generic over V.
If d ∈ V[c] is M-generic over V, then ran(d) is almost contained in ran(c), i.e.,
ran(d) \ ran(c) is finite.

Proof. Suppose the theorem failed. Then let ḋ be an M-name and p = 〈g,G〉 ∈
M be a pruned condition such that p forces over M0 = V that ḋ is V-generic
and that ran(ḋ) \ ran(Γ) is infinite, where Γ is a canonical name for the generic
sequence added by M. Let α be the length of M.
Main case 1: g = ∅.

Let 〈〈Mγ | γ ≤ α〉, 〈πi,j | i ≤ j ≤ α〉〉 be the iteration corresponding to M,
and let ~κ be the sequence of critical points. Let π = π0,α. So p′ := π(p) = 〈∅, G′〉
forces over Mα with respect to M′ = π(M) that ḋ′ := π(ḋ) is Mα-generic for M′
and that ḋ′ \ Γ′ is infinite, where Γ′ = π(Γ) is a canonical name for the generic
sequence added by M′. The proof of Theorem 5.1 shows that for all γ < α,
κγ ∈ G′(γ), since G′ ∈ ran(π). So p′ belongs to the Mα-generic filter associated

to ~κ, and hence, letting d′ be the interpretation of ḋ′ by that filter, it follows
that d′ ∈ Mα[~κ] is generic for M′ over Mα, and that ran(d′) \ {~κ} is infinite.
Let a consist of the first ω many ξ < α with d′(ξ) /∈ {~κ}. For each γ ∈ a, let
fγ : κmγ −→ κ be such that

d′(γ) = π(fγ)(gγ),

for some gγ ∈ [{~κ}]mγ with max(gγ) < d′(γ) (since d′(γ) does not belong to
{~κ}) and mγ < ω. So d′(γ) belongs to the set

Zγ = {µ < κα | ∃g ∈ <ωµ µ = π(fγ)(g)}.

It is obvious that Zγ ∩ ρ is not stationary, for any regular uncountable ρ, for
otherwise Zγ ∩ρ would have to have a stationary subset on which the regressive
function selecting the minimal witness is constant, by Fodor’s lemma, which
would mean the stationary subset could only have one member. In particular,
Zγ ∩ ρ cannot belong to any normal ultrafilter on ρ.

16



Let Z̄γ = {µ < κ | ∃g ∈ <ωµ µ = fγ(g)}. Then π(〈Z̄γ | γ ∈ a〉) = 〈Zγ |
γ ∈ a〉 ∈Mα, and hence, letting κ′ = π(κ), the following set belongs to Mα:

C =
⋂
γ∈a

(κ′ \ Zγ).

Moreover, letting U ′γ = π(Uγ), for γ < α, it follows that C ∈ U ′γ , and in general,
whenever κ̄ < κ′ is measurable in Mα, then C ∩ κ̄ belongs to any normal
ultrafilter on κ̄.

Let β = sup a. First, assume that β = α (so α is a limit ordinal of cofinality

ω). Then supγ<β d
′(γ) = κα. Consider the sequence ~X = 〈Xγ | γ < α〉 defined

by Xγ = C. Then ~X ∈
∏
γ<α U

′
γ , so for sufficiently large ξ, it should be the

case that d′(ξ) ∈ Xξ = C, by 1. of Theorem 4.4, since d′ is M′-generic over Mα.
But this fails for all ξ ∈ a, which is unbounded in α (since d′(ξ) ∈ Zξ ⊆ κα \C).

Now assume that β < α. Note that since d′ is a normal function, it follows
that d′(β) = supγ<β d

′(γ). Define a constant sequence ~Y = 〈Yγ | γ < β〉 by

setting Yγ = C ∩ dβ . Then ~Y ∈
∏
γ<β f

′β
γ (dβ), where ~f ′ = π(~f). So by

condition 2. of Theorem 4.4, it should again be true that for all large enough
ξ < β, d′(ξ) ∈ Yξ, but this fails, as before, for all γ ∈ a. But a is unbounded in
β, a contradiction. This concludes case 1.
Main case 2: g 6= ∅.

In this case, the iteration in case 1 doesn’t work; the generic filter corre-
sponding to the critical sequence won’t contain the image of p. In order for this
to be true, we would have to have that ~κ�dom(π0,α(g)) = π0,α(g). But this is
clearly impossible, as the critical points never belong to the image of π0,α. So

I will construct an iteration “along g”, so that a sequence ~λ which is almost
always (i.e., with at most finitely many exceptions) equal to the sequence ~κ of
the critical points of the iteration, which is generic, and whose filter will contain
the image of p under the iteration map.

Let dom(g) = a. The “iteration along g” starts out with M0 = V, and at
limit stages, direct limits will be formed, as before. The difference will lie in the
successor case. So suppose 〈〈Mγ | γ ≤ β〉, 〈πi,j | i ≤ j ≤ β〉〉 has been defined
already. If β ∈ a, then let Mβ+1 = Mβ , πβ,β+1 = id�Mβ . If β /∈ a, then let

πβ,β+1 : Mβ −→Wβ
Mβ+1,

where in the case that ra(β) < α, we set

Wβ = π0,β(f
ra(β)
β (g(ra(β)))),

and in case ra(β) = α, we set

Wβ = Uββ = π0,β(Uβ).

As before, let κγ be the critical point of πγ,γ+1, if γ /∈ a, and let κα = π0,α(κ).

The generic sequence will be the sequence ~λ = 〈λξ | ξ < α〉 defined by:

λξ =

{
κξ if ξ /∈ a,
π0,ξ(g(ξ)) if ξ ∈ a.
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Let π = π0,α. It follows that

(1) dom(π(g)) = a, and for ξ ∈ a, π(g)(ξ) = π0,ξ(g(ξ)) = λξ.

Proof of (1). π(g)(ξ) = π(g(ξ)) = πξ,α(π0,ξ(g(ξ)). Since πξ,ξ+1 is the identity,
this is equal to πξ+1,α(π0,ξ(g(ξ)). Let ζ be the least ordinal less than α that is
greater than ξ and that is not in a. In case α is a successor ordinal, it could
be that ζ doesn’t exist, but then πξ,α is the identity, so there is nothing to be
shown. So suppose this is not the case. Then πξ,ζ is the identity, and we get that
πξ,α(π0,ξ(g(ξ)) = πζ,α(π0,ξ(g(ξ)). The critical point of πζ,α is π0,ζ(g(ra(ζ))), if
ra(ζ) < α, and it is π0,ζ(κ) otherwise. So we have that

λξ = π0,ξ(g(ξ)) = π0,ζ(g(ξ)) < π0,ζ(g(ra(ζ)))

in case ra(ζ) < α (since then ξ < ζ, so ξ < ra(ζ), so g(ξ) < g(ra(ξ))). But
π0,ζ(g(ra(ζ))) is the critical point of πζ,α, and so, it follows that

πζ,α(λξ) = λξ = π0,ξ(g(ξ)).

In case ra(ζ) = α, the critical point of πζ,α is π0,ζ(κ), which is obviously greater
than λξ = π0,ζ(g(ξ)), and the same argument as above proves the claim. 2(1)

(2) For every ξ < α, λξ ∈ π(Bξ).

