
Set theory and logic

Gunter Fuchs

May 11, 2019

2

Contents

Introduction 5

1 Syntax 7

1.1 Words . 7

1.2 Languages . 7

1.2.1 Terms . 8

1.2.2 Formulas . 8

1.3 Proofs . 10

2 Sets 13

2.1 Fragments of ZFC . 14

2.2 Well-founded Relations . 21

2.3 Ordinal Numbers and Infinity . 25

2.3.1 Well-orders . 25

2.3.2 Ordinals . 26

2.3.3 The Natural Numbers . 30

2.3.4 Foundation . 33

2.3.5 Trees . 35

2.4 Cardinal Numbers and Choice . 36

2.4.1 Comparing size without choice . 36

2.4.2 Equivalents of the axiom of choice . 38

2.4.3 Basic cardinal arithmetic . 39

2.5 Subsystems of set theory . 43

3 Semantics 45

3.1 Models . 45

3.2 Consequence . 49

4 Same same... but different 51

4.1 Correctness . 51

4.2 Completeness . 53

4.3 Compactness . 58

4.4 Ultrafilters and Ultraproducts . 59

4.4.1 Filters and ultrafilters . 59

4.4.2 Ultraproducts . 60

4.4.3 Compactness revisited . 62

3

4 CONTENTS

5 Incompleteness 65
5.1 Arithmetic with Exponentiation and Representability 65
5.2 A different Gödelization: Ackermann’s coding of Vω 74
5.3 Tarski’s undefinability of truth . 80
5.4 Computability and Recursiveness . 82

5.4.1 Turing Machines . 82
5.4.2 Variants of Turing Machines, Simulation, Equivalence and Church’s Thesis 84
5.4.3 Enumerating Languages . 86
5.4.4 The Acceptance and the Halting Problem 86
5.4.5 Recursive and partial recursive functions, and the Recursion Theorem . . 89

5.5 Gödel’s Incompleteness Theorems . 92
5.5.1 Incompleteness of Number Theory . 93
5.5.2 Incompleteness of Set Theory . 96

5.6 Large Cardinals . 98

CONTENTS 5

Introduction

These notes are based on lecture notes that I produced “on the fly” in Summer Semester
2009 at Münster University, Germany, when I taught the lecture course Logic I. They have been
reworked when I taught a similar course at the Graduate Center of CUNY in Spring 2011, 2012,
2018 and and are now undergoing another revision in Spring 2019.

Even though the course is aimed at an audience familiar with the basics of predicate calculus,
such as the concepts of a first order language, models/structures and ultraproducts, these notes
are pretty much self-contained.

The approach I choose differs from traditional approaches in several respects. In the first
chapter, I describe the syntax of first order logic and give the definition of the Tait calculus, a
cut-free proof calculus which is the one preferred by proof-theorists. Being cut-free makes this
calculus more amenable to methods from computer science, in particular automated theorem
proving. Students with a background in logic have probably not seen this type of calculus, but
are likely to have seen a Hilbert-style sequent calculus. So I hope nobody will be bored by this
chapter.

I follow a very pure approach, in that I don’t give any proofs in the first chapter. The reason
is that I could be asked which theory I am proving the theorems in, that is, which meta theory
I am using. So in chapter 2, I develop basic set theory. The theorems I am stating are proved
in (fragments of) set theory, and in theory, they could be deduced using the Tait calculus I
introduced in the first chapter. The main tool from that chapter that will be put to use later
is the recursion theorem. I develop basic set theoretic concepts up to ordinals, trees and the
axiom of choice with some equivalent formulations. Aside from serving as the meta theory for
the further development, students will get to know the basics of set theory in this chapter.

In chapter 3, I use a weak background set theory to define the semantic notions like models
and logical consequence. These concepts will most likely be known to the audience, so that this
chapter will only be treated very briefly.

Chapter 4 contains proofs of the correctness and the completeness of the Tait-calculus. I
prove completeness and compactness first for countable languages only. In a last section, I prove
the general completeness and compactness theorems for arbitrary languages, using ultraproducts,
and using full ZFC as the background theory. If the audience is familiar with a different correct
and complete proof calculus, I may skip this chapter in the lecture, and in that case, it serves as
a reference only.

Finally, in chapter 5, I prove Tarski’s undefinability of truth theorem, Gödels incomplete-
ness theorems, and develop the necessary background in recursion theory/computability theory.
Instead of the traditional Gödel coding of formulas, I use Ackermann’s isomorphism which al-
lows to translate relations which are ∆1 in the hereditarily finite sets to recursive/representable
relations. Working in the hereditarily finite sets allows us to apply a weak set theory (without
infinity) in order to see that the basic syntactical concepts are representable in arithmetic. I
conclude with some large cardinal theory.

Gunter Fuchs, spring 2019

6 CONTENTS

Chapter 1

Syntax

1.1 Words

Definition 1.1.1. Let Σ be a set (the alphabet). A free semi-group generated by Σ is a structure
〈Z,_〉 (the words over Σ), where _ : Z2 −→ Z, satisfying the following axioms:

1. (x_y)_z = x_(y_z). (I am using infix notation for _ here, so x_y means _(x, y).)

2. there is an e ∈ Z such that for all z ∈ Z, z_e = e_z = z. e is uniquely determined, and
we’ll write ∅ for the empty word e.

3. There is an injective map s 7→ s′ from Σ to Z such that whenever s′ = x_y, then either
x = s′ and y = ∅, or x = ∅ and y = s′.

4. every z ∈ Z has the form z = s′1
_s′2

_ . . ._s′n, where s1, . . . , sn ∈ Σ. This holds for z = ∅
with n = 0, by convention.

5. if s1, . . . sm and t1, . . . , tn ∈ Σ, then:

s′1
_ . . ._s′m = t′1

_ . . ._t′n iff m = n and si = ti for all i < n.

Remark 1.1.2. A free semi-group generated by a set Σ is uniquely determined by Σ, up to
isomorphism. This means that any two semi-groups generated by Σ are isomorphic. That’s
why I’ll refer to the semi-group generated by Σ, and I’ll denote it by Σ∗. Σ∗ may stand for the
structure 〈Z,_〉 as well as for the set Z, and I’ll just refer to it as the collection of words over the
alphabet Σ. Also, to save space, I’ll drop the connective _, and just write xy in place of x_y.
Dropping the brackets is justified by 1. I’ll also identify s and s′, for s ∈ Σ, so that Σ ⊂ Σ∗.
This just means that we can view symbols of the alphabet as words of length one.

Definition 1.1.3. A member s ∈ Σ occurs in a word w ∈ Σ∗ if there are words w0 and w1 such
that w = w0

_s_w1. An occurrence of s in w is a triple 〈w0, s, w1〉 such that w = w0
_s_w1.

1.2 Languages

Definition 1.2.1. A first order language is a quadruple L = 〈C,P,F,#〉 such that

1. C,P and F are pairwise disjoint,

7

8 CHAPTER 1. SYNTAX

2. # : (P ∪ F) −→ N.

The alphabet of L, Σ(L), is the least set containing C, P, F and the following distinct elements:

1. vn, for n ∈ N, in the sense that the map n 7→ vn exists.

2. ∧̇, ∨̇, ¬̇, ∀̇, ∃̇, (̇,)̇, ,̇.

3. =̇. 1

I’ll denote the set {vn | n < ω} by Var(L).
The Tait-alphabet of L, ΣT (L), is the least set containing C, P, F and the following distinct

elements:

1. vn, for n ∈ N, in the sense that the map n 7→ vn exists.

2. ∧̇, ∨̇, ∀̇, ∃̇, (̇,)̇, ,̇. So ¬̇ is missing!

3. =̇ and ˙6=.

4. An element P̄ , for every P ∈ P, in the sense that the map P 7→ P̄ is injective, and all the

elements P̄ are new. Let’s define ¯̄P = P , =̇ = ˙6= and ˙6= = =̇.

1.2.1 Terms

Definition 1.2.2. Let L = 〈C,P,F,#〉 be a language with alphabet Σ(L). The set of terms of
L is the least subset X of Σ(L)∗ with the following properties:

1. Var(L) ∪ C ⊆ X,

2. if f ∈ F, n = #(f) and t1, . . . , tn ∈ X, then

f_(̇_t1
_ ,̇_t2

_ ,̇ . . . ,̇_tn
_)̇ ∈ X.

1.2.2 Formulas

Definition 1.2.3. Let L = 〈C,P,F,#〉 be a language with alphabet Σ(L). I shall define what
atomic and compound formulas are, and at the same time which occurrences of variables in these
formulas are free and which are bound. Then I’ll do the same thing for atomic Tait formulas and
compound Tait formulas. Every occurrence of a variable will be either free or bound.

The set of atomic formulas of L is the least subset X of Σ(L)∗ with the following properties:

1. If t1 and t2 are terms of L, then t1=̇t2 ∈ X.

2. If P ∈ P, n = #(P) and t1, . . . , tn are terms of L, then P (̇t1 ,̇t2 ,̇ . . . ,̇tn)̇ ∈ X.

Every occurrence of a variable in an atomic formula is free.
The set of compound formulas is the least subset X of Σ(L)∗ with the following properties:

1. If ϕ1 and ϕ2 are atomic formulas or members of X, then (̇ϕ1 ◦ ϕ2)̇ ∈ X, for ◦ = ∧̇ or

◦ = ∨̇. An occurrence 〈(̇w0, vm, w1 ◦ ϕ2)̇〉 of vm in (̇ϕ1 ◦ ϕ2)̇ is free (bound) if 〈w0, vm, w1〉
is a free (bound) occurrence of vm in ϕ1. Similarly, an occurrence 〈(̇ϕ0 ◦ w0, vm, w1)̇〉 of vm
in (̇ϕ1 ◦ ϕ2)̇ is free (bound) if 〈w0, vm, w1〉 is a free (bound) occurrence of vm in ϕ2.

1This symbol is usually part of the alphabet. In some rare occasions, one may want to work without it though.
Still, the default is that it is part of the alphabet.

1.2. LANGUAGES 9

2. If ϕ is an atomic formula or a member of X, then ¬̇_ϕ ∈ X. An occurrence 〈¬̇w0, vm, w1〉
in ¬̇ϕ is free (bound) if 〈w0, vm, w1〉 is free (bound) in ϕ.

3. If ϕ is an atomic formula or a member of X, and Q = ∀̇ or Q = ∃̇, then Qvmϕ ∈ X, for
every m ∈ N such that vm does not occur as a bound variable in ϕ . Every occurrence of
vm in Qvmϕ is bound. If n 6= m, then every occurrence 〈Qvmw0, vn, w1〉 of vn in Qvmϕ is
free (bound) if 〈w0, vn, w1〉 is a free (bound) occurrence of vn in ϕ.

The set of atomic Tait formulas is the least subset X of ΣT (L)∗ with the following properties:

1. If t1 and t2 are terms of L, then t1=̇t2 ∈ X and t1 ˙6=t2 ∈ X.

2. If P ∈ P, n = #(P) and t1, . . . , tn are terms of L, then P (̇t1 ,̇t2 ,̇ . . . ,̇tn)̇ ∈ X, and also

P̄ (̇t1 ,̇t2 ,̇ . . . ,̇tn)̇ ∈ X.

Every occurrence of a variable in an atomic Tait formula is free.
The set of compound Tait formulas is the least subset X of Σ(L)∗ with the following proper-

ties:

1. If ϕ1 and ϕ2 are atomic Tait formulas or members of X, then (̇ϕ1 ◦ ϕ2)̇ ∈ X, for ◦ = ∧̇ or
◦ = ∨̇. Whether an occurrence of a variable is free or bound is defined as above.

2. If ϕ is an atomic Tait formula or a member of X, and Q = ∀̇ or Q = ∃̇, then Qvmϕ ∈ X,
for every m ∈ N such that vm does not occur as a bound variable in ϕ. Again, whether an
occurrence of a variable is free or bound is defined as above.

If ϕ is a formula (or a Tait formula), then a variable v is a free variable of ϕ if there is a free
occurrence of v in ϕ. It is a bound variable of ϕ if there is a bound occurrence of v in ϕ. It is a
(Tait) sentence if it has no free variable.

Definition 1.2.4. If ϕ is a Tait formula, then ∼ϕ is the Tait formula arising by swapping the
following symbols:

1. ∧̇ and ∨̇,

2. ∀̇ and ∃̇,

3. =̇ and ˙6=,

4. P and P̄ (for P ∈ P).

If Γ is a set of Tait formulas, then set

∼Γ := {∼ϕ | ϕ ∈ Γ}.

If ϕ is a formula, vm is a free variable of ϕ, and t is a term, then we want to define ϕ(vm/t)
to basically be the formula arising from ϕ by replacing every free occurrence of vm by t. If vm
is the only free variable of ϕ, then the intended meaning is that ϕ(vm/t) should express that
ϕ is true of t. There is a phenomenon called collision of variables which complicates matters
a little. For example, consider the formula ϕ = ∃v0 v0 6= v1. ϕ(v1) just says that there is
something other than v1. So ϕ(v1/v0) should express that there is something other than v0. But
if we define ϕ(v1/v0) by just replacing every free occurrence of v1 by v0, the result is the formula
∃v0 v0 6= v0, which says that there is something different from itself, which is not what we
expect to express. We would also expect that v0 should be free in ϕ(v1/v0), which is not the case
if we perform this simple substitution.

10 CHAPTER 1. SYNTAX

The problem in defining ϕ(vm/t) arises if there are free variables of t that occur as bound
variables in ϕ. It is resolved by passing to an alphabetic variant of ϕ, i.e., a formula which arises
from ϕ by renaming some of its bound variables.

Definition 1.2.5. Let ϕ be a formula or a Tait formula, vm a variable and t a term. Let
vl0 , vl1 , . . . , vln−1

be the list of free variables of t that occur as bound variables in ϕ, if any
(ordered according to their indices). Let vm0

, vm1
, . . . , vmn−1

be the first n variables that occur
neither in ϕ nor in t. Let ϕ′ arise from ϕ by replacing every bound occurrence of vli by vmi ,
for i < n. ϕ′ is called an alphabetic variant of ϕ. No bound variable of ϕ′ occurs in t. Now let
ϕ(vm/t) be the formula which arises from ϕ′ by replacing every free occurrence of vm in ϕ with
t.

If Γ is a set of formulas (or of Tait formulas), then Γ(vm/t) = {ϕ(vm/t) | ϕ ∈ Γ}.

So, returning to the example above, we had ϕ = ∃v0 v0 6= v1 and we wanted to make sense
of ϕ(v1/v0). According to our definition, we get ϕ′ = ∃v2 v2 6= v1, and ϕ(v1/v0) is the result of
replacing v1 by v0 in ϕ′, so we get ϕ(v1/v0) = ∃v2 v2 6= v0. This formula expresses that there
is something other than v0, as wished, and v0 occurs as a free variable.

Usually, I will tacitly assume that no free variable of the term t occurs as a bound variable
in ϕ when forming ϕ(vm/t). Having understood the problem once is sufficient, dealing with it
all the time just adds a layer of notational complexity that conceals sometimes simple ideas and
reveals nothing (even though it of course would be more correct). So the passage to alphabetic
variants by renaming bound variables happens tacitly...

1.3 Proofs

For more on the proof calculus introduced in this section, I refer the reader to [Poh09].
Note: When writing down a formula in some given language, I will use the binary connective→,
even though I don’t consider it part of the language. It is meant as an abbreviation, as follows:

(ϕ→ ψ) means (¬ϕ ∨ ψ).

When using the symbol in Tait formulas, it is to be understood as follows:

(ϕ→ ψ) means (∼ϕ ∨ ψ).

Definition 1.3.1. Fix a language L = L(C,P,F,#). The identity axioms of L are the following
formulas:

Equivalence Relation

(a) ∀v0∀v1 (v0 = v1 → v1 = v0),

(b) ∀v0∀v1∀v2 ((v0 = v1 ∧ v1 = v2)→ v0 = v2),

(c) ∀v0 (v0 = v0)

Congruence over functions

For every F ∈ F with n = #(F), the sentence

∀v0∀v1 . . . ∀vn−1∀vn∀vn+1 . . . ∀v2n−1 (((v0 = vn) ∧ (v1 = vn+1) ∧ . . . ∧ (vn−1 = v2n−1))

→ F (v0, v1, . . . , vn−1) = F (vn, vn+1, . . . , v2n−1)).

1.3. PROOFS 11

Congruence over predicates

For every P ∈ P ∪ P̄ with n = #(P), the sentence

∀v0∀v1 . . . ∀vn−1∀vn∀vn+1 . . . ∀v2n−1 (((v0 = vn) ∧ (v1 = vn+1) ∧ . . . ∧ (vn−1 = v2n−1))

→ (P (v0, v1, . . . , vn−1)→ P (vn, vn+1, . . . , v2n−1))).

These formulas can be viewed as being regular formulas or Tait formulas; both are intertransla-
table. Let’s write Identity for the collection of these axioms.

Definition 1.3.2. Fix a language L. Say that `T Γ if Γ is a finite set of Tait formulas which
belongs to the least collection of finite sets of Tait formulas X with the following properties:

1. (Tertium non datur) ∆ ∈ X whenever there is an atomic Tait formula ϕ such that ϕ ∈ ∆
and ∼ϕ ∈ ∆.

2. (∧-rule) If ∆ ∪ {ϕ} ∈ X and ∆ ∪ {ψ} ∈ X, then ∆ ∪ {(ϕ ∧ ψ)} ∈ X.

3. (∨-rule) If ∆ ∪ {ϕ} ∈ X or ∆ ∪ {ψ} ∈ X, then ∆ ∪ {(ϕ ∨ ψ)} ∈ X.

4. (∀-rule) If ∆ ∪ {ϕ(vm/vn)} ∈ X, where vn does not occur as a free variable in any formula
of ∆ ∪ {ϕ}, then ∆ ∪ {∀vmϕ} ∈ X.

5. (∃-rule) If ∆ ∪ {ϕ(x/t)} ∈ X, for some term t, then ∆ ∪ {∃xϕ} ∈ X.

If Γ is a set of LT -formulas and ϕ is a LT -formula, we write Γ ` ϕ if there is a finite set
Γ0 of LT -formulas consisting of formulas which are in Γ or an identity-axiom of L, such that
`T ∼Γ0 ∪ {ϕ}.

Note that these rules make a lot of sense when you read “`T ∆∪{ϕ}” as “`T (
∧
∼ ∆) −→ ϕ”.

Note also that in writing ∆∪ {ϕ}, it is not assumed that ϕ doesn’t occur in ∆! For more on the
proof calculus introduced in this section, I refer the reader to [Poh09].

We have now defined what it means that Γ ` ϕ, i.e., that Γ proves ϕ, or ϕ is provable from
Γ, for a set Γ of LT -formulas. But for later reference, it will be useful to formally capture the
notion of “proof” that goes with this notion of provability.

Definition 1.3.3. A derivation of a finite set ∆ of Tait formulas is a finite sequence 〈∆i | i ≤ n〉
of finite sets of Tait formulas such that ∆n = Γ, and for each i ≤ n, one of the following
possibilities hold:

1. There is an atomic formula ϕ such that ϕ,∼ϕ ∈ ∆i.

2. There are j, k < i, a set ∆̄ and formulas ϕ0, ϕ1 such that ∆j = ∆̄∪ {ϕ0}, ∆k = ∆̄∪ {ϕ1},
and ∆i = ∆̄ ∪ {(ϕ0 ∧ ϕ1)}.

3. There are j < i, a set ∆̄ and formulas ϕ0, ϕ1 such that ∆j = ∆̄∪ {ϕ0} or ∆j = ∆̄∪ {ϕ1},
and ∆i = ∆̄ ∪ {(ϕ0 ∨ ϕ1)}.

4. There are j < i, a set ∆̄ ⊆ ∆i, a formula of the form ∀vmϕ and a variable vn which doesn’t
occur as a free variable in any of the formulas from ∆̄∪{ϕ}, such that ∆j = ∆̄∪{ϕ(vm/vn)}
and ∆i = ∆̄ ∪ {∀vmϕ}.

5. There are j < i, a set ∆̄, a formula of the form ∃vmϕ and a term t such that ∆j =
∆̄ ∪ {ϕ(vm/t)} and ∆i = ∆̄ ∪ {∃vmϕ}.

12 CHAPTER 1. SYNTAX

Now let Γ be a set of Tait formulas, and let ψ be a Tait formula. A proof of ψ from Γ is a
derivation of a finite set ∆ of Tait formulas such that for every ϕ ∈ ∆, at least one of the
following hold:

1. ϕ is the negation of a formula in Γ (i.e., ∼ϕ ∈ Γ),

2. ϕ is the negation of an identity axiom (i.e., ∼ϕ is an identity axiom),

3. ϕ = ψ.

Note: The finite subset ∆̄ of ∆i in the previous definition always is either equal to ∆i or results
from ∆i by omitting one formula. Also, it is easy to check that `T ∆ iff there is a derivation of
∆, and Γ ` ψ iff there is a proof of ψ from Γ.

Chapter 2

Sets

Recommended literature for this chapter: [Jec03], [Kun80].
The role of set theory is two-fold: On the one hand, (a fragment of) it serves as the meta-

theory. On the other hand, it can be viewed as a formal theory to which we can apply the logical
methods we are going to develop. The theorems I am going to prove could be proved formally,
using the calculus introduced in the first chapter. But of course, I am not going to give formal
proofs. It’s just good to know that in theory, it would be possible to do so.

The aim is to axiomatize the usage of sets in mathematics without running into contradictions.
Formally, the language we are going to use only consists of one binary predicate, denoted by ∈̇.
In addition, we have the equality symbol at our disposal, which belongs to every language (by
our convention). In fact, it will turn out that equality becomes definable in set theory.

As a first attempt to axiomatizing set theory, let’s look at a quote of Georg Cantor:

Unter einer “Menge” verstehen wir jede ZusammenfassungM von bestimmten wohlun-
terschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die “Ele-
mente” von M genannt werden) zu einem Ganzen.

This translates (loosely) to: We understand a “set” to be any collection M of certain distinct
objects of our thinking or our visualization/intuition/perception (called the “elements” of M) to
a whole.

Let’s try to formalize this approach rigorously. The obvious questions are what a collection
should be, and what the objects of our thinking should be. One might at first expect objects
of mathematical thinking to be things like natural numbers, integers, rationals, real numbers,
etc., which then can be used to form more complicated structures. The purest and simplest
approach to set theory, however, seems to be the one in which every object is a set. This way,
we don’t have to distinguish between different types of objects of our thinking. And sooner or
later, we are going to have to deal with sets anyway (such as sets of numbers, sets of functions,
etc.), for we can think about them. So restricting our attention to sets simplifies things, and
in formalizing Cantor’s idea, we can neglect the question about the nature of the objects of our
thinking, and focus instead on the question what a collection should be. Again, the most naive
approach would be to say that anything that can be defined by a property should be a collection
(like, for example, the collection of all even numbers). That x has a property would be formalized
by saying that some formula ϕ = ϕ(x, ~z)1 is true of x. So one might demand that

{x | ϕ(x, ~z)}
1When writing ψ(x, ~y), I mean that x, ~y are the free variables of ψ.

13

14 CHAPTER 2. SETS

is a set. More formally, this would mean:

∀~z∃y y = {x | ϕ(x, ~z)},

or, in other words:
∀~z∃y∀x(x ∈ y ↔ ϕ(x, ~z)).

Here, I use (ϕ↔ ψ) as an abbreviation for ((ϕ→ ψ)∧(ψ → ϕ)), which, in turn, is an abbreviation
for a longer formula.

The problem is that this leads to a contradiction: let’s apply the above principle to the
formula ϕ = (x = x). We’d get that V := {x | x = x} is a set, or more precisely, there would be
a set V such that for all x, we have that x ∈ V iff x = x. Clearly, it would satisfy

V = V

since it is an identity axiom that for any object z, z = z holds. So by definition of V,

V ∈ V.

This contradicts the common view of a set: a set should not be a member of itself. It is not a
formal contradiction, though, and one can formalize set theory without excluding this possibility.
But let’s investigate the sets which do not have themselves as a member some more:

A = {x | x /∈ x}.

In other words, we have that x ∈ A iff x /∈ x. According to our strong set existence principle,
there would have to be such a set A. So:

Either A ∈ A or A /∈ A.

But by definition of A, we have:
A ∈ A ⇐⇒ A /∈ A.

This is known as Russel’s antinomy. Note that the contradiction only arose because we assumed
that A is a set. For A is the collection of all sets that don’t contain themselves as elements. So
if A is not a set, then clearly, A /∈ A - A only contains sets. So, a different way of looking at
Russel’s antinomy is that it shows by contradiction that A is not a set. So not every collection
of sets that can be defined by having a property in common is a set, which shows that we have
to use somewhat weaker set existence principles. I shall develop these in the following.

2.1 Fragments of ZFC

Literature: Any book on axiomatic set theory will do, but to be specific, I refer to [Jec03]. The
approach chosen there is close to the one I use.

The language of set theory I shall use is L = LST = 〈C,P,F,#〉, where C = F = ∅, P = {∈̇}
and #(∈̇) = 2. As usual, I will use the infix notation for the predicates ∈̇ and =̇, and also, I
shall drop the dots most of the time. Thus, e.g., I shall write

∀x(x ∈ y → x = z)

instead of
∀x(∈̇(x, y)→ =̇(x, z)).

2.1. FRAGMENTS OF ZFC 15

Also, I shall use x, y, z, u, v, w, etc. as meta-variables for variables. So x is really some vm, but I
don’t say which.

The axioms I am going to introduce together will form the axiom system called ZFC. ZF
stands for Zermelo-Fraenkel and is named after the founders of the system. The “C” stands for
the axiom of choice that I will introduce in Section 2.4.

The first axiom I want to introduce is the Set Existence Axiom,

∃x x = x.

This axiom is really a logical axiom, since usually one does not consider models with empty
domain. Sometimes it is formulated to express that there is a set which has no elements, i.e.,
∃x∀y¬y ∈ x. This form of the axiom will be a consequence of the other axioms, though.

The second basic axiom I need is the Extensionality Axiom, saying:

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y).

It expresses that if two sets have the same members, then they are equal. The converse is true
anyway, by the identity axioms.

Before introducing further axioms, let me introduce a simpler way of writing them down.
Namely, if ϕ(x, y1, . . . , yn) is a formula with free variables shown, then I will call a syntactical
object of the form

{x | ϕ(x, y1, . . . , yn)}

a class term. Often I shall write ~y in place of y1, . . . , yn. I will also consider any variable a class
term.

I shall use capital letters for class terms; for example, I set:

V := {x | x = x}.

A class term is either a variable or given by a formula as above. I am going to use class terms
in formulas, but these class terms can always be eliminated, producing a regular LST -formula.
This is how it works. If A is a class term, then

x∈̇A :=

{
x ∈ vm if A is the variable vm,
ϕ(u/x) if A is the class term {u | ϕ(u, ~y)}.

Note that I haven’t defined the meaning of A ∈ B, if A is not a variable; the x above stands
for a variable only. Before explaining this though, let me stipulate:

A=̇B := ∀x(x ∈ A↔ x ∈ B).

For definiteness, we may specify that x = vm, where m is least such that vm does not occur in
A or in B. Note that the meaning of x ∈ A and x ∈ B is defined above. Note also that this
interpretation of A = B conforms with the axiom of extensionality. Now I’m ready to explain
the meaning of A ∈ B:

A∈̇B := ∃x(x ∈ B ∧ x = A).

Boolean combinations of formulas with class terms are handled in the usual way. Thus, if ϕ,ψ
are formulas in which class terms occur, and if ϕ′ and ψ′ are their translations to regular LST
formulas, then the translation of (ϕ ◦ ψ) is (ϕ′ ◦ ψ′), for ◦ = ∧ or ◦ = ∨, and the translation of
¬ϕ is ¬ϕ′.

Finally, let’s consider the translation of ∃xϕ. It will only be defined if x occurs as a free
variable in ϕ, but not as a bound variable. If class terms are allowed to occur in ϕ, then we also

16 CHAPTER 2. SETS

require that x does not occur as a bound variable in any of the class terms occurring in ϕ. Here,
a variable y occurs as a bound variable in the class term {z | χ(z, ~w)} if y occurs as a bound
variable in χ, or if it is equal to z. Similarly, the free variables of {z | χ(z, ~w)} are the ones that
are free in χ(z, ~w) but different from z. Now, in the case that x occurs as a free variable in ϕ,
but not as a bound one, then we can translate ∃xϕ as ∃xϕ′.

Class terms other than variables are not allowed to appear right after a quantifier, so it is
clear now how to eliminate class terms from formulas. Note that the introduction of these terms
is a mere convenience, making formulas more easily readable. While we’re at it, I would like to
define some operations on class terms. Again, these are just abbreviations.

Definition 2.1.1. Let A and B be class terms.

1. A ∪B := {x | (x ∈ A ∨ x ∈ B)},

2. A ∩B := {x | (x ∈ A ∧ x ∈ B)},

3. Ac := {x | ¬x ∈ A},

4. A \B := A ∩Bc.

Also, I want to use the following reserved class terms:

V = {x | x = x}, ∅ = Vc = {x | ¬x = x}.

It is sometimes useful to allow class terms of the form

{A1, . . . , An},

where each Aj is a class-term. The interpretation is:

{A1, . . . , An} = {x | x = A1 ∨ x = A2 ∨ . . . ∨ x = An}.

Finally, I also want to consider class terms of the form

{A|~yϕ(~x, ~y)},

where A is a class term with free variables ~y. The intended meaning is

{A |~y ϕ(~x, ~y)} = {z | ∃~y(ϕ(~x, ~y) ∧ z = A)}.

Usually, the variables ~x will occur as free variables in A as well, but not necessarily. And usually,
A = A(~x, ~y, ~z) will always be a set when ϕ(~x, ~y) holds. The purpose of the subscript ~y is to
clarify that the variables ~y are bound.

Note that the set existence axiom can be expressed as V 6= ∅. The next axiom is the Pairing
Axiom:

∀x∀y{x, y} ∈ V.

Unraveling this formula, eliminating the class terms, yields a formula equivalent to this:

∀x∀y∃z∀u(u ∈ z ↔ (u = x ∨ u = y)).

I hope the advantage of using class terms is becoming clearer now. I’ll use another operation on
class terms:

2.1. FRAGMENTS OF ZFC 17

Definition 2.1.2. If A is a class term, then let
⋃
A be the following class term:⋃

A := {z | ∃y(y ∈ A ∧ z ∈ y)},

where z and y do not occur in A (as usual). This is called the inner union of A. Sometimes it is
written as

⋃
z∈A z. I also use the notation

A ∪B := {z | z ∈ A ∨ z ∈ B.

Analogously
⋂
A is short for ⋂

A := {z | ∀y(y ∈ A→ z ∈ y)}

and
A ∩B := {z | z ∈ A ∧ z ∈ B}.

The remarks above apply. Finally, I’ll write A ⊆ B as a short form for the statement

∀x(x ∈ A→ x ∈ B).

In order to get familiar with these concepts, the reader may try to figure out what
⋂
∅ is...

The next axiom I’ll introduce is the Union axiom:

∀x
⋃
x ∈ V.

I trust the reader will be able to retranslate this into a LST -formula.

Lemma 2.1.3. It is provable from the axioms introduced thus far that

1. ∀x∀y x ∪ y ∈ V.

2. ∀x1∀x2 . . . ∀xn {x1, x2, . . . , xn} ∈ V.

Proof. This is true in the sense that if Γ is the set of axioms introduced thus far,

Γ ` ∀x∀yx ∪ y ∈ V,

and the same applies to the second sentence. But instead of trying to obtain a formal proof, I
shall argue informally. Later, we shall see that such informal arguments can be translated into
a formal proof, in principle.

For 1., let x, y be given. By the Pairing Axiom, {x, y} ∈ V. By the Union Axiom,
⋃
{x, y} ∈

V. But by definition,
⋃
{x, y} is the same as x ∪ y, so we’re done.

For 2., let x1, x2, . . . , xn be given. By Pairing, {x1} ∈ V, {x2} ∈ V, . . ., {xn} ∈ V. Applying
1. (n-1) times, it follows that {x1} ∪ {x2} ∪ . . .∪ {xn} ∈ V. But that’s just {x1, x2, . . . , xn}.

The next axiom is a way of avoiding Russel’s antinomy, while still allowing us to collect sets
which satisfy a certain property into one set. It is called the Separation Axiom. For every class
term A, it says:

∀x A ∩ x ∈ V.

More formally, one should demand that x does not occur in A, and one should take the univer-
salization of this formula, meaning that one prefixes it with ∀y1∀y2 . . . ∀yn, where ~y lists the free
variables occurring in A.