Proof of (2). If ξ ∈ a, then λξ = π(g(ξ)), by (1), and g(ξ) ∈ Bξ since 〈g,G〉 is
a condition. This implies the claim.

If ξ /∈ a, then there are two cases. First, suppose that ra(ξ) < α. Then

Bξ ∩ g(ra(ξ)) ∈ fra(ξ)
ξ (g(ra(ξ))), since g(ra(ξ)) ∈ Bra(ξ) (see the discussion in

the beginning of Section 4). It follows that

π0,ξ(Bξ) ∩ λξ ∈Wξ = π0,ξ(f
ra(ξ)
ξ (g(ra(ξ)))),

and since πξ,ξ+1 : Mξ −→Wξ
Mξ+1, this readily implies that

λξ ∈ π0,ξ+1(Bξ).

Applying πξ+1,α on both sides gives

λξ ∈ π(Bξ),

once again using (1).
In the second case, ra(ξ) = α, and the argument is a little easier: Bξ ∈ Uξ,

so π0,ξ(Bξ) ∈ Wξ = π0,ξ(Uξ). It follows that λξ ∈ π0,ξ+1(Bξ), and finally that
λξ ∈ π(Bξ). 2(2)

So ~λ ∈
∏
γ<α π( ~B)γ , and in order to see that ~λ is π(M)-generic over Mα,

conditions 1. and 2. of Theorem 4.4 need to be verified.
For 1., let ~X ∈ Mα ∩

∏
γ<α π(~U)γ . Assume α is a limit ordinal (otherwise,

there is nothing to show). I claim that if ξ < α is large enough that dom(g) =

a ⊆ ξ and ~X ∈ ran(πξ,α), then λξ = κξ ∈ Xξ. The argument is similar to the
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original argument establishing the genericity of the straightforward iteration:
if πξ,α(~Y ) = ~X, then Yξ ∈ π0,ξ(Uξ) = Wξ by definition of the iteration. So
λξ = κξ ∈ πξ,ξ+1(Yξ), and finally, using (1), λξ ∈ πξ,α(Yξ) = Xξ.

For 2., let β be a limit ordinal less than α, and let ~X ∈Mα∩
∏
γ<β π(~f)βγ (λβ).

It follows that ~X ∈ Mβ , since V
Mβ

λβ+1 = VMα

λβ+1. I claim that if ξ < β is large

enough that a ∩ β ⊆ ξ and ~X ∈ ran(πξ,β), then λξ ∈ Xξ. For such ξ, let

πξ,β(~Y ) = ~X. The main claim to prove here is

(3) π(fβξ )(λβ) = πξ,β(Wξ).

Proof of (3). I will address several cases separately.
Case 1: β ∈ a.

Then Wξ = π0,ξ(f
β
ξ (g(β))), so

πξ,β(Wξ) = π0,β(fβξ (g(β))) = π0,β(fβξ )(π0,β(g(β)) = π0,β(fβξ )(λβ),

since in the present case, λβ = π0,β(g(β)). Moreover, in the present case, πβ,β+1

is the identity, and so, the critical point of πβ,α, if there is any, is greater than
λβ . So πβ,α can be applied to both sides of this equation to get

πξ,β(Wξ) = π0,α(fβξ )(λβ),

as claimed.
Case 2: β /∈ a.

We have then that λβ = κβ . We know that Xξ ∈ π(fβξ )(λβ). To prove
the claim, I will have to split into two subcases. Note that since a ∩ β ⊆ ξ,
ra(ξ) = ra(β).
Case 2.1: ra(β) = α.

Then Wβ = π0,β(Uβ) and λβ = π0,β(κ). Since [fβξ ]Uβ = Uξ, it follows that

[π0,β(fβξ )]π0,β(Uβ) = π0,β(Uξ), so [π0,β(fβξ )]Wβ
= πξ,β(Wξ), and [π0,β(fβξ )]Wβ

=

πβ,β+1(π0,β(fβξ ))(λβ). So π0,β+1(fβξ )(λβ) = πξ,β(Wξ). So π0,α(fβξ )(λβ) =
πξ,β(Wξ).
Case 2.2: θ := ra(β) < α (and again, θ = ra(ξ) as well).

I first claim that λβ ∈ π0,β(Bθ). This is because by (2), λθ ∈ π0,α(Bθ), so
λθ ∈ π0,θ+1(Bθ) = π0,θ(Bθ) (since πθ,θ+1 is the identity). But since ra(β) = θ,
it follows that

πβ,θ(λβ) = λθ ∈ πβ,θ(π0,β(Bθ)),

which implies, by applying π−1
β,θ to both sides, that λβ ∈ π0,β(Bθ), as claimed.

It follows that
[π0,β(fβξ )�λβ ]π0,β(fθβ)(λβ) = π0,β(fθξ )(λβ).

This means that
π0,β+1(fβξ )(λβ) = π0,β(fθξ )(λβ),
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since Wβ = π0,β(fθβ)(λβ) and πβ,β+1 : Mβ −→Wβ
Mβ+1. Note that the right

hand side of this equation is πξ,β(Wξ). Applying πβ+1,α to both sides yields

π0,α(fβξ )(λβ) = πξ,β(π0,ξ(f
θ
ξ )(λξ)) = πξ,β(Wξ).

2(3)

Now, the argument proceeds as before. Since Xξ ∈ π(fβξ )(λβ) = πξ,β(Wξ),
it follows that Yξ ∈ Wξ, and it follows from this that λξ ∈ πξ,ξ+1(Yξ), since
πξ,ξ+1 : Mξ −→Wξ

Mξ+1. Finally, applying πξ+1,β yields that λξ ∈ Xξ.

This shows that ~λ is π0,α(M)-generic over Mα. Moreover, a similar argument
shows that for all ξ ∈ α \ a,

(4) λξ = κξ ∈ π0,α(G)(ξ).

Proof of (4). To see this, fix ξ ∈ α \ a, and let ra(ξ) = θ. It follows as
before that π(G)(ξ) ∈ πξ,θ(Wξ): if θ < α, then G(ξ) ∈ fθξ (g(θ)), so that,

applying π, and noting that π(g(θ)) = λθ, π(G)(ξ) ∈ π(fθξ )(λθ). Note that
a ∪ θ ⊆ ξ, so that by (3), π(G)(ξ) ∈ πξ,θ(Wξ). On the other hand, if θ = α,
then G(ξ) ∈ Uξ, so π(G)(ξ) ∈ π(Uξ) = πξ,α(π0,ξ(Uξ)) = πξ,α(Wξ). In any case,
the argument above shows that λξ ∈ π(G)(ξ) (for this, it would suffices to know
that π(G)(ξ) ∈ ran(πξ,α), which is clearly the case). 2(4)

By design, we will have

(5) For β ∈ a, π0,α(g(β)) = π0,β(g(β)) = λβ.

So, π0,α(g) = ~λ�dom(g). Taking these last points, (4) and (5), together, this

shows that π(〈g,G〉) belongs to the generic filter associated to ~λ. The argument
can now be completed as in Case 1, because, with finitely many exceptions, the
generic sequence we’re dealing with is the critical sequence.