18 CHAPTER 2. SETS

I will take this as a convention: If free variables occur in an axiom, then I mean the sentence
obtained by prefixing the formula with universal quantifiers which bind these variables. Remember
that class terms may contain “concealed” free variables, as is the case in the Separation Axiom.

So this axiom does not say that the collection of all sets having some property is a set, but
that the collection of all sets having some property and being a member of some fixed set is a
set. The idea is that since this fixed set is a set, we have understood it well enough that we can
understand the collection of its members which satisfy some property, so that we don’t run into
a contradiction.

If Γ is a set of LST -formulas, then Γ-Separation is formulated like the Separation-Axiom, but
only for class terms A whose formula is in Γ.

Lemma 2.1.4. The following are consequences of the axioms introduced thus far:

1. ∅ ∈ V.

2. ∀x (A ⊆ x→ A ∈ V).

3. (A 6= ∅ →
⋂
A ∈ V).

4. V /∈ V.

5. ∀x xc /∈ V.

Proof. 1. By Set Existence, there exists some set x. By Separation, x ∩ ∅ ∈ V. By definition of
∅, x ∩ ∅ = ∅.

2. If A ⊆ x, then A = A ∩ x ∈ V, by Separation.
3. Pick a ∈ A (so a ∈ V). Then

⋂
A ⊆ a, so by 2.,

⋂
A ∈ V.

4. Suppose v := V ∈ V. As in the introduction to this chapter, let A = {x | x /∈ x}. Clearly,
A ⊆ v, so by 2., a := A ∈ V. But then, a ∈ a↔ a /∈ a.

5. If xc ∈ V, then x ∪ xc ∈ V, by Lemma 2.1.3, 1. But clearly, x ∪ xc = V.
The following class term will often be very useful:

Definition 2.1.5.
〈A,B〉 := {{A}, {A,B}}.

〈A,B〉 is the ordered pair of A and B.

Just as in the case of class terms of the form {A,B}, the ordered pair only is useful for class
terms A and B which are sets.

Lemma 2.1.6. For x, y, v, w ∈ V:

1. 〈x, y〉 ∈ V,

2. (〈x, y〉 = 〈v, w〉 → (x = v ∧ y = w)).

Proof. Exercise.
One can generalize the formation of ordered pairs to produce finite tuples:

Definition 2.1.7. Set:

〈x〉 = x

〈x1, . . . , xn+1〉 = 〈x1, 〈x2, . . . , xn+1〉〉.

Clearly then:

2.1. FRAGMENTS OF ZFC 19

Lemma 2.1.8. For all sets x1, . . . , xn, y1, . . . , yn:

1. 〈x1, . . . , xn〉 ∈ V,

2. if 〈~x〉 = 〈~y〉, then x1 = y1 ∧ x2 = y2 ∧ . . . ∧ xn = yn.

Having ordered pairs and tuples at our disposal enables us to define Cartesian products,
relations and functions.

Definition 2.1.9.

A×B := {〈x, y〉 | x ∈ A ∧ y ∈ B},
A1 × . . .×An := A1 × (A2 × . . .×An),

An := A× . . .×A︸ ︷︷ ︸
n times

.

Definition 2.1.10. A class term R is a relation if R ⊆ V2. We shall often write xRy instead of
〈x, y〉 ∈ R. R is an n-ary relation if R ⊆ Vn (for n ≥ 2).

When writing “R is a relation”, I really mean the formula that R ⊆ V2 is a short form for.
Remember that R is either a variable or a class term; in the latter case, R is basically given by
a defining formula.

Note that Vn ⊆ V, and if n ≥ m, then Vn ⊆ Vm, because of the particular way n-tuples
were defined.

Definition 2.1.11.

dom(R) = {x | ∃y yRx},
ran(R) = {y | ∃x yRx},
fld(R) = dom(R) ∪ ran(R),

R � A = {〈y, x〉 | x ∈ A ∧ yRx},
R“A = {y | ∃x x ∈ A ∧ yRx},
R−1 = {〈x, y〉 | yRx}

Definition 2.1.12. If F is a class term, then “F is a function” stands for the following formula:

“F is a relation” ∧ ∀y0∀y1∀x((y0Fx ∧ y1Fx)→ y0 = y1).

In case F is a function with x ∈ dom(F), I shall write F (x) for the uniquely determined y such
that yFx. Note that this can be expressed as a class term, as follows:

F (x) =
⋂
{y | yFx}.

If dom(F) ⊆ Vn, then I shall write F (x1, . . . , xn) in place of F (〈x1, . . . , xn〉).

Now I’m ready to introduce the Replacement Axiom:

∀x (“F is a function”→ F“x ∈ V).

Again, this is a scheme of axioms, one formula for each class term.

Lemma 2.1.13. The Separation Axiom scheme is provable from the Replacement Axiom scheme.

20 CHAPTER 2. SETS

Proof. Let id = {〈x, x〉 | x ∈ V}; this is clearly a function. Now, given any class term A and any
set a, it follows that id�A is also a function, and A ∩ a = (id�A)“a ∈ V, by Replacement.

The axioms introduced so far form the weakest fragment of the axioms of set theory we shall
work with. I call it ZF−−, which is an ad-hoc name. So it consists of the following axioms:

• Set Existence

• Pairing

• Union

• Extensionality

• Separation

• Replacement

Lemma 2.1.14. The following are consequences of the ZF−− axioms:

1. ∀x∀y x× y ∈ V,

2. ∀x1∀x2 . . . ∀xn x1 × . . .× xn ∈ V,

3. ∀x(“F is a function”→ F �x ∈ V).

Proof. 1.) Fix x and y. First note:

∀z x× {z} ∈ V.

To see this, fix z. We know already that for any set u, 〈u, z〉 ∈ V. So the following defines a
function with domain x:

Fz := {〈〈u, z〉, u〉 | u ∈ x},

i.e., Fz(u) = 〈u, z〉, for u ∈ x. By Replacement, Fz“x ∈ V, and by definition,

Fz“x = {〈u, z〉 | u ∈ x} = x× {z}.

Knowing this, we can now define a function G as follows:

G := {〈x× {z}, z〉 | z ∈ y},

i.e., G(z) = x × {z}, for z ∈ y. Applying Replacement again yields that G“y ∈ V, and by
definition of G, a := G“y = {x × {z} | z ∈ y}. But then

⋃
a ∈ V, by the Union axiom, and⋃

a = x× y, as is easily checked.
2.) Follows by induction from 1.)
3.) Fix F and x. Then F �x = F ∩ ((F“x) × x). F“x ∈ V by Replacement, so that

(F“x)× x ∈ V by 1., so that F ∩ ((F“x)× x) ∈ V by Separation.
The next axiom I’ll introduce is the Power Set Axiom. Given a class term A, let

P(A) = {x | x ⊆ A}

be its power class. The Power Set Axiom says:

∀x P(x) ∈ V,

2.2. WELL-FOUNDED RELATIONS 21

i.e., the power class of a set is a set. A lot of set theory can be done without the power set axiom,
and there are natural models of set theory that don’t satisfy it, so I shall sometimes not assume
it.

The last axiom I want to introduce at this early stage has to do with the question raised in
the introduction to this chapter: Can/should there be a set x with x ∈ x? The Foundation Axiom
excludes this possibility (among others). To formulate it, I need the following:

Definition 2.1.15. x is ∈-minimal in A if x ∈ A and for all y ∈ x, y /∈ A.

The Foundation Axiom now is the following scheme of sentences:

A 6= ∅ → ∃x x is ∈-minimal in A,

one for each class term. I call the system of axioms comprised of ZF−−, together with the
Foundation axiom scheme ZF−−F .

Lemma 2.1.16 (ZF−−F). There is no finite sequence of sets x1 3 x2 3 . . . 3 xn 3 x1.

Proof. Otherwise {x1, x2, . . . , xn} has no ∈-minimal member.

2.2 Well-founded Relations

In this section, I shall work with the axioms introduced thus far, save Power Set and Foundation,
unless stated otherwise. This is what I refer to as ZF−− in these notes.

Definition 2.2.1. Given class terms A and R, we say that x is R-minimal in A to express that
R is a relation, x ∈ A and for all y, if yRx, then y /∈ A. A relation R is set-like if for all x,
R“{x} ∈ V. Saying that R is well-founded stands for the scheme of formulas

(A 6= ∅ → ∃x x is R-minimal in A),

one formula for each class term A. R is strongly well-founded if R is well-founded and set-like.
A is R-closed if R“A ⊆ A.

If r ⊆ V2 is a relation which is a set, then in a slight abuse of notation, I will call r well-
founded if every nonempty set has an r-minimal element. Note that this is equivalent to the
scheme version of well-foundedness in this case, but expressible in by one formula.

Lemma 2.2.2. Let R ⊆ V2 be set-like. Then:

1. ∀u R“u ∈ V,

2. If u is R-closed, for all u ∈ A, then
⋂
A and

⋃
A are R-closed,

3. Suppose R is well-founded. Then for every set u there is a set v which is minimal wrt. in-
clusion such that u ⊆ v and v is R-closed.

Remark 2.2.3. We shall see later that the last point of this lemma follows from an axiom that I
have not introduced yet, the infinity axiom, without assuming R is well-founded.

Proof. 1.) R“u =
⋃
{R“{x} | x ∈ u} =

⋃
F“u ∈ V, where F (x) = R“{x}, by Replacement and

Union.
2.) This is trivial.
3.) Given any set x, I first claim that there is a set w such that x ∈ w and w is R-closed. For

if not, consider the class A of sets for which this fails. Pick x R-minimal in A. Then R“{x} ∈ V,

22 CHAPTER 2. SETS

and every y ∈ R“{x} (i.e., yRx) is not in A. So, momentarily fixing such a y, the class By of sets
z which are R-closed and have y ∈ z is non-empty. Hence wy :=

⋂
By is a set, by 2.) it’s R-closed

(and by definition, it’s the ⊆-minimal set which has y as a member and which is R-closed). Now
define F (y) = wy for y ∈ R“{x}. Then by Replacement and Union, {x} ∪

⋃
F“R“{x} ∈ V, and

clearly, this set is R-closed and has x as an element. This is a contradiction.
It now follows that given any set x, there is a least set wx (wrt. inclusion) having x as a

member and being R-closed (as in the first part of the proof, this is just the intersection of all
sets which have these properties; since there is such a set, the intersection is again a set).

Now given an arbitrary set u, one can form
⋃
{wx | x ∈ u} =

⋃
G“u ∈ V, where G(x) :=

wx.

Definition 2.2.4. Given class terms F , A and B, write F : A → B to express that F is a
function, dom(F) = A and ran(F) ⊆ B. Write F : A� B to express that F : A → B and for
all x, y ∈ A, x 6= y → F (x) 6= F (y). Write F : A� B to express that F : A→ B and B = F“A.
Finally, F : A�� B expresses that F : A� B and F : A� B.

Theorem 2.2.5 (Recursion Theorem). Let R be a strongly well-founded relation, R ⊆ A2. Let
G : A×V→ B. Then there is a unique F : A −→ B such that for all x ∈ A,

F (x) = G(x, F �R“{x}).

This means that, given class terms R, A, G, there is a class term F such that it is provable
from our axioms, together with the scheme expressing that R is a strongly well-founded relation
and the other assumptions of the theorem, that F satisfies F (x) = G(x, F �R“{x}), for all x ∈ A,
and that F is uniquely determined by this (as a class, not as a class term).

Remark 2.2.6. Since “R is well-founded” is a scheme of formulae, the Recursion Theorem is
really formulated in the theory ZF−− + “R is well-founded”. However, the case where R =∈ is
a ZF−−F theorem. Also, if R ∈ V, then the well-foundedness of R can be expressed in a single
formula, and hence that version of the theorem is expressible as a ZF−− theorem.

Proof. Uniqueness: Let F and F ′ be two such functions. Suppose they were different. Let x ∈ A
be R-minimal such that F (x) 6= F ′(x). Then since both satisfy the equation,

F (x) = G(x, F �R“{x}) = G(x, F ′�R“{x}) = F ′(x),

since by R-minimality of x, F �R“{x} = F ′�R“{x}. So F (x) = F ′(x) after all.
Existence: Let F be the class consisting of all sets of the form 〈f, u〉 with:

1. u ⊆ A is R-closed,

2. f : u→ B,

3. ∀x ∈ u f(x) = G(x, f � R“{x}).

(1) F is a function.

Proof of (1). Suppose 〈f, u〉, 〈f ′, u〉 ∈ F . The above proof of uniqueness shows that f = f ′.
Note that here, we did not use that u is R-closed. 2(1)

Let D = dom(F), and write F(u) for the unique f with fFu.

(2) If u ∈ D and v ⊆ u is R-closed, then v ∈ D and F(v) = (F(u))�v.

2.2. WELL-FOUNDED RELATIONS 23

Proof. Letting f := F(u)�v, 〈f, v〉 clearly satisfies 1.-3. of the definition of F . The claim follows,
since F is a function. Here, it was crucial that v is R-closed (i.e., if we dropped R-closure
in condition 1. above, the proof would not go through). Namely, to see 〈f, v〉 satisfies 3., let
g = F(u). We have that 〈g, u〉 satisfies 1.-3. It’s obvious that 〈f, v〉 satisfies 1. and 2. For 3.,
note that if x ∈ v, then f�R“{x} = (g�v)�R“{x} = g�R“{x} because R“{x} ⊆ v. This is why
we have that f(x) = G(x, f�R“{x}). 2(2)

(2’) If u, v ∈ D, then u ∩ v ∈ D and F(u)�(u ∩ v) = F(u ∩ v) = F(v)�(u ∩ v).

Proof of (2’). By Lemma 2.2.2, u ∩ v is R-closed. The claim follows directly from (2). 2(2)

Let X =
⋃
D, F :=

⋃
{F(u) | u ∈ D}. So F is a relation with X = dom(F) and ran(F) ⊆ B.

(3) If u ∈ D, then F �u = F(u).

Proof of (3). By definition of F , F(u) ⊆ F . For the other direction, assume 〈y, x〉 ∈ F �u, i.e.,
x ∈ u and 〈y, x〉 ∈ F . By definition of F again, there is some v ∈ D such that 〈y, x〉 ∈ F(v).
Note that then, x ∈ v. So x ∈ u ∩ v. By (2’), F(u ∩ v) = F(u)�(u ∩ v) = F(v)�(u ∩ v). Hence,
〈y, x〉 ∈ F(u). 2(3)

(4) F : X −→ B.

Proof of (4). It has to be shown that F is a function. Suppose 〈y, x〉, 〈z, x〉 ∈ F . Pick u ∈ D
such that x ∈ u. Then 〈y, x〉, 〈z, x〉 ∈ F �u = F(u), by (3). The latter is a function, so it follows
that y = z. 2(4)

(5) For x ∈ X, F (x) = G(x, F �R“{x}).

Proof of (5). Let x ∈ X. Pick u ∈ D such that x ∈ u. Then F (x) = (F �u)(x) = F(u)(x) =
G(x,F(u)�R“{x}). But since R“{x} ⊆ u, as u is R-closed, and since F �u = F(u), it follows that
F �R“{x} = F(u)�R“{x}. This shows that F (x) = G(x, F �R“{x}), as wished. 2(5)

(6) X = A.

Proof of (6). Clearly, X ⊆ A. Suppose X $ A. Pick x R-minimal in A \ X. So x /∈ X, but
since R“{x} ⊆ A, R“{x} ⊆ X (for if there were a zRx with z /∈ X, then z ∈ A\X, contradicting
R-minimality of x). Let u be the least R-closed set which contains R“{x} (with respect to
inclusion); this exists by Lemma 2.2.2.3. Since X is R-closed (being a union of R-closed sets; see
Lemma 2.2.2.2), it follows that u ⊆ X (note that u ∩X is an R-closed set (by Lemma 2.2.2.2)
that contains R“{x}, so that u ⊆ u∩X, that is, u ⊆ X). By (5), it follows that u ∈ D and that
F(u) = F �u. Set:

v = u ∪ {x},
g = F �u ∪ {〈G(x, F �R“{x}), x〉}.

Then clearly, v is R-closed, and 〈g, v〉 ∈ F . So x ∈ v ∈ D, hence x ∈ X, which is a contradiction,
since x was chosen to be R-minimal in A \X. This concludes the proof.