The argument of the proof of the Maximality Theorem generalizes to many
other situations. The following corollary illustrates this. There will be more
examples in the following section as well.

Corollary 6.2. Let M = M(~U, ~f), and let c be M-generic over V. Then any
d ∈ V[c] that is M̄-generic over V for any Magidor forcing M̄ is almost contained
in c, i.e., ran(d) \ ran(c) is finite.

Proof. Let M be based at κ and have length α. The proof of Theorem 6.1 goes
through, after straightforward modifications.

If the claim failed, then there would be a condition p in the generic filter
associated to c and an M-name ḋ with ḋc = d, so that p forces that ḋ is M̌′-
generic over V̌ but ran(ḋ) \ ran(Γ) is infinite, where Γ is the canonical M-name
for the generic sequence. Let π : V −→ Mα be the iteration corresponding to
M along p, and let ~λ be the generic sequence associated to the iteration. Then
π(p) belongs to the π(M)-generic filter (over Mα) associated to ~λ, and so, letting

d′ := π(ḋ)
~λ, it follows that d′ \ {~λ} is infinite. Let e be the initial segment of

d′ \ {~λ} of order type ω. Since d′ is a normal function, generic for M̄′ := π(M̄),
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it follows that κ̄ := sup e is measurable in Mα. The argument of the proof of
Theorem 6.1 shows that there is a set C ∈ Mα such that for all ε ∈ e, ε /∈ C,
yet C belongs to any normal ultrafilter in Mα on κ̄. Thus, the sequence with
constant value C with the appropriate length can be used to show that d′ does
not satisfy the Characterization Theorem 4.4 over Mα.

7 Uniqueness

In the previous section, I showed that if d ∈ V[c], where c, d are Magidor-
sequences over V, then ran(d) is almost contained in ran(c). This phenomenon
is known from Př́ıkrý forcing, but there are generalizations of Př́ıkrý forcing
where a stronger conclusion, which I call uniqueness, can be made. In the
above situation, if c and d are generic for the same Magidor forcing M of length
α, then I want to conclude not only that the range of d is almost contained in
the range of c, but that for almost all γ, c(γ) = d(γ). In particular, it follows
that V[c] = V[d]. This is a considerable strengthening that is true of diagonal
Př́ıkrý forcing (the terminology is due to Magidor, and the forcing is treated
in [Git10, Section 1.3]. It is a special case of the “simple” forcings introduced
earlier in [Fuc05, Section 7], which add one point below each measurable cardinal
in a discrete set of measurables. Uniqueness of these simple sequences, and in
particular of diagonal Př́ıkrý sequences, is a consequence of the more general
Maximality Theorem of [Fuc05, Section 6]). It turns out to be true of Magidor
sequences as well, as I will show in the present section.

The following simple tool will be useful in many situations to follow.

Observation 7.1. Let 〈Wγ | γ < α〉 be a sequence of distinct <κ-complete ultra-
filters on κ, where α < κ. Then there is a sequence 〈Xγ | γ < α〉 of pairwise
disjoint sets such that for each γ < α, Xγ ∈ Uγ .

Proof. For γ, δ < α with γ 6= δ, let Xγ,δ ∈ Wγ \Wδ. Let Wγ =
⋂
δ∈α\{γ}Xγ,δ.

By the closure of Wγ , Yγ ∈Wγ . And for δ < α with δ 6= γ, Yγ ⊆ Xγ,δ /∈Wδ. So
Yγ /∈ Wδ. This means that (κ \ Yγ) ∈ Wδ. So let Xγ = Yγ ∩

⋂
δ∈α\{γ}(κ \ Yδ).

Then Xγ ∈ Wγ , and for γ 6= δ, γ, δ < α, Xγ ∩Xδ = ∅: Suppose ξ ∈ Xγ . Then
ξ ∈ κ \Yδ, so ξ /∈ Yδ. But Xδ ⊆ Yδ. So ξ /∈ Xδ, i.e., Xγ and Xδ are disjoint.

In fact, in the case of normal ultrafilters, this can be strengthened as follows
(this may be relevant for a version of Magidor forcing where a κ-sequence is
being added to κ).

Observation 7.2. Let 〈Wγ | γ < κ〉 be a sequence of distinct normal ultrafilters
on κ. Then there is a sequence 〈Xγ | γ < α〉 of pairwise disjoint sets such that
for each γ < α, Xγ ∈ Uγ .

Proof. For γ, δ < κ with γ 6= δ, let Xγ,δ ∈ Wγ \Wδ, and let Xγ,γ = κ. Let

Yγ = �T δ<κXγ,δ. By normality of Wγ , Yγ ∈ Wγ . For γ, δ < κ with γ 6= δ,
Yγ \ (δ + 1) ⊆ Xγ,δ /∈ Wδ (because if ξ ∈ Yδ with ξ > δ, then ξ ∈ Xγ,δ). So
Yγ \ (δ + 1) /∈Wδ, since Xγ,δ /∈Wδ. So Yγ /∈Wδ.
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Define, for γ < κ, Zγ = Yγ ∩
⋂
µ<γ(κ \ Yµ). Clearly, Zγ ∈ Wγ . Moreover,

if γ, δ < κ, γ 6= δ then obviously Zγ ∩ Zδ = ∅ (for wlog, let γ < δ – then
Zδ ⊆ (κ \ Yγ) while Zγ ⊆ Yγ).

The following two lemmas illustrate applications of Observations 7.1 or 7.2.
Taken together, they will make it possible to show that Magidor sequences are
unique in their forcing extension, up to finite changes.

Lemma 7.3. Suppose d ∈ V[c], where c and d are M = M(~U, ~f)-generic over
V. Let α, the length of M, be a limit ordinal. Then for sufficiently large ξ < α,
d(ξ) = c(ξ).

Proof. By Theorem 6.1, there is a ζ < α such that for all ξ ∈ (ζ, α), there is a

ξ′ = l(ξ) such that d(ξ) = c(ξ′). Using Observation 7.1, choose ~X ∈
∏
γ<α Uγ

pairwise disjoint. By Theorem 4.4, there is a ζ ′ such that for all ξ ∈ (ζ ′, α),
c(ξ), d(ξ) ∈ X(ξ) and d(ξ) = c(l(ξ)). Now if there were unboundedly many ξ <
α with d(ξ) 6= c(ξ), we could pick such a ξ ∈ (ζ ′, α). So l(ξ) 6= ξ, d(ξ) ∈ X(ξ),
yet d(ξ) = c(l(ξ)) ∈ X(l(ξ)). So X(ξ) ∩ X(l(ξ)) 6= ∅, even though ξ 6= l(ξ),

contradicting the choice of ~X.

Lemma 7.4. If c is M = M(~U, ~f)-generic over V, where α, the length of ~U , is
an infinite successor ordinal, and if d ∈ V[c] is M-generic over V as well, then
c(ᾱ) = d(ᾱ), where ᾱ is the largest limit ordinal less than α.