Remark 2.2.7. Looking back at the proof of the Recursion Theorem, one can extract a formula
defining F :

y = F (x) ↔ (x ∈ A ∧ ∃f (“f is a function”

∧“dom(f) is R-closed” ∧ x ∈ dom(f)

∧∀z ∈ dom(f) f(z) = G(z, f�R“{z})
∧y = f(x)))

24 CHAPTER 2. SETS

Definition 2.2.8. T is transitive if

∀x∀y ((y ∈ T ∧ x ∈ y)→ x ∈ T).

Definition 2.2.9. Let R ⊆ U × U . Then (U,R) is extensional if for every y, z ∈ U ,

R“{y} = R“{z} → y = z.

So this means that members of U are uniquely determined by their R-predecessors. (U,R) is
(strongly) well-founded if R is.

So for example, (V,∈) is extensional, and assuming Foundation, it is strongly well-founded.

Definition 2.2.10. If (U,R), (V, S) are such that R ⊆ U2 and S ⊆ V 2, then F : (U,R)
∼←→

(V, S) means:

1. F : U �� V ,

2. ∀x∀y (xRy ↔ F (x)SF (y).

For sets 〈u, r〉 and 〈v, s〉, saying that 〈u, r〉 ∼= 〈v, s〉 means that there is an f such that f :
(u, r)

∼←→ (v, s).

Theorem 2.2.11 (Mostowski’s Isomorphism Theorem). Suppose (U,R) is extensional and strongly
well-founded. Then there are uniquely determined F , V such that

F : (U,R)
∼←→ (V,∈ �V)

and V is transitive. F satisfies the following equation, for all x ∈ U :

(∗) F (x) = F“R“{x} = {F (y) | yRx}.

Proof. Existence: By the Recursion Theorem, there exists a unique function F satisfying (∗) -
use the function G : U ×V −→ V defined by

G(x, f) =

{
ran(f) if f is a function,
∅ otherwise.

Set V = F“U . It suffices to show that (F, V) is as wished.

(1) V is transitive.

Proof of (1). Let x ∈ y ∈ V = F“U . Let ȳ ∈ U be such that y = F (ȳ). By (∗), F (ȳ) =
{F (x̄) | x̄Rȳ}, so since x ∈ F (ȳ), there is some x̄Rȳ such that x = F (x̄). In particular, x ∈ F“U ,
showing that V is transitive. 2(1)

(2) xRy → F (x) ∈ F (y).

Proof of (2). By (∗). 2(2)

(3) F : U �� V .

2.3. ORDINAL NUMBERS AND INFINITY 25

Proof of (3). F is surjective, by definition. Suppose it was not injective. Then pick x ∈ U
∈-minimal such that there is a y ∈ U with y 6= x, such that F (x) = F (y). Let y witness this,
i.e., x 6= y, F (x) = F (y). I’ll show:

R“{x} = R“{y},

which is a contradiction, since this would imply that x = y, by extensionality of (U,R).
For the direction from left to right, let zRx. Then F (z) ∈ F (x) = F (y) = F“R“{y}. So

there is z′Ry such that F (z) = F (z′). Supposing ¬zRy, it follows that z 6= z′, since z′Ry. So we
have zRx, and there is a w with z 6= w and F (z) = F (w), namely w := z′. This contradicts the
R-minimality of x with this property.

The converse is entirely analogous: Let zRy. Then F (z) ∈ F (y) = F (x) = F“R“{x}, so
there is a z′Rx such that F (z′) = F (z). Suppose ¬zRx. Since z′Rx, this implies that z 6= z′. So
we have: z′Rx, and there is a w (as witnessed by z) such that z′ 6= w and F (z′) = F (w). This
again contradicts the R-minimality of x. 2(3)

(4) F (x) ∈ F (y)→ xRy

Proof of (4). Let F (x) ∈ F (y). Since F (y) = F“R“{y}, there is x′Ry such that F (x) = F (x′).
But since F is injective, x′ = x. So xRy. 2(4)

This finishes the proof of existence.
Turning to uniqueness: By the Recursion theorem, there is only one F satisfying (∗). So it

suffices to show:

(5) If W is transitive and G : (U,R)
∼←→ (W,∈ �W), then for all u ∈ U , G(u) = {G(ū) | ūRu}.

Proof of (5). Fix u ∈ U . If vRu, then G(v) ∈ G(u), since G is R-preserving, so this shows that
{G(ū) | ūRu} ⊆ G(u). For the opposite direction, let v ∈ G(u). So v ∈ G(u) ∈ W , which by
transitivity of W implies that v ∈W . So v has a pre-image under G, as G is onto. So let ū ∈ U
be such that v = G(ū). Since G(ū) ∈ G(u), it follows that ūRu. So v = G(ū), where ūRu, which
shows that G(u) ⊆ G“R“{u}, as wished. 2(5)

This finishes the proof.

2.3 Ordinal Numbers and Infinity

2.3.1 Well-orders

Definition 2.3.1 (Linear orders). If R ⊆ U2, then (U,R) is a (strict) linear order if for all
x, y, z ∈ U :

1. ¬(xRx) (irreflexivity),

2. xRyRz → xRz (transitivity),

3. xRy ∨ x = y ∨ yRx (connectedness).

While we’re at it, I’ll call a class U connected if (U,∈ ∩U2) is connected. This means that for
all x, y ∈ U , either x = y, x ∈ y, or y ∈ x.

Observation 2.3.2. Iff (U,R) is linear, then it is extensional.

26 CHAPTER 2. SETS

Proof. Let x, y ∈ U have the same R-predecessors. Suppose x 6= y. Then xRy or yRx. In the
first case, it follows that xRx, contradicting irreflexivity, and in the second it follows that yRy,
again contradicting irreflexivity.

In principle, the same issue that we encountered previously regarding the expressibility of the
well-foundedness of a structure arises again with linear orders. However, there is a simple way
around it, as follows.

Definition 2.3.3. A relation R is well-founded with respect to sets if every nonempty set has
an R-minimal element.

In general, this is a weaker notion than full well-foundedness. However, in the context of
set-like linear orders, or more generally, of set-like transitive orders, there is no difference, as we
shall see below.

Definition 2.3.4. A linear order (U,R) is a well-order if R is well-founded. It is a strong
well-order if R is set-like and well-founded with respect to sets.

The apparent asymmetry in the definition is justified as follows.

Lemma 2.3.5. Suppose R ⊆ V2 is set-like and transitive (meaning that if xRy and yRz, then
xRz), and that R is well-founded with respect to sets. Let A be a class. If A 6= ∅, then A has an
R-minimal element.

Proof. In the situation of the lemma, let a ∈ A. If a is R-minimal in A, then we are done.
Otherwise, consider the set b = {x | xRa} ∩ A. This is a set, since R is set-like, and by
Separation. Thus, since R is well-founded with respect to sets, there is a c ∈ b that’s R-minimal
in b. It follows that c is R-minimal in A, because if there were a d ∈ A with dRc, then by
transitivity of R, it would follow that dRa, since dRc and cRa (as c ∈ b), and hence that d ∈ b.
But c is R-minimal in b, so this cannot be.

Thus, if R is a set-like, transitive relation that’s well-founded with respect to sets, then
provably in ZF−− every instance of the scheme “R is well-founded” holds. In particular, this is
the case if (U,R) is a strong well-order.

So, by Observation 2.3.2 and Lemma 2.3.5, the following definition makes sense:

Definition 2.3.6. If (U,R) is a strong well-order, then let otp(U,R), the order-type of (U,R),
be the uniquely determined transitive class Γ such that (Γ,∈�Γ) ∼= (U,R) (by Mostowski’s
Isomorphism Theorem).

The natural numbers (N, <) form a well-order. What are the natural numbers? This is a
somewhat philosophical question, but if they exist, then since they form a strong well-order,
they have an order-type, otp(N, <). It is this transitive class that we consider to be the class
of natural numbers. The infinity axiom says that it is a set. I will shortly introduce this axiom
more formally.

2.3.2 Ordinals

It would be natural to assume the Foundation Axiom for the development of the theory of the
ordinals, but it is not necessary to do so, and it seems worthwhile to do without it. So the system
I work in for this subsection is ZF−−. I give some proofs in these notes that I omit in the lecture.

Definition 2.3.7. On = {otp(s) | s is a well-order}. On is the class of ordinal numbers.

So the class of ordinal numbers is the collection of order-types of set-sized well-orders.

2.3. ORDINAL NUMBERS AND INFINITY 27

Lemma 2.3.8 (Counting Lemma). Let S = (U,R) be a strong well-order. Let Γ = otp(S), and
let F : S

∼←→ (Γ,∈�Γ) be the collapse. Then (Γ,∈�Γ) is a strong well-order. Moreover, if x ∈ U ,
then, letting ux = R“{x}, it follows that

F �ux : 〈ux, R�ux〉
∼←→ 〈F (x),∈�F (x)〉

is the Mostowski collapse of the well-order 〈ux, R�ux〉. In particular, F (x) ∈ On.

Note that if we assume that S ∈ V, then this lemma can be expressed in ZF−−, while
otherwise, we really have to work in ZF−− + “S is a strong well-order”.

Proof. It is obvious that 〈Γ,∈�Γ〉 is a strong well-order, being isomorphic to one. Fix x ∈ U . It
is easily checked that, letting rx = R�ux, 〈ux, R�ux〉 is a (strong) well-order. I claim that for
y ∈ ux, F (y) = {F (z) | zrxy}. Since F is the Mostowski-isomorphism of (U,R), we know that
F (y) = {F (z) | zRy}. So it suffices to see that R“{y} = rx“{y}. The direction from right to
left is trivial, so suppose zRy. Since rx = R�R“{x}, to see that zrxy, we only need to know
that yRx, but we do know that, since y ∈ ux. By the way, the reader is invited to check that
R�ux = R∩ (ux)2. In any case, F �ux satisfies the definition of the Mostowski collapse of 〈ux, rx〉,
and hence it is the collapse. By definition, F (x) = F“R“{x} = F“ux, which completes the
proof.

In the future, α, β, . . . will be reserved for ordinals.

Corollary 2.3.9. If S is a strong well-order, then otp(S) is a transitive subclass of On.

Corollary 2.3.10. On is transitive.

Proof. If β ∈ On, then β = otp(s), for some well-order s, and by the previous corollary, otp(s) ⊆
On.

In the absence of the axiom of Foundation, the following definition is not vacuous.

Definition 2.3.11. A transitive class U is well-founded (with respect to sets) if every nonempty
set a ⊆ U has an ∈-minimal element.

Lemma 2.3.12. Let U be transitive and well-founded (with respect to sets). Then:

1. U is connected iff (U,∈�U) is a strong well-order.

2. If U is connected, then U = otp(U,∈�U).

Proof. If U is connected, then it follows that (U,∈ �U) is a set-like linear order that’s well-founded
with respect to sets, which means that it is a strong well-order. The rest is clear.

Corollary 2.3.13.

On = {x | x is transitive, connected and well-founded}.

Note that if we assume Foundation, then every transitive set is well-founded, so in ZF−−F , it
follows that On = {x | x is transitive and connected}.

Corollary 2.3.14. If Γ is transitive, connected and well-founded, then Γ ⊆ On. Again, assuming
Foundation, well-foundedness is vacuous.

Proof. (Γ,∈�Γ) is a strong well-order, and Γ = otp(Γ,∈�Γ) ⊆ On.

Lemma 2.3.15. Let Γ be transitive, connected and well-founded. Let U be transitive with U ⊆ Γ.
Then either U = Γ or U ∈ Γ.

28 CHAPTER 2. SETS

Proof. Assume that U 6= Γ, so that U $ Γ. Since (Γ,∈ �Γ) is a well-order, it follows that Γ is
well-founded with respect to classes, by Lemma 2.3.5. So we can let α be ∈-minimal in Γ \ U . I
claim that α = U (at which point the proof is complete, because then U = α ∈ Γ).

(1) U ⊆ α.

Proof of (1). Let γ ∈ U . Since U ⊆ Γ, γ ∈ Γ. Since α ∈ Γ too, and since Γ is connected, one
of the following must be true: γ ∈ α, α ∈ γ, or α = γ. It cannot be the case that α ∈ γ, since
otherwise α ∈ γ ∈ U , so α ∈ U . It can’t be that α = γ either, since α /∈ U , while γ ∈ U . So the
only possibility is that γ ∈ α. 2(1)

(2) α ⊆ U .

Proof of (2). α is ∈-minimal in Γ \ U . So if γ ∈ α, then it can’t be that γ ∈ Γ \ U . But since Γ
is transitive, γ ∈ Γ. So it must be that γ ∈ U , or else γ would be in Γ \ U . 2(2)

So U = α ∈ Γ.

Definition 2.3.16. For ordinals α, β, set

α < β ⇐⇒ α ∈ β
α ≤ β ⇐⇒ α < β ∨ α = β.

Corollary 2.3.17. α ≤ β ⇐⇒ α ⊆ β.

Proof. =⇒ α ∈ β =⇒ α ⊆ β, as β is transitive, and α = β trivially implies α ⊆ β.
⇐= β is transitive, connected and well-founded, so that the previous lemma applies.

Lemma 2.3.18. If α and β are ordinals, then α ≤ β or β ≤ α.

Proof. If not, then α 6⊆ β and β 6⊆ α. This means that

α ∩ β $ α and α ∩ β $ β.

But α ∩ β is transitive (being transitive is the same as being ∈-closed, and the intersection of
R-closed sets is R-closed, for any binary relation). So again, by Lemma 2.3.15, α ∩ β ∈ α, and
also α ∩ β ∈ β. So α ∩ β ∈ α ∩ β. But α is well-founded, while {α ∩ β} ⊆ α has no ∈-minimal
element, a contradiction.

Lemma 2.3.19. (On, <) is a strong well-order, and otp(On, <) = On.

Proof. By the previous lemma, (On, <) is connected, and we’ve known for a while that On is
transitive. Since <= ∈�On, we also know that it is set-like. We can show directly show that
(On, <) is well-founded (which of course implies that it is well-founded with respect to sets, and
hence that it is a strong well-order). So let ∅ 6= A ⊆ On. Pick α ∈ A. If α is <-minimal in
A, we are done. Otherwise, consider a = A ∩ α. This is a nonempty subset of α, and α is
well-founded, being an ordinal. Pick β ∈-minimal in a. Then β is <-minimal in A: If γ < β,
then γ /∈ a, because γ ∈ α. So γ /∈ A, or else γ ∈ A∩α = a. The second part follows since On is
transitive.

Corollary 2.3.20. On /∈ V.

Proof. Otherwise On = otp(On, <) ∈ On, but then {On} ⊆ On has no <-minimal element,
contradicting that (On, <) is a well-order.

2.3. ORDINAL NUMBERS AND INFINITY 29

Corollary 2.3.21. Let S be a strong well-order. Then otp(S) ∈ On or otp(S) = On. So, writing
∞ for On and expanding the meaning of <,≤ in the obvious way, otp(S) ≤ ∞.

Proof. We know already that otp(S) ⊆ On. So if otp(S) 6= On, then otp(S) ∈ On, as On
is strongly well-founded, transitive and connected, and since otp(S) is transitive – see Lemma
2.3.15.

Lemma 2.3.22. Let A ⊆ ∆ ≤ ∞. Then (A,< �A) is a strong well-order. Letting F : (A,<
�A) −→ Γ be its collapse, it follows that for all α ∈ A, F (α) ≤ α, and that Γ ≤ ∆. Hence the
name collapse.

Proof. (A,< �A) is a strong well-order: It is set-like by Separation, and it is a well-order, because
(On, <) is.

Turning to the main claim: If not, let α be the minimal counterexample in (A,< �A). By
definition, F (α) = {F (β) | β ∈ A ∩ α} ∈ On. By assumption, α ∈ F (α). So let β ∈ A ∩ α be
such that α = F (β). Then β < α, and β is also a counterexample, contradicting the minimality
of α.

Finally, it follows that Γ ≤ ∆: If not, then ∆ ∈ Γ = ran(F). Let α ∈ A be s.t. F (α) = ∆.
Then ∆ = F (α) ≤ α < ∆, contradicting ∆’s well-foundedness.

Definition 2.3.23. sα = α ∪ {α}.

I shall often write α+ 1 instead of sα.

Lemma 2.3.24.

1. ∅ ∈ On.

2. sα ∈ On.

3. α ≤ β ⇐⇒ α < sβ.

4. α < β ⇐⇒ sα ≤ β.

Proof. For 4.:
α < β ⇐⇒ α ∈ β ⇐⇒ α ∪ {α} ⊆ β ⇐⇒ sα ≤ β.

Corollary 2.3.25. sα = min{ν | ν > α}.

Proof. Clearly, α ∈ α ∪ {α} = sα, which shows “≥”. Vice versa, if β < sα, then β ≤ α, so that
β 6> α (or else α ∈ β ⊆ α, contradicting the well-foundedness of On).

Lemma 2.3.26. Let A ⊆ On. Then
⋃
A ≤ ∞, and

⋃
A is the supremum of A, that is, if A is

bounded in On, then
⋃
A is the least β such that for every α ∈ A, α ≤ β, and if A is unbounded

in On, then
⋃
A =∞.

Proof. Since every member of A is transitive, so is
⋃
A. Moreover,

⋃
A ⊆ On, since if γ ∈

⋃
A,

then γ ∈ α, for some α ∈ A, and then α ⊆ On, and so, γ ∈ On. This implies that either⋃
A = On or

⋃
A ∈ On, by Lemma 2.3.15.

Now, if α ∈ A, then α ≤
⋃
A, because the latter just means that α ⊆

⋃
A. And if Γ ≤ ∞ is

such that for every α ∈ A, α ≤ Γ, then this just means that for every α ∈ A, α ⊆ Γ, which is
the same as to say that

⋃
A ⊆ Γ. This shows that

⋃
A is the supremum of A.

30 CHAPTER 2. SETS

Finally, if A is unbounded in On, then for every β, there is an α ∈ A such that β ∈ α,
and so, On ⊆

⋃
A ⊆ On, so

⋃
A = ∞, and if A is bounded in On, say A ⊆ β, then A is a

set by Separation, and so,
⋃
A is a set as well, by Union, so

⋃
A 6= On, by Corollary 2.3.20, so⋃

A ∈ On.

Definition 2.3.27. Let α be an ordinal. α is a successor ordinal if α = sβ, for some β. α is a
limit ordinal if α 6= 0 and α is not a successor ordinal.

Thus, a successor ordinal is a nonzero ordinal α such that whenever β < α, sβ < α as well.
From the axioms we have introduced thus far, one cannot show that there is a limit ordinal. We
will introduce the axiom needed in the next section.

2.3.3 The Natural Numbers

Definition 2.3.28.

ω = On ∩
⋂
{α ∈ On | 0 ∈ α ∧ ∀β < α sβ ∈ α}.

ω is the class of natural numbers. We write m, n, . . . for members of ω.

So ω is the least class (wrt. inclusion) that’s transitive, well-founded, connected, closed under
x 7→ sx and that contains ∅ as a member, since it is the intersection of all such classes. It follows
that either ω = On, or ω ∈ On.

Definition 2.3.29. The axiom of infinity (Infinity) says: ω ∈ V.

This axiom is equivalent to saying that there is a limit ordinal. We’ll not assume this axiom
for now. So we continue working in ZF−−.

Lemma 2.3.30.

1. ∅ ∈ ω.

2. n ∈ ω =⇒ sn ∈ ω.

Definition 2.3.31. 0 := ∅, 1 := s0, 2 := s1, . . .

Lemma 2.3.32. If n ∈ ω, then either n = 0, or there is an m ∈ n with sm = n.

Proof. If not, then picking a least counterexample gives an s-closed member of ω which contains
0, contradicting the minimality of ω.

Lemma 2.3.33 (Induction Scheme). If A ⊆ ω satisfies:

1. 0 ∈ A,

2. ∀n ∈ A sn ∈ A,

then A = ω.

Proof. Otherwise, let n = min(ω \ A). Since 0 ∈ A, n 6= 0. n = sm, for some m. Then m < n,
so that m ∈ A, by minimality of n. But then, by 2., n = sm ∈ A after all.

So ω is the smallest class which contains 0 and is s-closed. For if X is such a class, then
X ∩ ω = ω, by induction.

There are simple versions of the recursion theorem for ω, which can be used to define the
usual arithmetical operations on the natural numbers. This will be done in the exercises.

2.3. ORDINAL NUMBERS AND INFINITY 31

Definition 2.3.34. Say that x and y are equinumerous iff there is an bijection f : x�� y. We’ll
write x ∼ y for this relation.

Lemma 2.3.35. ∼ is an equivalence relation.

Definition 2.3.36. x is finite iff there is an n ∈ ω with x ∼ n.

Lemma 2.3.37. If m < n < ω, then m 6∼ n. Hence, if x is finite, then there is a unique n with
x ∼ n.

Proof. If not, let m ∈ ω be least such that there is an n > m with m ∼ n. Clearly, m,n 6= 0.
Let m = sm̄, n = sn̄. Let f : m�� n.

Case 1: f(m̄) = n̄.
Then f�m̄ : m̄�� n̄, contradicting the minimality of m.
Case 2: f(m̄) < n̄.
Then let f(k) = n̄. Define g : m̄→ n̄ by:

g(l) =

{
f(l) if l 6= k,
f(m̄) if l = k.

Clearly, g : m̄�� n̄, contradicting the minimality of m.

Definition 2.3.38. For a finite set x, let x, the cardinality of x, be the uniquely determined
n < ω with x ∼ n.

Lemma 2.3.39. Let u ⊆ n < ω. Then otp(〈u,<�u〉) ≤ n. In particular, u is finite. If u $ n,
then otp(〈u,<�u〉) < n.

Proof. The first part of the lemma we know already: It’s Lemma 2.3.22. For the second part,
assume the contrary. Let n be minimal such that there is a counterexample u. Then n = sm.
It follows that m ∈ u, for otherwise u ⊆ m, and we already know that then otp(〈u,< �u〉) ≤ m.
But then, u ∩ m $ m. By minimality of n, it follows that p = otp(〈u ∩m,<〉) < m. Let F
be the Mostowski collapse of 〈u ∩m,<〉. By the Counting Lemma, F = G�(u ∩m), where G is
the collapse of 〈u,<〉. So G(m) = {F (j) | j ∈ u ∩m} = p, so that otp(〈u,<〉) = sp. But since
p < m, it follows that sp < n, so that u wasn’t a counterexample after all.

Lemma 2.3.40. If v is finite and u ⊆ v, then u is finite, too. If moreover u $ v, then u < v.

Proof. For the first part, let f : v �� n, where n = v ∈ ω. Let u′ = f“u ⊆ n. Then
s = 〈u′,∈ ∩(u′)2〉 is a well-order. Let g : s

∼←→ otp(s) be its collapse. Then otp(s) ≤ n ∈ ω. So
g ◦ f�u : u�� otp(s) ∈ ω, proving that u is finite.

For the second part: u′ $ n. So m = otp(〈u′, <�u′〉) < n. In particular, u′ = m.

Corollary 2.3.41. A set a ⊆ ω is finite if and only if it is bounded in ω, i.e., if there is an
n ∈ ω with a ⊆ n. Also, in that case, a = otp(〈a,∈�a〉).

Proof. Clearly, if a ⊆ n, then otp(〈a,<〉) ≤ n, and so a ≤ n, showing that a is finite. It also
follows that otp(〈a,<〉) = a. This is because the collapse of 〈a,<〉 is a bijection between a and
otp(〈a,<〉), which is a natural number (at most n).

Vice versa, assume that a is finite but unbounded in ω. Pick such an a of minimal cardinality
n ∈ ω. Let f : a �� n ∈ ω, n = m + 1. Let a′ = f−1“m. Then a′ = a \ {f−1(m)}, and
f�a′ : a′ �� m. By minimality of a, it follows that a′ is bounded, say by p ∈ ω. But then a is
bounded by p ∪ s(f−1(m)) ∈ ω.

Lemma 2.3.42. If u is finite and f : u� v, then v is finite, and v ≤ u.

32 CHAPTER 2. SETS

Proof. Let g : u �� n = u. Then g induces a well-order <∗ on u, defined by x <∗ y ⇐⇒
g(x) ∈ g(y). Define h : v �� u′ ⊆ u by letting h(m) = min〈u,<∗〉({l ∈ u | f(l) = m}). Then

g ◦ h : v �� a ⊆ n. Letting k : 〈a,<〉 ∼←→ 〈l, <〉 be the collapse, it follows that l ≤ n, so that
k ◦ g ◦ h : v�� l ≤ n, showing that v ≤ u.

Another way to put the previous Lemma is to say that the finite sets satisfy Replacement.
Using the recursion theorem, one can define extensions of the usual arithmetic operations,

addition and multiplication and exponentiation on the ordinal numbers, as follows.

Definition 2.3.43. There are class terms P, T,E defining functions from On2 to On such that,
writing α+ β, α · β, αβ for P (α, β), T (α, β), E(α, β), respectively, the following hold for ordinals
α, β and limit ordinals λ:

• α+ 0 = α, α+ sβ = s(α+ β), α+ λ =
⋃
{α+ β | β < λ}

• α · 0 = 0, α · sβ = α · β + α, α · λ =
⋃
{α · β | β < λ},

• α0 = 1, αsβ = αβ · α, αλ =
⋃
{αβ | β < λ}.

Lemma 2.3.44. Let u and v be finite sets.

1. If u and v are disjoint sets, then u ∪ v = u+ v.

2. u× v = u · v.

3. If u is finite, then P(u) = 2u.

Proof. 1.) By induction on n, show: If u is finite, v = n and u ∩ v = ∅, then u ∪ v = u+ v. For
this, use the fact that + is defined correctly, i.e., that p+ (sq) = s(p+ q).

2.) By induction on n, show: If u is finite and v is finite with v = n, then u× v = u · v.
Again, use that p · (sq) = (p · q) + p.

3.) By induction on n, show: If u is finite with u = n, then P(u) = 2u.

Corollary 2.3.45. If u is finite, then P(u) ∈ V.

So the finite sets satisfy Power Set also. We can define recursively:

Definition 2.3.46.

V0 = ∅,
Vn+1 = P(Vn),

Vω =
⋃
n<ω

Vn.

Lemma 2.3.47.

1. Vn is a finite, transitive set.

2. m < n =⇒ Vm ∈ Vn.

3. Vn ∩ ω = n.

4. Every x ∈ Vω is finite.

5. If u ⊆ Vω is finite, then u ∈ Vω.

2.3. ORDINAL NUMBERS AND INFINITY 33

Proof. 1.-3. are shown by simultaneous induction on n, and 4. follows easily. To see 5., let u ⊆ Vω

be finite. Define F : u −→ ω by letting F (x) be the least n with x ∈ Vn. Let a = ran(F). So
a ∈ V, and actually, F ∈ V. Since F : u � a and u is finite, so is a. So a is a finite set of
natural numbers, hence a is bounded. Let n be such that a ⊆ n. Then u ⊆ Vn, which means
that u ∈ Vn+1 ⊆ Vω.

The following lemma uses the Foundation axiom.

Lemma 2.3.48 (ZF−−F). The following are equivalent:

1. Infinity,

2. There is a set which is not finite,

3. V 6= Vω.

Proof. 1. =⇒ 2.: ω ∈ V is not finite, or else it would be bounded in itself.
2. =⇒ 3.: Every member of Vω is finite.
3. =⇒ 1.: Let x be ∈-minimal in V \Vω. Then x ⊆ Vω. As before, let F : x −→ ω be defined by
letting F (y) be the least n such that y ∈ Vn. Let a = ran(F) ∈ V. Then a must be unbounded
in ω, or else x ∈ Vω would follow. So

⋃
a = ω.

2.3.4 Foundation

A lot can be said without the Foundation axiom. First, I want to extend the Vn hierarchy
transfinitely, for which I will have to assume the Power Set axiom.

Definition 2.3.49 (ZF−−+Power Set). The sequence 〈Vα | α ∈ On〉 is defined as follows:

• V0 = ∅,

• Vα+1 = P(Vα),

• Vλ =
⋃
α<λ Vα if λ is a limit ordinal.

Define V∞ =
⋃
α<∞Vα.

Some of Lemma 2.3.47 carries over to the transfinite hierarchy.

Lemma 2.3.50.

1. Vα is a transitive set.

2. α < β =⇒ Vα ∈ Vβ.

3. Vα ∩On = α.

What can be said about V∞? It turns out that this question is closely related to well-
foundedness. We have previously defined a transitive class A to be well-founded (wrt. sets) if
every nonempty set a ⊆ A has an ∈-minimal element. I’ll now extend this definition to transitive
sets.

Definition 2.3.51. A set x is well-founded if there is a transitive set y such that x ⊆ y and y is
well-founded in the previously defined sense, i.e., every nonempty subset of y has an ∈-minimal
element. Let WF be the class of well-founded sets.

Lemma 2.3.52.

34 CHAPTER 2. SETS

1. WF is transitive.

2. If a ∈WF, then {a} ∈WF.

Proof. For (1), let b ∈ a ∈ WF. Let t witness that a ∈ WF, that is, a ⊆ t, t transitive and
well-founded. Then b ∈ a ⊆ t, so b ∈ t, so b ⊆ t, as t is transitive. So t witnesses that b ∈WF.

For (2), let a ∈WF, and let t witness this, that is, t is transitive, well-founded and a ⊆ t. Let
t′ = t ∪ {a}. Then t′ is easily seen to be transitive, because if x ∈ y ∈ t ∪ {a}, then either y ∈ t,
in which case x ∈ t by transitivity of t, or y = a, in which case x ∈ y = a ⊆ t, so again, x ∈ t.

t′ is also well-founded. To see this, let ∅ 6= A ⊆ t′. If A ∩ t 6= ∅, then let b be ∈-minimal in
A ∩ t. It follows that b is ∈-minimal in A. For if c ∈ b, then we know by ∈-minimality of b that
c /∈ A ∩ t. So if we had c ∈ A, it would have to be that c = a, which would mean that a ∈ b ∈ t,
so a ∈ t. But then a ∈ A ∩ t and a ∈ b, again contradicting the ∈-minimality of b in A ∩ t. The
other case is that A ∩ t = ∅, that is, A = {a}. In this case, we have to convince ourselves that
a is ∈-minimal in A. But if this were not the case, then a ∈ a ⊆ t, so a ∈ t, so a ∈ A ∩ t = ∅, a
contradiction.

The following theorem says that the class of well-founded sets is well-founded with respect
to classes.

Theorem 2.3.53. Let ∅ 6= A ⊆WF. Then A has an ∈-minimal element.

Proof. Let a ∈ A. If a is ∈-minimal in A, then we’re done, so let’s assume this is not the case.
We know that since a ∈ WF, so is {a}. So let t be transitive and well-founded, with a ∈ t.
Let ã = A ∩ t. Then ã 6= ∅, because a ∈ ã. By well-foundedness of t, let b be ∈-minimal in ã.
It follows that b is ∈-minimal in A: otherwise, there would be a c ∈ b with c ∈ A. But since
c ∈ b ∈ t, it would then follow that c ∈ t, as t is transitive. So c ∈ A ∩ t = ã. This contradicts
the ∈-minimality of b in ã.

Theorem 2.3.54 (ZF−−+Power Set). V∞ = WF.

Proof. For the inclusion from left to right, recall that we have seen that each Vα is transitive. It
thus suffices to show that each Vα is well-founded, because then, if a ∈ V∞, there is an α such
that a ∈ Vα, which implies that a ⊆ Vα, and thus, Vα witnesses that a ∈WF.

To see that for all α, Vα is well-founded, assume the contrary. By the well-foundedness of
(On, <), let α be a (the) minimal counterexample. Let ∅ 6= a ⊆ Vα be such that a has no
∈-minimal element. Note that it has to be that α > 0. Pick b ∈ a. Then b ∈ Vα. It follows
that for some β < α, b ⊆ Vβ : either α is a successor ordinal, say α = β + 1, in which case
b ∈ Vα = P(Vβ), so b ⊆ Vβ , as wished. Or α is a limit ordinal, in which case there is a β < α
such that b ∈ Vβ , and since Vβ is transitive, it follows that b ⊆ Vβ .

Now let ã = Vβ ∩ a. Then ã 6= ∅, since b is not ∈-minimal in a: there is an x ∈ b with x ∈ a.
Since b ⊆ Vβ , it follows that x ∈ Vβ ∩ a = ã. Now by minimality of α, Vβ is well-founded. So
let c be ∈-minimal in ã. It then follows that c is ∈-minimal in a, because if not, let d ∈ c, d ∈ a.
Then d ∈ c ∈ ã ⊆ Vβ , so d ∈ c ∈ Vβ , so d ∈ Vβ , so d ∈ Vβ ∩ a = ã. So a had an ∈-minimal
element after all. This contradiction proves the inclusion from left to right.