Proof. By Corollary 6.2, ran(d) is almost contained in ran(c). It follows that for
every limit ordinal λ ≤ ᾱ, d(λ) ≥ c(λ). For if not, let λ be the smallest counte-
rexample. If λ is a limit of limit ordinals, it follows that d(λ) = sup{d(λ̄) | λ̄ <
λ is a limit} ≥ sup{c(λ̄) | λ̄ < λ is a limit} = c(λ), a contradiction. Otherwise,
let λ̄ be the largest limit ordinal below λ, so λ = λ̄ + ω, or λ = ω and λ̄ = 0.
Then d(λ̄) ≥ c(λ̄). Let f , the finite set of all ξ ∈ (λ̄, λ) with d(ξ) /∈ ran(c), have
m elements. It follows for n < ω with f ⊆ d(λ̄+n) that d(λ̄+n+m) ≥ c(λ̄+n).
So d(λ) = sup{d(λ̄+ n+m) | n < ω} ≥ sup{c(λ̄+ n) | n < ω} = c(λ), which is
also a contradiction.

In particular, d(ᾱ) ≥ c(ᾱ). Now assume towards a contradiction that d(ᾱ)
was greater than c(ᾱ). Then there would be a ζ < ᾱ with d(ζ) > c(ᾱ). Then
for all ξ ∈ (ζ, ᾱ), d(ξ) > c(ᾱ), but there are only finitely many ordinals greater
than c(ᾱ) in ran(c). This is a contradiction.

Putting these last two lemmas together yields the following Uniqueness The-
orem.

Theorem 7.5 (Uniqueness). Let M = M(~U, ~f) of length α, and let c be M-
generic over V. If d ∈ V[c] is also M-generic, then for all but finitely many
γ < α, c(γ) = d(γ). It follows in particular that for all limit ordinals γ < α,
c(γ) = d(γ).

Proof. Assume the contrary. Let α be least such that there is a counterexample
M of length α. It cannot be that α is a limit ordinal, for if it were, then by
Lemma 7.3, it would follow that there is an ᾱ < α such that for all γ ∈ [ᾱ, α),
c(γ) = d(γ). But then, c̄ = c�ᾱ and d̄ = d�ᾱ would be M−〈ᾱ,θ〉-generic, where
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θ = c(ᾱ) = d(ᾱ). By [Mag78, Lemma 5.3], it follows that d̄ ∈ V[c̄]. But since d
and c differ infinitely many times, though never beyond ᾱ, it follows that d̄ and
c̄ differ infinitely many times, contradicting the minimality of α. So α has to
be a successor ordinal. Of course, α has to be infinite, so let α = ᾱ+ n, where
ᾱ is a limit ordinal. By Lemma 7.4, it follows that θ := c(ᾱ) = d(ᾱ). Letting
c̄ = c�ᾱ and d̄ = d�ᾱ, it is now clear that c̄ and d̄ are M−〈ᾱ,θ〉-generic. As before,

it follows that d̄ ∈ V[c̄]. Since there are infinitely many γ with c(γ) 6= d(γ), yet
there are only finitely many such γ that are greater than ᾱ, it follows that there
are infinitely many γ with c̄(γ) 6= d̄(γ). This again contradicts the minimality
of α.

It remains to show that for all limit ordinals λ < α, c(λ) = d(λ). Assume
the contrary, and let λ be a counterexample. Note that it is clear at this point
that V[c] = V[d], so by symmetry, it may be assumed that c(λ) < d(λ). Since d
is a normal function, d(λ) = supξ<λ d(ξ). Let ξ0 < λ be such that c(λ) < d(ξ0).
Then for all ξ ∈ [ξ0, λ), c(ξ) < c(λ) < d(ξ). There are infinitely many such ξ, a
contradiction.

Note that a similar result does not hold in the case of Př́ıkrý forcing. If c
is a Př́ıkrý sequence and d enumerates ran(c) \ {min(ran(c))}, then d ∈ V[c] is
also Př́ıkrý-generic, but c(n) 6= d(n) for all n < ω. Diagonal Př́ıkrý forcing and
other forcings adding one point below every measurable cardinal in a discrete set,
as introduced in [Fuc05], do have a similar uniqueness property. It seems that
ultimately, the reason for the difference in behavior of classical Př́ıkrý sequences
on the one hand and sequences that were added by a variant of diagonal Př́ıkrý
forcing, or, as it will turn out, by Magidor forcing, may be that in Př́ıkrý forcing,
the whole infinite sequence comes from one normal measure, while in the other
variants, every point in the sequence comes from its own measure. In terms of
the iterations the critical points of which form a generic sequence, this can be
formulated more precisely: In Př́ıkrý forcing, the same normal measure (and
its images) is used infinitely many times, while in diagonal Př́ıkrý forcing (and
its variants) each measure is applied only once (or finitely many times), and
similarly for Magidor forcing.

Corollary 7.6. Let M = M(~U, ~f). Let c be V-generic for M. Then the following
are equivalent, for a function d ∈ V[c] ∩

∏
γ<α(Bγ \ (α+ 1)):

1. d is M-generic over V.

2. The set of ξ < α with c(ξ) 6= d(ξ) is finite and contains no limit ordinals.

3. V[c] = V[d].

Proof. This is obvious, given Theorem 7.5 and Corollary 4.6.
I want to explore now how these uniqueness results can be extended to the

situation where d ∈ V[c], where c is Magidor generic and d is generic for a
different Magidor forcing or even another kind of Př́ıkrý type forcing. First, I
show that it is impossible for d to be Př́ıkrý generic, and in the following lemma,
I show that d cannot be generic for any of the Př́ıkrý type forcings introduced
in [Fuc05].

23



Lemma 7.7. Let M = M(~U, ~f), and let c be M-generic over V. Then V[c]
contains no sequence that is Př́ıkrý-generic over V.

Proof. Suppose d ∈ V[c] was generic over V for Př́ıkrý-forcing with respect to
a normal ultrafilter W ∈ V on κ̄. The argument of the proof of the Maximality
Theorem 6.1, or Corollary 6.2, shows that the range of d is almost contained in
the range of c. It follows that κ̄ is a limit point of ran(c). Let’s assume that

κ̄ = c(β), where β is a limit ordinal less than α, the length of ~U . Since W can be
equal to at most one of the ultrafilters fβγ (c(β)), for γ < β, let β0 be such that for

all γ ∈ (β0, β), W 6= fβγ (c(β)). Apply the previous observation to pick, in V, a

set X ∈W and a sequence 〈Xγ | β0 < γ < β〉 so that Xγ ∈ fβγ (c(β)), and so that
all of these measure one sets are pairwise disjoint. Now by Mathias’ criterion
for Př́ıkrý genericity, a tail of d is contained in X. But by the Characterization
Theorem 4.4, for sufficiently large γ < β, c(γ) ∈ Xγ . Since a tail of d is
contained in the range of c, it follows that there are arbitrarily large γ < β
such that c(γ) ∈ ran(d), c(γ) ∈ X and c(γ) ∈ Xγ . This is a contradiction.
One can argue similarly if sup(ran(d)) = sup(ran(c)), by using Uγ in place of
fβγ (c(β)).

Lemma 7.8. Let M = M(~U, ~f), and let c be M-generic over V. Then V[c]
contains no sequence that is generic over V for any of the generalized Př́ıkrý
forcings introduced in [Fuc05].