Let’s now prove the inclusion from right to left. Suppose it fails. Then WF \ V∞ 6= ∅. By
Theorem 2.3.53, there is then an ∈-minimal element a in WF \ V∞. But then it follows that
a ⊆ V∞, because if b ∈ a, then b ∈WF, as WF is transitive (by Lemma 2.3.52), so if it were the
case that b /∈ V∞, we’d have that b ∈WF\V∞, contradicting the ∈-minimality of a in this class.
Now, for every x ∈ a, we can let F (x) be the least α such that x ∈ Vα. Letting λ =

⋃
F“a, it

then follows that a ⊆ Vλ, so a ∈ Vλ+1 ⊆ V∞. So a ∈ V∞ after all, a contradiction.

2.3. ORDINAL NUMBERS AND INFINITY 35

Corollary 2.3.55 (ZF−− + ¬Infinity). V∞ = WF.

Proof. The proof of Theorem 2.3.54 goes through, because the only use of the Power Set axiom
in that proof was that for every α ∈ On, Vα ∈ V. This holds under ¬Infinity as well.

Corollary 2.3.56. The following theories are equivalent:

1. ZF−−F + Power Set

2. ZF−− + Power Set + V∞ = V.

Proof. 1 =⇒ 2: By Theorem 2.3.54, ZF−−F + Power Set proves that V∞ = WF. But it follows
from Foundation that every set is contained in a transitive set (as follows from Lemma 2.2.2) and
moreover obviously that every transitive set is well-founded, that is, V = WF. Putting these two
equalities together, it follows that V = V∞.

2 =⇒ 1: ZF−− + Power Set + V∞ = V implies that V = V∞ = WF by Theorem 2.3.54 again.
But V = WF implies every instance of Foundation, by Theorem 2.3.53.

Corollary 2.3.57. The following theories are equivalent:

1. ZF−−F + ¬Infinity

2. ZF−− + ¬Infinity + V∞ = V.

Proof. Like the proof of Corollary 2.3.56, using Corollary 2.3.55 instead of Theorem 2.3.54.

In particular, in the theories ZF−− + ¬Infinity or ZF−− + Power Set, the Foundation scheme
can be expressed as one sentence: V∞ = V. It’s not so clear how to do that in ZF−−+ Infinity +
¬Power Set, however.

The point of this subsection was to show that all the Foundation axiom does is to restrict the
domain of sets we talk about to the class WF. One can show that if one takes a model M of
set theory without the Foundation axiom and restricts it to {a ∈ M | M |= a ∈ WF}, then the
resulting model will be a model of set theory together with Foundation. Thus, there is no risk of
running into inconsistencies in adding Foundation. From now on, I will assume the Foundation
axiom.

2.3.5 Trees

Trees are very useful in many contexts, such as the analysis of sets of real numbers. Also, the
natural representation of a formula and its subformulas, their subformulas, and so on, is a tree.
Trees can also be used to serve as a model for the space in which a derivation is searched for.
Such trees are called search trees, and I shall make use of such trees later, when proving the
Completeness Theorem for the Tait calculus. Somewhat longer trees occur in combinatorial set
theory as well, and they will come up much later, in the third sequel of this lecture course. The
current subsection should really be called short sequent trees.

Definition 2.3.58. If f is a function with domain α and x is a set, let f_x := f ∪ {〈x, α〉}.

Definition 2.3.59. A (sequent) tree T on a set X is a set of functions (sequences) f : n → X
closed under initial segments. So every member of T is a function whose domain is a natural
number, and whose range is contained in X. Moreover, for all f ∈ T and for all natural numbers
m, f�m ∈ T . If T is a tree and p ∈ T , then

succT (p) := {x | p_x ∈ T}.

36 CHAPTER 2. SETS

T is locally finite if for every p ∈ T , succT (p) is finite. A (cofinal/infinite) branch of a tree T is
a function b : ω −→ X such that for every n ∈ ω, b�n ∈ T .

Definition 2.3.60. Let T be a tree on X, T ∈ V. Given s, t ∈ T , I write t >T s if s $ t.
T is well-founded if the structure 〈T,>T 〉 (the ordering is reversed here!) is well-founded. 2

Otherwise, the tree is ill-founded.

Lemma 2.3.61. Let 〈u, r〉 be a structure with r ⊆ u2. Let u be well-ordered by some relation
<u. Then 〈u, r〉 is ill-founded if and only if there is a function f : ω −→ u such that for all
n < ω, f(n+ 1)rf(n).

Proof. Suppose f : ω −→ u is such a decreasing sequence. Then the set f“ω has no r-minimal
element, so that 〈u, r〉 is ill-founded.

Vice versa, suppose 〈u, r〉 is ill-founded. Now let ∅ 6= a ⊆ T have no >T -minimal member.
It is now possible to define a sequence 〈sn | n < ω〉 recursively, by letting s0 be the ≺-minimal
member of a. Since a has no r-minimal member, let s1 be the ≺-minimal member of a such
that s1rs0. In general, having defined sn, we can let sn+1 be ≺-minimal such that sn+1 ∈ a and
sn+1rT sn. Then f(n) := sn is as wished.

Theorem 2.3.62 (König, ZF−). Every infinite, locally finite tree on a well-ordered set X has
an infinite branch.

Proof. Let T be an infinite, locally finite tree on X. Consider the set I consisting of those f ∈ T
such that the set T f := {g ∈ T | f ⊆ g} is infinite. It follows that I is a tree: It is obviously
closed under initial segments. Moreover, I is ill-founded: Firstly, I 6= ∅ because ∅ ∈ I, as T is
infinite, by assumption. Secondly, if f ∈ I, then T f is infinite. But

T f = {f} ∪
⋃

x∈succT (f)

T f
_x

is a partition of the infinite (since f ∈ I) set T f into finitely many pieces (as T is locally finite,
so that succT (f) is finite). Hence, there must be an x ∈ succT (f) such that T f

_x is infinite, in
other word, such that f_x ∈ I. So f is not >T -minimal in I. Since f was an arbitrary member
of I, this shows that I is ill-founded. T inherits a well-ordering from X in a canonical way: Let
<X be a well-order on X. For example, if s, t ∈ T such that s 6= t, let s ≺ t if dom(s) < dom(t),
or if dom(s) = dom(t) and for the least l such that s�l 6= t�l, s(l) <X t(l). The reader is
invited to check that this is a well-ordering on T . The restriction of this well-ordering to I is of
course a well-order on I, so Lemma 2.3.61 is applicable. It shows that I has an infinite branch
>T -decreasing sequence, and such a sequence will generate a branch of T in the obvious way.

2.4 Cardinal Numbers and Choice

2.4.1 Comparing size without choice

There are several natural ways to compare the sizes of sets. Recall Definition 2.3.34, which
defined sets x and y to be equinumerous (x ∼ y) if there is a bijection between them. The
following definition expresses that x is at most as large as y, in the sense that “x can be put
inside y.”

2The structure 〈T,<T 〉 is always well-founded. Note also that since T is a set, the scheme expressing that
〈T,>T 〉 is well-founded is actually equivalent to the formula saying that every nonempty subset of T has a
>T -minimal member. In this case, I take “〈T,>T 〉 is well-founded” to stand for this formula.

2.4. CARDINAL NUMBERS AND CHOICE 37

Definition 2.4.1. For sets x and y, write x � y to express that there is an injection g : x� y.

Note that if x � y, then there is a surjection h : y � x. The existence of a surjection from y
onto x is also a natural concept expressing that y is at least as large as x, in the sense that x “can
be covered by y.” It is not provable in ZF that this latter notion implies that x � y. I’ll work in
ZF for awhile now, until I’ll add the axiom of choice. Recall that ZF is ZF−−F +Infinity+Power Set.

Lemma 2.4.2 (Hartogs, ZF). For every set x, there is an ordinal α such that there is no
surjection from x onto α. In particular, α 6� x.

Proof. The point is that if f : x � β, then f can be coded by the relation rf on x defined
by arfb ⇐⇒ f(a) < f(b). Namely, rf is a well-founded relation on x, and f is the unique
function satisfying, for all a ∈ x: f(a) =

⋃
{f(b) | brfa}. This is also known as the rank

function of rf . (Another way to think of this coding is as follows: the relation e on x defined by
aeb ⇐⇒ f(a) = f(b) is an equivalence relation, and if x/e is the set of e-equivalence classes,
then for u, v ∈ x/e, one can define uRfv ⇐⇒ ∀a ∈ u∀b ∈ v f(a) < f(b). Then Rf is a well-order
of x/e, and if F : x/e −→ On is the Mostowski collapse of 〈x/e,Rf 〉, then f(a) = F ([a]e), where
[a]e is the e-equivalence class of a ∈ x. So f can be read off of Rf and e. But of course, e and
Rf can be defined from rf , as aeb iff ¬(arfb) and ¬(brfa).)

Thus, if we consider the class A = {f | ∃α f : x � α}, then the map G : A −→ P(x × x)
defined by G(f) = rf is injective, and hence, its inverse G−1 : ran(G)� A exists. But ran(G) ⊆
P(x × x) is a set, by Separation, and so, A is a set as well, by Replacement. Hence, the set
{ran(f) + 1 | f ∈ A} is a set as well, thus so is θ =

⋃
{ran(f) + 1 | f ∈ A}, by Union. The latter

is the least ordinal greater than every ordinal of the form ran(f), for any f ∈ A. Thus, there is
no surjection from x onto θ.

Theorem 2.4.3 (Cantor). For any set x, x � P(x), but there is no surjection f : x � P(x).
So in particular, P(x) 6� x.

Proof. The function a 7→ {a} is an injection from x to P(x), so x � P(x). Now let’s assume
there was a surjection f : x� P(x). Let a = {b ∈ x | b /∈ f(b)}. Since a ∈ P(x), there has to be
a c ∈ x such that f(c) = a. But then c ∈ a ⇐⇒ c /∈ f(c), by definition of a, and since f(c) = a,
this means that c ∈ a ⇐⇒ c /∈ a, a contradiction.

Theorem 2.4.4 (Schröder-Bernstein, Dedekind). If u � v and v � u, then u ∼ v.

Proof. Let f : u� v and g : v� u. Recursively define sequences 〈un | n < ω〉 and 〈vn | n < ω〉
by setting u0 = u, un+1 = gf“un and v0 = v, vn+1 = fg“vn. By induction on n, one can easily
verify that these sequences are nested as follows:

un ⊇ g“vn ⊇ un+1 andvn ⊇ f“un ⊇ vn+1.

Clearly, f“(un \ g“vn) = (f“un) \ vn+1, and g“(vn \ f“un) = g“vn \ un+1. Let u∗ =
⋂
n<ω un,

v∗ =
⋂
n<ω vn. Then

f“u∗ =
⋂
n<ω

f“un =
⋂
n<ω

vn+1 = v∗,

because of the nested pattern vn ⊇ f“un ⊇ vn+1. Thus, if we set

h = f�

(
u∗ ∪

⋃
n<ω

(un \ g“vn)

)
∪ g−1�

⋃
n<ω

(g“vn \ un+1),

then h : u�� v, as wished.

38 CHAPTER 2. SETS

2.4.2 Equivalents of the axiom of choice

The axiom of choice will allow us to measure the sizes of sets on a linear scale.

Definition 2.4.5. The axiom of choice (AC) says that every set has a cardinality. I.e., for every
set x, there is an α ∈ On such that x ∼ α. The cardinality of a set x is the least α such that
x ∼ α.

Note that if V = Vω, then every set is finite, so that the axiom of choice automatically holds.
So under Foundation, AC is only interesting if we assume Infinity.

Theorem 2.4.6 (ZF). The following are equivalent:

1. AC,

2. every set can be well-ordered (i.e., for all x, there is an r ⊆ x2 such that 〈x, r〉 is a well-
order),

3. every set of nonempty sets has a choice function, i.e., for all x, if ∀y ∈ x y 6= ∅, then
there is a function f : x −→

⋃
x, so that ∀y ∈ x f(y) ∈ y.3

Proof. 1 =⇒ 2: Given a set x, let f : x �� α. Then x inherits a well-order <x from 〈α,< �α〉
via y <x z ⇐⇒ f(y) < f(z).

2 =⇒ 3: Let x be a set of non-empty sets. Let 〈
⋃
x, r〉 be a well-order. Define F : x −→

⋃
x

by letting F (y) be the r-minimal member of y. F is definable, so that F = F ∩ ((
⋃
x)× x) ∈ V.

3 =⇒ 1: Let x be a set. We have to find f and γ such that f : x�� γ. Consider z := P(x)\{∅}
(so here, the Power Set axiom is used). This is a set of nonempty sets, so there is a choice function
g : z −→

⋃
z. Now we can define by recursion a function F : On −→ x as follows:

F (ξ) =

{
g(x \ F“ξ) if defined
{x} otherwise

Let Γ =
⋃
{ξ | F (ξ) 6= {x}}. Then F �Γ : Γ � x. So F−1 is a function, which means that

Γ = F−1“x ∈ V, i.e., γ := Γ <∞. It follows that F : γ � x as well, so f := F ∩ (x× γ) ∈ V is
a bijection from γ onto x.

Note that only in the proof of (3) =⇒ (1) did we use the Power Set axiom. Thus, in the
absence of the Power Set axiom, it is conceivable that the formulation (1) of the axiom of choice
is stronger than the formulation (3). Since it is (1) that we usually need, I chose to take that
formulation as the official definition of AC. This way, even in the absence of Power Set, if we
assume AC, we have the strongest form of choice at our disposal.

Definition 2.4.7. 〈x,≤x〉 is a partial order if ≤x⊆ x2 is reflexive and transitive. It is a partial
order in the strict sense if in addition, it is anti-symmetric, meaning that if u ≤x v and v ≤x u,
then u = v. A chain in a partial order 〈x,≤x〉 is a set c ⊆ x such that for any u, v ∈ c, u ≤x v
or v ≤x u. Such a partial order is chain-closed if for any chain c ⊆ x, c has a bound in 〈x,≤x〉,
i.e., there is a b ∈ x such that for all u ∈ c, u ≤x b. If 〈x,≤x〉 is a partial order, write <x for the
binary relation on x defined by letting u <x v iff u ≤x v and u 6= v. m ∈ x is maximal in 〈x,≤x〉
if there is no u ∈ x with u >x m.

Note: If 〈x,≤x〉 is a partial order in the strict sense, then 〈x,<x〉 is irreflexive and transitive.
Irreflexivity is clear by definition, and to see transitivity, suppose that u <x v and v <x w. Then
u ≤x v and v ≤x w, so that u ≤x w, as ≤x is transitive. To see that u <x w, it must be verified
that u 6= w. But if it were the case that u = w, then we’d have u ≤x v ≤x u, so since 〈x,≤x〉 is

3This is usually the official definition of the axiom of choice.

2.4. CARDINAL NUMBERS AND CHOICE 39

a partial order in the strict sense, it would follow that u = v, contradicting the assumption that
u <x v.

Note also that there may be many maximal elements in a chain-closed partial order.

Lemma 2.4.8 (Zorn’s Lemma, ZF). The following are equivalent:

1. Whenever 〈x,≤x〉 is a chain-closed partial order in the strict sense (with x 6= ∅), it has a
maximal element.

2. The axiom of choice.

Proof. 2 =⇒ 1: By the axiom of choice, fix a well-ordering R of x. Define a function F : On −→
x ∪ {x} by setting:

F (α) =

 The R-minimal member u of x with
∀z ∈ F“α z <x u if this exists,

x otherwise.

Let Γ = {α | F (α) 6= x}. Then f := F �Γ is injective, so Γ < ∞. Moreover, if α < β < Γ,
then f(α) <x f(β), by definition of F . Also, if λ is a limit ordinal and λ ⊆ Γ, then λ ∈ Γ.
This is because F“λ is a chain in 〈x,≤x〉, so that it has a bound y. But then this bound is a
strict bound, i.e., y >x z, for all z ∈ F“λ - this is because if z = F (α), for some α < λ, then
z <x F (α+ 1) ≤x y, so that z <x y. So Γ is a successor ordinal, say Γ = δ + 1. Then F (δ) is a
maximal element of 〈x,<x〉: Since F (δ + 1) = x, by definition, there is no y with y >x F (δ).