Proof. I will use the notation from [Fuc05] freely here. Suppose d ∈ V[c] was

generic for the generalized Př́ıkrý forcing P(~κ, ~U, ~η). Since V[c] contains no
Př́ıkrý sequence, by Lemma 7.7, it may be assumed that ηi < ω, for all i. It
suffices to show that d�ω /∈ V[c]. Since d�ω is generic for P(~κ�ω, ~U�ω, ~η�ω), we

may assume that the domain of ~κ, ~U and ~η is already ω. The argument of
Theorem 6.1 or Corollary 6.2 shows that

⋃
ran(d) is almost contained in ran(c).

But then, it follows that supi<ω κi = sup(
⋃

ran(d)) is either an element of ran(c)

or equal to κ, where κ is the measurable cardinal on which the ultrafilters ~U with
respect to which M is constructed. In both cases, it would follow that supi<ω κi
is measurable in the ground model, which is absurd, since this sequence exists
there and witnesses that it has cofinality ω.

These last two lemmas show that Př́ıkrý sequences and generalized Př́ıkrý
sequences are very different from Magidor sequences, despite all the similarities
I pointed out before. There is another way in which they differ substantially,
which I want to emphasize here. If P is a (generalized) Př́ıkrý forcing and ϕ(x)
is a formula, then for any a in the ground model, if there is a condition p ∈ P
which forces ϕ(ǎ), then 1lP forces ϕ(ǎ) (i.e., any condition q ∈ P forces ϕ(ǎ).
Let’s describe this property by saying that 1lP decides all statements about check
names. So P behaves similarly to almost homogeneous forcing. The following
lemma shows that Magidor forcing does not have that property iff the length of
the forcing is strictly greater than ω.

Lemma 7.9. Let M be a Magidor forcing of length α.
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1. If α ≤ ω, then 1lM decides all statements about check names.

2. If α > ω, then 1lM doesn’t decide all statements about check names.

Proof. I will first show point 2. Let M(~U, ~f) have length α, where α is greater
than ω. For γ < α, let Bγ = BM

γ . Let δ ∈ Bω. Let p = pδ be the condition
〈s, T 〉, where s = {〈ω, δ〉}, T (n) = δ for n < ω and T (γ) = κ \ (δ + 1), for
ω < γ < α, where κ is the measurable cardinal of Mitchell order α on which M
is based. Then p forces that the cofinality of δ is ω. But if I pick δ′ ∈ B0, δ′ > δ,
and let q = 〈s′, T ′〉 ∈M be defined by s′ = {〈0, δ′〉} and T ′(γ) = κ \ (δ′+ 1), for
0 < γ < α, then q forces that δ is regular (in fact, measurable), by Fact 2.11.

To show point 1, let M have length ω (if the length is finite, then the forcing
is trivial, and there is nothing to show). Suppose p and q were conditions in
M such that p forces ϕ(ǎ) and q = 〈s, T 〉 forces ¬ϕ(ǎ), for some formula ϕ
and some a ∈ V. Let G 3 p be M-generic over V, and let c be the Magidor
sequence associated to G. So ϕ(a) holds in V[c]. There is a sequence c′ ∈ V[c]
which results from modifying c at finitely many coordinates, such that s ⊆ c′.
It follows from Corollary 4.6 that c′ is M-generic over V. Clearly, q belongs to
the M-generic filter associated to c′, so ϕ(a) fails in V[c′]. But equally clearly,
V[c] = V[c′], so ϕ(a) holds in V[c′]. This is a contradiction.

I now want to turn to the case that d ∈ V[c], where both c and d are generic
for Magidor forcings, but possibly different Magidor forcings, and analyze the
coordinate-wise relationship between d and c. Let’s first see what the situation
is like in the case of Př́ıkrý forcing.

Lemma 7.10. If c is a Př́ıkrý sequence generic for the Př́ıkrý forcing with
respect to the normal ultrafilter on U , then in V[c], there is no Př́ıkrý forcing
generic with respect to Př́ıkrý forcing with respect to a different normal ultrafilter
U ′.

Proof. Suppose there was d ∈ V[c] generic for the Př́ıkrý forcing with respect
to U ′, where U ′ 6= U . Clearly, U ′ has to be on κ (U ′ can’t be on a κ̄ < κ, since
adding c adds no bounded subset of κ, and it can’t be on a measurable cardinal
greater than κ, because adding c would preserve the measurability of such a
cardinal, while adding d makes it ω-cofinal). The argument of Corollary 6.2
shows that ran(d) is almost contained in ran(c). Let X ∈ U \ U ′. Then ran(c)
is almost contained in X. But since κ \X ∈ U ′, ran(d) is almost contained in
κ \ X. So there are at most finitely many members of ran(d) that belong to
ran(c), contradicting that ran(d) is almost contained in ran(c).

The situation in the case of Magidor forcing is a little more complicated.

Lemma 7.11. Let d ∈ V[c], where c and d are generic for the Magidor forcings

M = M(~U, ~f) and M̄ = M( ~̄U, ~̄f), respectively. Let α be the length of M and
ᾱ be the length of M̄. Then there is a weakly increasing, continuous function
t : ᾱ −→ α in V such that

1. For all but finitely many γ < ᾱ, and for all limit γ < ᾱ, d(γ) = c(t(γ)).
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2. For all limit ordinals λ < ᾱ and for all sufficiently large γ < λ,

f̄λγ (d(λ)) = f
t(λ)
t(γ) (c(t(λ)))

3. If ᾱ is a limit ordinal, then let θ = sup ran(t). If θ = α, then set fθγ (κ) =
Uγ , for γ < α. Then, for all sufficiently large γ < ᾱ,

Ūγ = fθt(γ)(sup c“θ)

Note: It follows from 1. that there are at most finitely many δ < α such that
the preimage t−1“{δ} has more than one member, and each of these preimages
is finite. This is because if t(γ0) = t(γ1) yet γ0 < γ1, then d(γ0) < d(γ1), yet
c(t(γ0)) = c(t(γ1)). So d(γ0) 6= c(t(γ0)) or d(γ1) 6= c(t(γ1)). But there are
only finitely many γ for which d(γ) 6= c(t(γ)). So t has to be “almost strictly
increasing”.

Proof. By Corollary 6.2, ran(d) is almost contained in ran(c). We may assume
that sup(ran(d)) ≤ sup(ran(c)), and that ᾱ is a limit ordinal. It follows that ᾱ ≤
α. Define in V[c]: t(ξ) = c−1(min(ran(c) \ d(ξ))) (in particular, if d(ξ) ∈ ran(c),
then t(ξ) = c−1(d(ξ))). Note that t ⊆ ᾱ× α, and so, t ∈ V, since α < c(0).

Since for almost all ξ < ᾱ, d(ξ) ∈ ran(c), t is continuous (since both c and d
are), and point 1 is immediate.

For point 2, assume the contrary. Fix a limit ordinal λ < ᾱ such that the
set E of γ < λ with

f̄λγ (θ) 6= f
t(λ)
t(γ) (θ)

is unbounded in λ, where θ = d(λ) = c(t(λ)). Define, in V, a sequence 〈Xγ |
γ < λ〉 such that for γ ∈ E, Xγ ∈ f̄λγ (θ) but Xγ /∈ f t(λ)

t(γ) (θ). For γ < λ with

γ /∈ E, let Xγ = θ. Now let 〈Yγ | γ < t(λ)〉 be defined as follows. If γ ∈ E,
then let Yt(γ) = θ \ Xγ , and Yξ = θ whenever ξ < λ is not of the form t(γ),
for some γ < λ with γ ∈ E. Then by part 2 of Theorem 4.4, there is a ζ̄ < λ
and a ζ < t(λ) such that for all ξ < λ with ξ > ζ̄, d(ξ) ∈ Xξ, and for all
ξ < t(λ) with ξ > ζ, c(ξ) ∈ Yξ. Now let γ ∈ E be large enough that γ > ζ̄,
t(γ) > ζ and d(γ) = c(t(γ)). Then d(γ) ∈ Xγ , c(t(γ)) ∈ Yt(γ), Yt(γ) = θ \Xγ ,
and d(γ) = c(t(γ)), a contradiction.

The proof of point 3 is almost identical.

Definition 7.12. Let M = M(~U, ~f) be a Magidor forcing of length α, based
at κ. Let C ⊆ α be closed in its supremum, let t : ᾱ −→ C be the monotone
enumeration of C, and let κ̄ ≤ κ. Then the collapse of M�C of height κ̄ is the

forcing M̄ = M( ~̄U, ~̄f) defined as follows.
If C is unbounded in α, then M̄ is only defined if κ̄ = κ, and in that case, it

is defined by Ūγ = Ut(γ), for γ < ᾱ, and f̄νµ (δ) = f
t(ν)
t(µ) , for µ < ν < ᾱ.

If C is bounded in α, then let θ = supC. M̄ is then defined if κ̄ ∈ Bθ, and

in that case, it is defined by Ūγ = fθt(γ)(κ̄), for γ < ᾱ, and f̄νµ = f
t(ν)
t(µ)�κ̄.
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Lemma 7.13. If M̄ is the collapse of M�C at κ̄, then M̄ is a Magidor forcing
as well. Moreover, letting ᾱ be the length of M̄ (i.e., the order type of C) and
t : ᾱ −→ C the monotone enumeration, it follows that BM

t(γ) ∩ κ̄ ⊆ BM̄
γ , for

γ < ᾱ.

Proof. It is obvious that M̄ is a Magidor forcing in the case that C is unbounded
in α and hence, κ̄ = κ. If C is bounded in α, then let θ = supC. Letting

µ < ν < ᾱ, it needs to be verified that [f̄νµ]Ūν = Ūµ. By definition of ~̄U and ~̄f ,

this means that [f
t(ν)
t(µ)�κ̄]fθ

t(ν)
(κ̄) = fθt(µ)(κ̄), and this is true because κ̄ ∈ Bθ.

For the “moreover” part of the lemma, this is again clear if C is unbounded
in α and κ̄ = κ, so let’s focus on the other case. Fix γ < ᾱ, and assume
that δ ∈ BM

t(γ), δ < κ̄. To see that δ ∈ BM̄
γ , fix µ < ν < ᾱ. It needs to be

checked that [f̄νµ�δ]f̄γν (δ) = f̄γµ (δ). Unraveling the definitions, this is equivalent

to [f
t(ν)
t(µ)�δ]ft(γ)

t(ν)
(δ)

= f
t(γ)
t(µ) (δ). But this holds, because δ ∈ BM

t(γ).

Definition 7.14. Let M be a Magidor forcing of length α at κ, and let c be
V-generic for M. Let C ⊆ α be closed in its supremum. Let θ = supC. If
θ = α, then let κ̄ = κ, and if θ < α, then let κ̄ = c(θ). Then the canonical
collapse of M determined by C and c is the collapse of M�C at κ̄.

Observation 7.15. The canonical collapse of a Magidor forcing M, determined
by C and c as in the previous definition, is always defined, and is a Magidor
forcing.

Proof. Using the terminology of the definition, either κ̄ = κ, or κ̄ ∈ Bθ. So the
collapse of M�C at κ̄ is defined, and by Lemma 7.13, it is a Magidor forcing.

Theorem 7.16. Let c be V-generic for the Magidor forcing M = M(~U, ~f) of
length α. Then

1. Let C ⊆ α be closed in its supremum, and let t be the monotone enume-
ration of C. Let d : ᾱ −→ κ̄ be defined by

d(γ) = c(t(γ)).

Then d belongs to V[c] and is V-generic for the canonical collapse of M
determined by C and c.

2. If d ∈ V[c] is a Magidor sequence, then let C = {γ | d(γ) ∈ ran(c)}. Then
C is closed in its supremum, dom(d) \ C is at most finite, and letting
t : ᾱ −→ C be the monotone enumeration, the function d̄(γ) = c(t(γ)),
for γ < ᾱ, is generic for M̄, the canonical collapse of M determined by C
and c. Note that d̄ is the monotone enumeration of ran(d)∩ ran(c), which
is almost equal to ran(d), with at most finitely many points missing.

Proof. For 1., I will first deal with the case that θ = α (and hence, κ̄ = κ).
In this case, it is clear that the collapse of M�C at κ̄ is defined. To see that
d is V-generic for M̄, I have to verify the conditions of the Characterization
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Theorem 4.4. Before verifying 1. and 2. of that theorem, recall that by Lemma
7.13, for γ < ᾱ, d(γ) = c(t(γ)) ∈ BM

t(γ) ∩ κ̄ ⊆ BM̄
γ . To check condition 1. now,

let X ∈ V ∩
∏
γ<ᾱ Ūγ . So for γ < ᾱ, X(γ) ∈ Ut(γ). Let Y ∈ V ∩

∏
γ<α Uγ be

defined by Y (γ) = X(t−1(γ)) if γ ∈ ran(t), and let Y (γ) = κ otherwise. Then
since c is generic, for sufficiently large γ < α, c(γ) ∈ Y (γ). But this implies
that for sufficiently large γ < ᾱ, d(γ) ∈ X(γ). The second condition follows in
a similar fashion.

I will now turn to the case θ < α, κ̄ < κ. Since κ̄ = c(θ) ∈ BM
θ , the collapse

of M�C at κ̄ is defined, and by Lemma 7.13, it is a Magidor forcing. So it
remains to check that d is M̄-generic over V, by checking that the conditions
of the Characterization Theorem 4.4 hold, as above. As before, for γ < ᾱ,
d(γ) = c(t(γ)) ∈ BM

t(γ) ∩ κ̄ ⊆ B
M̄
γ , again by Lemma 7.13. For the first condition,

let ~X ∈
∏
γ<ᾱ Ūγ . Define ~Y ∈

∏
δ<α f

θ
δ (κ̄) by setting Y (δ) = X(t−1(γ)) if

γ ∈ ran(t), and Y (δ) = κ̄ otherwise. Keeping in mind that κ̄ = c(θ), and that c
is M-generic over V, it follows from the fact that c satisfies the second condition
of Theorem 4.4 that for sufficiently large δ < θ, c(δ) ∈ Y (δ). Pulling back via
t, this shows that for sufficiently large γ < ᾱ, d(γ) ∈ X(γ). The argument
establishing that d satisfies the second condition of Theorem 4.4 is similar. This
concludes the proof of 1.