1 =⇒ 2: Let’s verify the axiom of choice in the form stating every set of nonempty sets has
a choice function. So let u be a set of nonempty sets, and consider the set F consisting of the
functions whose domain is a subset of u and which are choice functions for their domain (which
naturally is a set of nonempty sets). Consider the partial order 〈F,⊆ �(F 2)〉. This is a partial
order in the strict sense, and it is chain closed, as is easily verified (the point is that the union of a
chain of functions is again a function). So let f ∈ F be maximal. The claim is that dom(f) = u.
For if not, then let y ∈ u \ dom(f). Since y 6= ∅, pick z ∈ y, and set f ′ = f ∪ {〈z, y〉}. Then
f ′ ∈ F , and f $ f ′, contradicting the maximality of f .

So dom(f) = u, which means that f is a choice function for u.

2.4.3 Basic cardinal arithmetic

Definition 2.4.9. An ordinal κ is a cardinal if κ = κ, that is, if there is no α < κ with α ∼ κ.
The class of all cardinals is denoted Card.

Lemma 2.4.10 (AC).

1. u ∼ v ⇐⇒ u = v.

2. u ∈ Card.

3. u � v =⇒ u ≤ v.

4. ν ≤ ω =⇒ ν ∈ Card.

Definition 2.4.11. Let Γ ≤ ∞, and let A ⊆ Γ. Then A is unbounded in Γ if ∀α < Γ∃β < Γ(β >
α ∧ β ∈ A). An ordinal λ > 0 is a limit point of A if A ∩ λ is unbounded in λ. A is closed in Γ
if whenever λ < Γ is a limit point of A, then λ ∈ A.

Lemma 2.4.12. Card is closed and unbounded in ∞.

40 CHAPTER 2. SETS

Proof. To see that Card is unbounded in ∞, let α < ∞ be given. By Lemma 2.4.2, there is a
β such that there is no surjection from α onto β. Let β be the least such. Clearly, β > α. It

follows that β ∈ Card, because otherwise, β < β, and by minimality of β, there is a surjection

from α onto β, but composing this surjection with a bijection between β and β gives a surjection
from α onto β, a contradiction.

To see that Card is closed in ∞, let λ be a limit point of Card. Suppose λ /∈ Card. Then

λ < λ. Since λ is a limit point of Card, we can pick a cardinal κ with λ < κ < λ. Then

κ � λ ∼ λ, so by composing the witnessing functions, we see that κ � λ. But clearly, λ � κ as

well, since λ < κ. So by Theorem 2.4.4, κ ∼ λ < κ, so κ < κ, contradicting that κ ∈ Card.

Observation 2.4.13. α = max{β ≤ α | β ∈ Card}.

Proof. Let X = {β ≤ α | β ∈ Card}. So α ∈ X. Suppose α < β = maxX. Then α < β ≤ α,
β ∈ Card. This gives a contradiction as in the previous proof.

Definition 2.4.14. Let 〈ℵν | ν <∞〉 be the enumeration of Card\ω (the infinite cardinals). So
ℵ0 = ω. I will often write ων for ℵν .

Observation 2.4.15. Since Card is closed, the function ν 7→ ℵν is a normal function, meaning
that it is strictly increasing and continuous, i.e., if λ is a limit ordinal, then ℵλ = supν<λ ℵν .

Definition 2.4.16. For α < ∞, let α+ = min(Card \ (α + 1)), i.e., α+ is the least cardinal
greater than α.

So we have: ℵ0 = ω, ℵν+1 = ℵ+
ν and for limit λ, ℵλ =

⋃
ν<λ ℵν .

The basic cardinal arithmetic operations are defined as follows. I will use the same notation
as for ordinal arithmetic - the meaning will be clear from context.

Definition 2.4.17. Let α, β ∈ Card. Then

α+ β = α× {0} ∪ β × {1}

α · β = α× β

Note that this is the same definition that we also used for these operations on the natural
numbers.

Lemma 2.4.18 (AC). Let α, β, γ ∈ Card.

1. u ∩ v = ∅ =⇒ u ∪ v = u+ v.

2. If α, β < ω, then the ordinal sum/product of α and β is the same as the cardinal sum/product.

3. u× v = u · v.

4. α+ 0 = α, α+ β = β + α, α+ (β + γ) = (α+ β) + γ.

5. α ≤ β =⇒ α+ γ ≤ β + γ.

6. α · 0 = 0, α · 1 = α, α · 2 = α+ α.

7. α · β = β · α, (α · β) · γ = α · (β · γ).

8. α ≤ β =⇒ α · γ ≤ β · γ.

9. β ≥ 1 =⇒ α ≤ α · β.

2.4. CARDINAL NUMBERS AND CHOICE 41

Definition 2.4.19 (Gödel). Define a relation <∗⊆ On×On by setting 〈α, β〉 <∗ 〈γ, δ〉 iff either
max(α, β) < max(γ, δ), or max(α, β) = max(γ, δ) but α < γ, or max(α, β) = max(γ, δ) and
α = γ, but β < δ.

Lemma 2.4.20. The structure (On×On, <∗) is strongly well-founded.

Proof. The relation <∗ is easily seen to be linear (for example by observing that it can be viewed
as a lexicographical ordering, namely, 〈α, β〉 <∗ 〈γ, δ〉 iff 〈max{α, β}, α, β〉 <lex 〈max{γ, δ}, γ, δ〉).
It is set-like because the set of <∗-predecessors of some fixed pair 〈α, β〉 is contained in µ × µ,
where µ = max{α, β}+1. It is well-founded, because given any nonempty A ⊆ On×On, one can
let µ = min{max{α, β} | 〈α, β〉 ∈ A}, then let α0 = min{α | ∃β max(α, β) = µ ∧ 〈α, β〉 ∈ A}
(i.e., minimize the first coordinate), then let β0 = min{β | max{α0, β} = µ ∧ 〈α0, β〉 ∈ A} (i.e.,
minimize the second coordinate). It follows that 〈α0, β0〉 is the <∗-minimum of A.

It follows from the previous lemma that otp(On×On, <∗) =∞, and the following definition
makes sense.

Definition 2.4.21. Let Γ : (On × On, <∗) −→ On be the Mostowski isomorphism. Γ is called
Gödel’s Pairing Function. Often, Γ(α, β) is denoted ≺α, β�.

Lemma 2.4.22. Let κ ≥ ω be a cardinal. Then

Γ�(κ× κ) : κ× κ�� κ.

Proof. We have to show that if κ ≥ ω is a cardinal, then Γ“(κ × κ) = κ. The direction from
right to left here is easy to see: if γ < κ, then 〈0, γ〉 ∈ κ× κ, and the function f : γ + 1 −→ On
defined by f(δ) = Γ(0, δ) is strictly increasing, and hence, clearly, f(δ) ≥ δ (this can be shown
by induction on δ). Thus, Γ(0, γ) ≥ γ. So if Γ(0, γ) = γ, then we are done. Otherwise,
γ ∈ Γ(0, γ) = {Γ(α, β) | 〈α, β〉 < ∗〈0, γ〉}, so there is a pair 〈α, β〉 <∗ 〈0, γ〉 such that Γ(α, β) = γ.
By the definition of <∗, it follows that α, β < γ, so in particular, 〈α, β〉 ∈ κ× κ.

For the converse, we show by induction on ν ∈ On that Γ“(ℵν × ℵν) ⊆ ℵν .
In the case ν = 0, we are showing Γ“ω × ω ⊆ ω. Given 〈m,n〉 ∈ ω × ω, we have that

Γ(m,n) = {Γ(k, l) | 〈k, l〉 <∗ 〈m,n〉} ⊆ {Γ(k, l) | 〈k, l〉 ∈ p× p},

where p = max{m,n}+ 1 < ω. So Γ(m,n) has only finitely many elements, and it is an ordinal,
it has to be less than ω.

In the case that ν is a successor ordinal, say ν = γ + 1, let 〈α, β〉 ∈ ℵγ+1 × ℵγ+1 be given.
We have that

Γ(α, β) = {Γ(ξ, ζ) | 〈ξ, ζ〉 <∗ 〈α, β〉} ⊆ {Γ(ξ, ζ) | 〈ξ, ζ〉 ∈ µ× µ},

where µ = max(α, β) + 1. Now since α < ℵγ+1, it follows that α ≤ ℵγ , and similarly for

β. So max{α, β} ≤ ℵγ , and this clearly implies that µ ≤ ℵγ . Thus, there is an injective
function f : µ � ℵγ . But then, there is an injective map g : Γ(α, β) −→ ℵγ , defined by
g(Γ(ξ, ζ)) = Γ(f(ξ), f(ζ)) < ℵγ , because f(ξ), f(ζ) < ℵγ and inductively, Γ“ℵγ × ℵγ ⊆ ℵγ .

Thus, Γ(α, β) ≤ ℵγ , which implies that Γ(ℵ, β) < ℵγ+1, as was to be shown.
The limit case is immediate: let ν be a limit ordinal. If 〈α, β〉 ∈ ℵν ×ℵν , then it follows that

there is a ν̄ < ν such that 〈α, β〉 ∈ ℵν̄ × ℵν̄ . But then, inductively, Γ(α, β) < ℵν̄ < ℵν , and we
are done.

Corollary 2.4.23. Let κ, λ be cardinals, λ ≥ ω.

42 CHAPTER 2. SETS

1. λ · λ = λ.

2. κ · λ = max{κ, λ} if κ > 0.

3. κ+ λ = max{κ, λ}.

Proof. Point 1 follows from Lemma 2.4.22:

λ ∼ λ× λ ∼ λ · λ.

Since λ is a cardinal, this implies that λ · λ = λ.
Now let γ = max{κ, λ}. Then point 2 follows, using Lemma 2.4.18:

γ ≤ κ · λ ≤ γ · γ = γ.

And point 3 follows then because

γ ≤ κ+ λ ≤ γ + γ ≤ γ · 2 ≤ γ · γ = γ.

Definition 2.4.24 (AC). For sets x, y, define

yx = {f | f : y −→ x}.

For cardinals κ, λ, let

κλ = λκ.

Lemma 2.4.25. Let κ, λ, µ ∈ Card. Then

1. κλ+µ = κλ · κµ.

2. (κλ)µ = κλ·µ.

3. 2κ = P(κ).

Proof. For 1, it suffices to show that

λ×{0}∪µ×{1}κ ∼ λκ× µκ.

This is witnessed by the function F defined as follows: let g : λ× {0} ∪ µ× {1} −→ κ be given.
Then define F (g) = 〈g0, g1〉, where g0 : λ −→ κ and g1 : µ −→ κ are defined by

gi(ξ) = g(ξ, i),

for i < 2. Clearly, F is a bijection.
For 2, it suffices to find a bijection

F : µ(λκ)�� λ×µκ.

We define F as follows. Let f ∈ µ(λκ) be given. Thus, f : µ −→ λκ. Thus, for each ξ < µ,
f(ξ) : λ→ κ. Define F (f) : λ× µ −→ κ by

(F (f))(ξ, ζ) = (f(ζ))(ξ).

Again, clearly, F is a bijection.
Finally, for 3, we have to show that there is a function F : κ2 �� P(κ), which is easily

achieved by setting:
F (f) = {α < κ | f(α) = 1}

where f : κ −→ 2.

2.5. SUBSYSTEMS OF SET THEORY 43

Lemma 2.4.26. On ω, ordinal and cardinal addition and subtraction coincide.

Lemma 2.4.27. Let κ be a cardinal. Then

1. κ0 = 1κ = 1.

2. κ1 = κ.

3. κ2 = κ · κ = κ.

Definition 2.4.28. Let 〈ai | i ∈ I〉 be a sequence of sets. Then∏
i∈I

= {f | f : I −→ V ∧ ∀i ∈ I f(i) ∈ ai}.

Recall that for a set s of ordinals, sup s =
⋃
s is the least ordinal greater than or equal to all

elements of s. If 〈ξi | i ∈ I〉 is a sequence of ordinals, then I write supi∈I ξi for sup{ξi | i ∈ I}.

Lemma 2.4.29 (AC). Set 〈xi | i ∈ I〉 ∈ V. Then

1.
⋃
i∈I xi ≤ I · sup

i∈I
xi.

2.
∏
i∈I xi ≤ (sup

i∈I
xi)

I .

Proof. For i ∈ I, let gi : xi�� xi be a bijection.
For 1, it suffices to find an injective function F :

⋃
i∈I xi �

⋃
i∈I xi. To this end, for

z ∈
⋃
i∈I xi, let i(z) ∈ I be such that z ∈ xi(z). Define F (z) = 〈i(z), gi(z)(z)〉. It is easy to see

that F is into.
For 2, it suffices to find an injection G :

∏
i∈I xi �

I(
⋃
i∈I xi). To this end, define, for

f ∈
∏
i∈I xi,

G(f)(i) = gi(f(i)).

It is again easy to see that G is injective.

2.5 Subsystems of set theory

The axiom system ZF + AC is called ZFC.
ZF− is the system which results from ZF−−F by adding the Infinity axiom and replacing the

Replacement scheme with the following Collection scheme:

∀u∃v∀x ∈ u((∃y〈x, y〉 ∈ A) −→ (∃y ∈ v〈x, y〉 ∈ A)).

As usual, the universal form of these formulas needs to be taken (i.e., the free variables occurring
in A have to be bound by universal quantifiers in the beginning of the formula). The difference
between Replacement and Collection is subtle. Collection implies Replacement, but the converse
is not true, modulo ZF−−F . Once the Power Set axiom is added, though, the subtle difference
vanishes, so in ZF, Collection holds as a consequence of Replacement and Power Set. In an
analysis of Σ1 predicates, we will encounter a place where it matters that we have Collection at
our disposal, when proving closure under bounded quantification.

Similarly, ZFC− is ZF− + AC.

44 CHAPTER 2. SETS

Chapter 3

Semantics

In this chapter, I am returning to what was done in the first chapter. There, I introduced
first order languages, without talking about the meaning of expressions in such languages. I
augmented these languages with an appropriate notion of proof, but still everything was basically
about words, that is, sequences of symbols. In this chapter, I want to introduce interpretations
of languages, so that, e.g., a formula ∃xϕ gets a meaning, namely that there exists an x such
that ϕ is true of x.

I will work in the theory ZF−, although one can work with less in many cases. For example,
ZF−− will suffice for many purposes, though at the cost of having to deal with proper classes
instead of sets.

It is easy to see that in ZF−, given a set X, one can construct a canonical free halfgroup
generated by X (this will be done in the exercises). Fixing a language L = 〈C,P,F,#〉, the
collection of L-terms, TermL and the collection of L-formulas, FmlL, then form sets. The same
is true for the set of Tait formulas, FmlTL.

3.1 Models

Definition 3.1.1. A model for L is a set of the formM = 〈X, I〉 with X 6= ∅ and I : C∪P∪F −→
V so that

1. For c ∈ C, I(c) ∈ X. I will write cM for I(c).

2. For P ∈ P, I(P) ⊆ X#(P). I will write PM in place of I(P).

3. For F ∈ F, I(F) : X#(F) −→ X. As expected, FM will stand for I(F).

It is sometimes convenient to pretend that =̇ is a member of P and set

=̇M := {〈x, x〉 | x ∈ |M|}.

I’ll write |M| for X. This is called the universe, or the domain of the model M.
Finally, if P ∈ P and P̄ is the corresponding symbol in the Tait-alphabet of L, then set:

P̄M := |M|#(P) \ PM,

and viewing 6= as =̄, the corresponding holds:

6=M:= {〈x, y〉 | x ∈ |M|, y ∈ |M| and x 6= y}.

45

46 CHAPTER 3. SEMANTICS

I will use the Recursion Theorem in order to define when a model satisfies a formula (with
some assignment of its free variables). The relation used will be that of being a subformula. The
point is that it is well-founded. The reader will gladly verify the following:

Lemma 3.1.2. Let 〈v, s〉 be a well-founded system (i.e., s ⊆ v2 and s is well-founded). Let 〈u, r〉
be such that r ⊆ u2, and let f : 〈u, r〉 −→ 〈v, s〉 be a homomorphism, meaning that if xry, then
f(x)sf(y). Then 〈u, r〉 is well-founded.

I will state the following two lemmas without proofs:

Lemma 3.1.3 (Unique Readability of Terms). If t is a term in a fixed language L, then precisely
one of the following possibilities holds true:

1. t = vm, for some (unique) variable vm,

2. t = c, for some (unique) constant symbol c,

3. there is a (unique) function symbol F and a (unique) list t0, . . . , tn−1, where n = #(F), such
that t = F (t0, . . . , tn−1). In this case, t0, . . . , tn−1 will be called the immediate subterms of
t.