For 2., let d be V-generic for some Magidor forcing M̃. Then ran(d) is almost
contained in ran(c), by Theorem 6.2. Let d̄ enumerate ran(c)∩ran(d). It is easy
to see that, letting C := {γ | d(γ) ∈ ran(c)}, d̄ is generic for the canonical

collapse M′ = M( ~U ′, ~f ′) of M̃ determined by C and d. So d̄ ∈ V[c] is also
generic for a Magidor forcing, and ran(d̄) ⊆ ran(c). Let θ = supC, and in case
C is unbounded α, let κ̄ = κ, and κ̄ = c(θ) otherwise. By (the proof of) Lemma
7.11, there is a normal function t : ᾱ −→ α, where ᾱ is the length of M′, such
that

1. For all γ < ᾱ, d̄(γ) = c(t(γ)).

2. For all limit ordinals λ < ᾱ and for all sufficiently large γ < λ, f ′
λ
γ(d(λ)) =

f
t(λ)
t(γ) (c(t(λ))).

3. Suppose ᾱ is a limit ordinal. If θ = α, then for all sufficiently large
γ < ᾱ, U ′γ = Ut(γ), and if θ < α, then for all sufficiently large γ < ᾱ,

U ′γ = fθt(γ)(κ̄).

I will use this in order to verify conditions 1. and 2. of the Characterization

Theorem 4.4 for d̄ with respect to M̄ = M( ~̄U, ~̄f), the collapse of M�C at κ̄.
First, note that for γ < ᾱ, d̄(γ) = c(t(γ)) ∈ BM

t(γ)c ∩ κ̄ ⊆ B
M̄
γ . Now, for the first

characterization condition, if ᾱ is a limit ordinal, let X ∈ V ∩
∏
γ<ᾱ Ūγ . Note

that by 3. above, for sufficiently large γ < ᾱ, U ′γ = Ūγ . So for sufficiently large

γ < ᾱ, Xγ ∈ U ′γ . Since d̄ is generic for M′, it follows that for sufficiently large

γ < ᾱ, d̄(γ) ∈ U ′γ = Ūγ . The argument for the second characterizing condition is

similar. Let λ < ᾱ be a limit ordinal, and let X ∈ V∩
∏
γ<λ f̄

λ
γ (d̄(λ)). By 1. and
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2. above, for sufficiently large γ < λ, f ′
λ
γ(d̄(λ)) = f

t(λ)
t(γ) (c(t(λ))) = f̄λγ (d̄(λ)).

Since d̄ is M′-generic, it follows that for sufficiently large γ < λ, d̄(γ) ∈ f ′λγ(d̄(λ)).

So, for sufficiently large γ < λ, d̄(λ) ∈ f̄λγ (d̄(λ)). This completes the proof.

Lemma 7.17. Let c be M = M(~U, ~f)-generic and d be M′ = M(~U ′, ~f ′)-generic
over V, and assume that V[c] = V[d]. Let α be the length of M and α′ be the
length of M′. Let ᾱ be the largest limit ordinal less than or equal to α. Then
the following hold.

1. The symmetric difference of ran(c) and ran(d) is finite.

2. ᾱ is also the largest limit ordinal less than or equal to α′.

3. For all limit γ < ᾱ, c(γ) = d(γ), and if ᾱ < α and ᾱ < α′, then c(ᾱ) =
d(ᾱ).

4. If λ < ᾱ is a limit of limits, then for sufficiently large ξ < λ, c(ξ) = d(ξ),

and moreover, fλξ (c(λ)) = f ′
λ
ξ (d(λ)). The same is true for λ = ᾱ, if ᾱ is

a limit of limits and ᾱ < α, α′.

Proof. Since c ∈ V[d], ran(c) is almost contained in ran(d) by Corollary 6.2,
and vice versa, since d ∈ V[c], the same corollary shows that ran(d) is almost
contained in ran(c), establishing 1. Clearly, 1 implies 2.

To avoid trivialities, assume c and d are infinite sequences, and let θ be the
largest limit point of ran(c). By 1, θ is also the largest limit point of ran(d).
Let c̄ and d̄ be the maximal initial segments of c and d, respectively, so that
θ = sup ran(c̄) = sup ran(d̄). Then ᾱ = dom(c̄) = dom(d̄) is the largest limit
ordinal less than or equal to α as well as to α′.

Since d ∈ V[c̄] and c ∈ V[d̄], there are weakly monotonic functions s : α −→
α′ and t : α′ −→ α such that the conclusions of Lemma 7.11 hold in both
directions. So

(a) For all but finitely many γ < α, and for all limit γ < α, c(γ) = d(s(γ)),
and for all but finitely many γ < α′, d(γ) = c(t(γ)).

(b) For all limit ordinals λ < α and for all sufficiently large γ < λ, fλγ (c(λ)) =

f ′
s(λ)
s(γ)(d(s(λ))), and for all limit ordinals λ < α′ and for all sufficiently

large γ < λ, f ′
λ
γ(d(λ)) = f

t(λ)
t(γ) (c(t(λ))).

(c) If α is a limit ordinal, then let θ′ = sup ran(s). If θ = α′, then set

f ′
θ
γ(κ′) = U ′γ , for γ < α′. Then, for all sufficiently large γ < α,

Uγ = f ′
θ
s(γ)(sup d“θ)

Similarly, for all sufficiently large γ < α′,

U ′γ = f
sup ran(t)
t(γ) (sup c“(sup ran(t)))
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It follows from the note after the statement of Lemma 7.11 that for limit ordinals
γ in the domain of s, s(γ) is a limit ordinal greater than or equal to γ, and
similarly, t(γ) is a limit ordinal greater than or equal to γ if γ belongs to the
domain of t. The existence of the functions s and t immediately implies 3,
because if γ < ᾱ is a limit, then by (a), c(γ) = d(s(γ)), and, since s(γ) is a
limit, d(s(γ)) = c(t(s(γ))). So c(γ) = c(t(s(γ))), which implies that γ ≤ s(γ) ≤
t(s(γ)) = γ, and so, c(γ) = d(γ). Note that this shows that if γ < ᾱ is a limit
ordinal, then γ = s(γ) = t(γ). It follows similarly that s(ᾱ) = t(ᾱ) if ᾱ < α, α′.

For 4, let λ < ᾱ be a limit of limits. Let λ̄ < λ be a limit ordinal such that
for all γ < λ with γ ≥ λ̄, γ ≤ s(γ) and γ ≤ t(γ), and (a) above holds at γ. So,
for such γ, c(γ) = d(s(γ)), d(s(γ)) = c(t(s(γ))), which implies that t(s(γ)) = γ.
But then, γ ≤ s(γ) ≤ t(s(γ)) = γ, so γ = s(γ) = t(γ). This means that for
γ < λ with γ ≥ λ̄, c(γ) = d(γ). The rest of statement 4 follows similarly.

One cannot conclude, in the setting of the previous lemma, that for all but
finitely many ξ, c(ξ) = d(ξ). For example, M could be the collapse of M′�κ\{0}
of height κ and c(n) = d(n + 1), for all n < ω. This also shows that the
requirement in 4. of the previous lemma that λ be a limit of limits cannot be
dropped.

8 Minimal Magidor forcing

Observation 7.1 suggests that for fixed µ < α, the functions 〈fνµ | µ < ν < α〉
can be merged into one function gµ as follows. Let ~X ∈

∏
γ<α Uγ be pairwise

disjoint, and let
⋃
γ<αXγ = κ. Define, for µ < α, a function gµ : κ −→ V by

gµ(δ) =

{
fνµ (δ) if δ ∈ Xν , where ν > µ,
∅ otherwise.

It follows that for µ < ν < α,

Uµ = [gµ]Uν ,

because Uµ = [fνµ ]Uν , and [fνµ ]Uν = [gµ]Uν , since for all δ ∈ Xν , gµ(δ) = fνµ (δ),
and Xν ∈ Uν . One arrives at a “minimal” version of Magidor forcing by re-
placing the sequence ~f by the sequence ~g. Let’s say that M(~U, ~f) is minimal if
for all µ < ν < ν′ < α, fνµ = fν

′

µ . So in this case, it is not necessary to keep
track of the superscripts, and one can just write fµ in place of fνµ . The above
construction shows the following.

Observation 8.1. Let ~U be a sequence of normal ultrafilters on κ of length
α < κ, increasing in the Mitchell order. Then there is a sequence ~f such that
M(~U, ~f) is minimal.

It seems that using minimal Magidor forcing reduces the combinatorial com-
plexity considerably. The question arises whether restricting to minimal Ma-
gidor forcing is really a restriction - i.e., can there be Magidor sequences that
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are not generic for any minimal Magidor forcing? The following theorem shows
that this is not the case.

Theorem 8.2. Every Magidor sequence is generic for a minimal Magidor for-
cing.

Proof. Suppose not. Let p = 〈g,G〉 ∈ M := M(~U, ~f). Let M be at κ and have
length α. Let a be the domain of g. Let 〈Xµ | µ < α〉 be a partition of κ such
that

1. For all µ < α, Xµ ∈ Uµ.

2. For all γ ∈ a and for all ν < γ, Xν ∩ g(γ) ∈ fγν (g(γ)).

3. For all γ ∈ a, g(γ) ∈ Xγ .

This is easily achieved: For each γ ∈ a, apply Observation 7.2 to the sequence
〈fγµ (g(γ)) | µ < γ〉 of normal ultrafilters on g(γ). This gives a partition 〈Y γµ |
µ < γ〉 of g(γ) such that for each µ < γ, Yµ ∈ fγµ (g(γ)). In addition, by the
same observation, let 〈Y αµ | µ < α〉 be a partition of κ such that for all µ < α,
Y αµ ∈ Uµ. Now define a partition 〈Yµ | µ < α〉 of κ by setting:

ξ ∈ Yµ ⇐⇒ ξ ∈ Y γµ , where γ < α is the least µ such that µ ∈ a and ξ < g(µ),

or γ = α if g(µ) < ξ for all µ ∈ a.

It is clear that 〈Yµ | µ < α〉 satisfies conditions 1. and 2. above. By making
finitely many modifications to this sequence, it is easy to arrange condition 3. in
addition.

Let ~g be the resulting minimal sequence, i.e., for µ < α, gµ : κ −→ V is
defined by

gµ(δ) =

{
fνµ (δ) if δ ∈ Xν , where ν > µ,
∅ otherwise.

so that for µ < ν < α, gµ�Xν = fνµ�Xν . Let G′(γ) = G(γ)∩Xγ , for γ ∈ dom(G).

So by 1. and 2. above, 〈g,G′〉 ∈M(~U, ~f), and clearly, 〈g,G′〉 is a strengthening
of 〈g,G〉.
Claim: If 〈f, F 〉 ≤ 〈g,G′〉 in M(~U, ~f), then 〈f, F 〉 ∈M(~U,~g).

For γ ∈ dom(F ), if there is no γ′ > γ with γ′ ∈ dom(f), then F (γ) ∈ Uγ ,
by 2., and if there is such a γ′, then, letting β be the least, it follows that
f(β) ∈ Xβ (either because f(β) = g(β), or because f(β) ∈ G′(β) = G(β)∩Xβ).
So F (γ) ∈ fβγ (f(β)) = gγ(f(β)), by definition of gγ . The only non-obvious

condition that needs to be verified is that f(γ) ∈ B
M(~U,~g)
γ , for γ ∈ dom(f).

First, note that, again, f(γ) ∈ Xγ . Fix µ < ν < γ. It needs to be shown

that [gµ�f(γ)]gν(f(γ)) = gµ(f(γ)). Since 〈f, F 〉 ∈M(~U, ~f), by definition, f(γ) ∈
B

M(~U,~f)
γ , which implies that [fνµ�f(γ)]fγν (f(γ)) = fγµ (f(γ)). Since f(γ) ∈ Xγ , it

follows that W := gν(f(γ)) = fγν (f(γ)) and gµ(f(γ)) = fγµ (f(γ)). So it remains
to show that [gµ�f(γ)]W = [fνµ�f(γ)]W . By definition of gµ, for all ξ ∈ Xν ,
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gµ(ξ) = fνµ (ξ). But by condition 2. above, and because 〈f, F 〉 ≤ 〈g,G′〉, it

follows that Xν ∩ f(γ) ∈ fγν (f(γ)), which proves that g(γ) ∈ BM(~U,~g)
γ .

In particular, 〈g,G′〉 ∈ M(~U,~g). It is now easy to see that the converse of

the previous claim holds as well. So whenever 〈f, F 〉 ≤ 〈g,G′〉 in M(~U,~g), then

〈f, F 〉 ∈ M(~U, ~f). It follows then easily that the restrictions of M(~U,~g) and

M(~U, ~f) to conditions below 〈g,G′〉 are equal.

Recall that 〈g,G〉 ∈ M(~U, ~f) was arbitrary, and we found 〈g,G′〉 below it.

This shows that the set of conditions 〈h,H〉 in M(~U, ~f) such that the restriction

of M(~U, ~f) to conditions below 〈h,H〉 is the same as the restriction of some

minimal Magidor forcing M(~U,~g) to conditions below 〈h,H〉 is dense in M(~U, ~f).
This proves the theorem.

I want to conclude this paper with a few general questions indicating pos-
sible further research ideas in the areas of characterization and uniqueness of
Př́ıkrý-type generic sequences. Firstly, there is the obvious question whether
there are similar characterizations of genericity for other Př́ıkrý-type forcings.
Do they lead to the genericity of the critical sequences of certain accompanying
iterations, and further, to similar uniqueness properties? Secondly, similar que-
stions can be asked about Namba forcing. It was shown by Jensen in [Jen08]
that any ω-sequence cofinal in ωV

2 which exists in V[G], where G is generic for
Namba forcing, is also Namba-generic. So this is a simple characterization of the
Namba-generic sequences that are present in a fixed Namba-generic extension.
At the same time, it shows that uniqueness completely fails for Namba forcing.
There are other versions of Namba forcing, and the question arises whether
there is a version of Namba forcing that adds sequences having some kind of
uniqueness property, and how these generic sequences can be characterized.
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