Lemma 3.1.4 (Unique Readability of formulas). If ϕ is a formula in a fixed language L, then
precisely one of the following possibilities holds:

1. ϕ = P (t0, . . . , tn−1), for a (unique) P ∈ P and a (unique) sequence t0, . . . , tn−1 with
n = #(P), such that each ti is a term. For convenience, I allow the possibility P = =̇ here.

2. there is a (unique) formula ψ (the immediate subformula of ϕ) such that ϕ = ¬ψ,

3. there are (unique) formulas ψ0, ψ1 (the immediate subformulas of ϕ) such that ϕ = (ψ0 ∧
ψ1),

4. there are (unique) formulas ψ0, ψ1 (the immediate subformulas of ϕ) such that ϕ = (ψ0 ∨
ψ1),

5. there is a variable vm and a formula ψ (the immediate subformula of ϕ) such that ϕ =
∃vmψ,

6. there is a variable vm and a formula ψ (the immediate subformula of ϕ) such that ϕ =
∀vmψ.

Of course, the obvious version of this lemma for Tait formulas holds as well.

The relation over which I am going to define whether a formula holds in a given model, with
a given assignment of its free variables, will be that of being an immediate subformula. It is
clear that the formulas in a given language form a set. The map sending a formula to its length
maps an immediate subformula of a formula to a strictly smaller natural number. So since the
natural numbers, together with their natural ordering are well-founded, the formulas, with the
“immediate subformula” relation, are also well-founded, by Lemma 3.1.2, and the corresponding
statement is true of the terms, with the “immediate subterm” relation.

Lemma 3.1.5. Let M be a model of some language. An assignment in M is a finite partial
function from the set of variables to |M|. Let AssignM be the set of assignments in M.

3.1. MODELS 47

Definition 3.1.6 (Evaluation of Terms). LetM be a model of a fixed language L. By recursion
on the immediate subterm relation, define a function I whose domain is the set TermL, so that
for every term t, I(t) : AssignM −→ M∪ {|M|}. 1 Writing tM(a) for (I(t))(a), the definition
proceeds as follows.

tM(a) =


a(vm) if t = vm and vm ∈ dom(a),
|M| if t is a variable not in dom(a),
cM if c ∈ C,
FM(tM0 (a), . . . , tMn−1(a)) if t = F (t0, . . . , tn−1) and tMi (a) ∈M , for all i < n,
|M| if for an immediate subterm s of t, sM(a) = |M|.

Definition 3.1.7. If a ∈ AssignM, vm is a variable and b ∈ |M|, then let a(vm/b) be the
assignment with domain dom(a) ∪ {vm} defined by:

(a(vm/b))(x) =

{
a(x) if x ∈ dom(a) and x 6= vm,
b if x = vm.

Now I’m ready to define when a formula is true in a model, given an assignment of its free
variables:

Definition 3.1.8 (Satisfaction). Let M be an L-model. Define a function F = FM : Fml −→
P(AssignM) by recursion on the immediate subformula relation. F (ϕ) will be the set of assig-
nments under which ϕ is satisfied in M. Write FV(ϕ) for the set of free variables occurring in
ϕ. If ϕ is an atomic formula of the form P (t0, . . . , tn−1), where P ∈ P (including the possibility
that P = =̇), #(P) = n and t0, . . . , tn−1 are terms, then let

F (ϕ) = {a ∈ AssignM | 〈tM0 (a), . . . , tMn−1(a)〉 ∈ PM ∧ FV(ϕ) ⊆ dom(a)}.

Note that the requirement FV(ϕ) ⊆ dom(a) could be dropped here, since tM(a) = |M| if the
free variables of t are not contained in dom(a). Boolean combinations of formulas are dealt with
using the following stipulations:

F (ϕ0 ∧ ϕ1) := F (ϕ0) ∩ F (ϕ1),

F (ϕ0 ∨ ϕ1) := F (ϕ0) ∪ F (ϕ1),

F (¬ϕ) := {a ∈ AssignM | (FV(ϕ) ⊆ dom(a) ∧ a /∈ F (ϕ))}.

Turning to quantifications, set:

F (∃vmϕ) := {a ∈ AssignM | ∃b ∈M a(vm/b) ∈ F (ϕ)},
F (∀vmϕ) := {a ∈ AssignM | ∀b ∈M a(vm/b) ∈ F (ϕ)}.

Finally, I write

M |= ϕ[a]

to express that a ∈ FM(ϕ), where a ∈ AssignM with FV(ϕ) ⊆ a.
This definition can be viewed as defining M |= ϕ[a] also for Tait formulas, by treating P̄ , ˙6=

as elements of P. The ¬-step of the definition is then obsolete.

1(I(t))(a) = |M| will be used to indicate that there is a free variable in t which is not in the domain of a. So
it basically means that the interpretation of t given a is undefined. |M| is just conveniently a set that does not
belong to | < |.

48 CHAPTER 3. SEMANTICS

Note: The above recursive definition of F is stated in ZF, and generally works only if Infinity
and Power Set are assumed. It could be reformulated, though, by defining a function F ′ :
Fml × AssignM −→ 2 by recursion on the relation R defined by letting 〈ϕ, a〉R〈ψ, b〉 if ϕ is an
immediate subformula of ψ, b�FV(ψ) ⊆ a, and dom(a) = FV(ϕ). This is a set-like relation, and
it is obviously well-founded. F ′ can now be defined in such a way that a ∈ F (ϕ) iff F (ϕ, a) = 1.
That definition works without assuming Power Set or Infinity.

Definition 3.1.9. If a, b ∈ AssignM and u is a finite set of variables, then a ∼u b if a�u = b�u.
If t is a term, I will write a ∼t b if a ∼FV(t) b. Analogously, if ϕ is a formula, then I write a ∼ϕ b
if a ∼FV(ϕ) b.

Lemma 3.1.10. Let ϕ be a formula, and let a, b ∈ AssignM be such that FV(ϕ) ⊆ dom(a) ∩
dom(b) and a ∼ϕ b. Then

M |= ϕ[a] ⇐⇒ M |= ϕ[b].

Proof. This is a typical example of a proof by induction on ϕ. So I’ll prove that the lemma holds
true for all atomic formulas, and then that if it holds true for formulas ϕ0 and ϕ1, then it also
holds true for (ϕ0 ∧ ϕ1), (ϕ0 ∨ ϕ1), ¬ϕ0, ∃vnϕ0, ∀vnϕ0, where vn does not occur as a bound
variable in ϕ0. It follows that it holds true for all formulas, since otherwise, one could pick a
formula ϕ contradicting it, which is minimal with respect to the “immediate subformula” relation
(the point is that this relation is well-founded). Then ϕ cannot be atomic, and it cannot have
an immediate subformula either, which completes the proof. This is the principle of induction.
As a first step to proving the lemma, one has to prove the following, by induction on terms:

(∗) If t ∈ TermL and a, b ∈ AssignM with FV(t) ⊆ dom(a) ∩ dom(b) and a ∼t b, then

tM(a) = tM(b).

I leave the proof of (∗) (which follows the same pattern as the rest of the proof of the lemma)
to the reader. Assuming (∗), I’ll now prove the lemma. First, suppose ϕ = P (t0, . . . , tn−1) is an
atomic formula, and a, b ∈ AssignM is as in the statement of the lemma. Then

M |= P (t0, . . . , tn−1)[a] ⇐⇒ 〈tM0 (a), . . . , tMn−1(a)〉 ∈ PM

⇐⇒ 〈tM0 (b), . . . , tMn−1(b)〉 ∈ PM

⇐⇒ M |= P (t0, . . . , tn−1)[b],

noting that since a ∼ϕ b, it follows that FV(ti) ⊆ dom(a) ∩ dom(b) and a ∼ti b for every i < n,
as FV(ti) ⊆ FV(ϕ). So (∗) is applicable here, showing that tMi (a) = tMi (b), for i < n.

The induction step covering Boolean combinations is trivial, as is mostly the case. Since this
is the first occurrence of a proof by induction of formulas, I’ll carry it out anyway: Suppose ϕ0

and ϕ1 are formulas for which the claim of the lemma holds. Let a and b be assignments such
that FV(ϕ0 ∧ ϕ1) ⊆ dom(a) ∩ dom(b) and a ∼(ϕ0∧ϕ1) b. Since FV(ϕ0 ∧ ϕ1) = FV(ϕ0) ∪ FV(ϕ1),
it follows that FV(ϕi) ⊆ dom(a) ∩ dom(b) and a ∼ϕi b, for i < 2. So since the lemma holds for
ϕ0 and ϕ1, by assumption, we can apply it to ϕ0, a, b, and also to ϕ1, a, b. This yields:

M |= ϕi[a] ⇐⇒ M |= ϕi[b],

for i < 2. So we get:

M |= (ϕ0 ∧ ϕ1)[a] ⇐⇒ (M |= ϕ0[a]) and (M |= ϕ1[a])

⇐⇒ (M |= ϕ0[b]) and (M |= ϕ1[b])

⇐⇒ M |= (ϕ0 ∧ ϕ1)[b].

3.2. CONSEQUENCE 49

The ∨-step is analogous, and the ¬-step is equally trivial. Let’s check the ∃vm-step. So let
ϕ = ∃vmψ, where vm does not occur as a bound variable in ψ, and the lemma holds for ψ. Let
a, b be as in the statement of the lemma, for ∃vmψ. Note that then the statement of the lemma
holds for ψ, a(vm/c), b(

vm/c), whenever c ∈ |M|. The point is that FV(ψ) ⊆ (dom(a) ∪ {vm}) ∩
(dom(b) ∪ {vm}). So we know (inductively) that

M |= ψ[a(vm/c)] ⇐⇒ M |= ψ[b(vm/c)]

in this situation. So assume now that

M |= ∃vmψ[a].

By definition, this means that there is a c ∈ |M| such that

M |= ψ[a(vm/c)].

By the above, this is equivalent to
M |= ψ[b(vm/c)].

In particular, there is a c with this property, so that

M |= ∃vmψ[b].

The converse follows by swapping a and b (or, in fact, the above steps work both ways).
The remaining ∀vm-step is analogous and left to the reader.
So whether or not a model satisfies a formula, given an assignment, depends only on the

behavior of the assignment on the formula’s free variables. This motivates the following two
definitions.

Definition 3.1.11. Let M be a model. A function a : Var −→ |M| is called a full assignment
in M. The set of full assignments in M is denoted by Assign+

M. If ϕ is a formula and a is a full
assignment in M, then

M |= ϕ[a] ⇐⇒ M |= ϕ[a�FV(ϕ)].

Definition 3.1.12. If ϕ is a formula with free variables vm0 , . . . , vmn−1 (in increasing order),
then I write

M |= ϕ[b0, . . . , bn−1]

to express that M |= ϕ[a], where a(vmi) = bi, for all i < n. If ϕ is a sentence, i.e., if ϕ has no
free variables, then M |= ϕ iff M |= ϕ[∅].

The reader is invited to check the following:

Lemma 3.1.13. If ϕ is a Tait formula and a ∈ Assign+
M, for some L-model M, then

M |= ∼ϕ[a] ⇐⇒ M 6|= ϕ[a].

3.2 Consequence

Definition 3.2.1 (Logical Consequence). If Γ is a set of L-formulas or of Tait formulas, then
let FV(Γ) =

⋃
ψ∈Γ FV(ψ). If M is an L-model and a ∈ Assign+

M, or a ∈ Assign is such that
FV(Γ) ⊆ dom(a), then write M |= Γ[a] to express that M |= ψ[a], for every ψ ∈ Γ.

If ϕ is an L-formula, then

Γ |= ϕ ⇐⇒ for every L-model M and every a ∈ Assign+
M,

M |= Γ[a] =⇒ M |= ϕ[a].

If Γ = ∅, I write |= ϕ instead of ∅ |= ϕ.

50 CHAPTER 3. SEMANTICS

Chapter 4

Same same... but different

By now, I have introduced two notions of “consequence”: Given a theory T in a fixed language
L, and an L-sentence ϕ, I have defined what it means that ϕ is provable from T , T `T ϕ, and
what it means that ϕ is a logical consequence, T |= ϕ. These are two very different concepts,
the first one being based on purely syntactical concepts such as proofs, and the second one on
semantical concepts such as models. In the following two sections, I am going to show that these
concepts nevertheless are equivalent, for countable T ! The direction T ` ϕ =⇒ T |= ϕ is
known as the Correctness Theorem. It holds for arbitrary T , not only countable. The converse,
T |= ϕ =⇒ T ` ϕ is the Completeness Theorem. I’ll prove it first only for countable T , and
later, the axiom of choice will allow to drop that assumption.

4.1 Correctness

Given a finite set of (Tait-)formulas ∆, let
∨

∆ denote the disjunction of all formulas occurring
in ∆ (in some fixed enumeration). The order in which the formulas are listed is irrelevant. The
meaning is that M |= (

∨
∆)[a] iff there is a formula ϕ ∈ ∆ such that M |= ϕ[a]. So in fact, it

makes sense to take the disjunction of arbitrarily many formulas, but we won’t need to do this
here.

Theorem 4.1.1 (Soundness). If ∆ is a (finite) set of Tait formulas such that `T ∆, then |=
∨

∆.

Proof. By induction on rules.
Case 1: `T ∆ because of tertium non datur.
In this case, there is a formula ϕ such that ϕ ∈ ∆ and ∼ϕ ∈ ∆. Now let M be an arbitrary

L-model and a an arbitrary full assignment inM. Then eitherM |= ϕ[a] orM 6|= ϕ[a]. But the
latter is equivalent to M |= ∼ϕ[a]. So M |= ϕ[a] or M |= ∼ϕ[a], in particular, M |=

∨
∆.

Case 2: `T ∆ ∪ {(ϕ ∧ ψ)} because `T ∆ ∪ {ϕ} and `T ∆ ∪ {ψ}, i.e., by applying the ∧-rule.
Let M be an arbitrary L-model with a full assignment a. Inductively, M |=

∨
(∆ ∪ {ϕ})[a]

and M |=
∨

(∆ ∪ {ψ})[a]. If there is a formula χ ∈ ∆ such that M |= χ[a], then M |=
∨

∆[a],
and we’re done. If not, then since there is a formula χ′ in ∆∪{ϕ} such thatM |= χ′[a], this must
be true for χ′ = ϕ. Analogously, it follows that M |= ψ[a]. But if M |= ϕ[a] and M |= ψ[a],
then this means that M |= (ϕ ∧ ψ)[a]. In particular, M |=

∨
(∆ ∪ {(ϕ ∧ ψ)}), as claimed.

Case 3: `T ∆ ∪ {(ϕ ∨ ψ)} because of the ∨-rule. So we have `T ∆ ∪ {ϕ} or `T ∆ ∪ {ψ}.
Inductively, we know that, given M and a as before, M |=

∨
(∆ ∪ {ϕ})[a] or M |=

∨
(∆ ∪

{ψ})[a]. Let’s assume the first possibility holds true. If there is some χ ∈ ∆ such thatM |= χ[a],
then clearlyM |=

∨
(∆∪{ϕ∨ψ})[a], so we’re fine. Otherwise, we know thatM |= ϕ[a]. But by

51

52 CHAPTER 4. SAME SAME... BUT DIFFERENT

definition of the satisfaction relation, this clearly implies that M |= (ϕ ∨ ψ)[a], which, in turn,
implies that M |=

∨
(∆ ∪ {(ϕ ∨ ψ)})[a]. The other case is entirely symmetric.

Case 4: `T ∆ ∪ {∀vmϕ} because of the ∀-rule. I.e., `T ∆ ∪ {ϕ(vm/vn)}, where vn /∈ FV(∆).
LetM and a be as above. So FV(∆∪{∀vmϕ}) ⊆ dom(a). Inductively, we know that for any

c ∈ |M|,
M |=

∨
(∆ ∪ {ϕ(vm/vn)})[a(vn/c)],

since this holds for any assignment. If there is a χ ∈ ∆ such that M |= χ[a(vn/c)], for some c,
then since a(vn/c) ∼χ a (as vn is not a free variable of χ), it follows that M |= χ[a] (by Lemma
3.1.10), and hence M |=

∨
(∆ ∪ {∀vmϕ}). Now assume the contrary. Then for all c ∈ |M|,

M |= ϕ(vm/vn)[a(vn/c)].

This is of course equivalent to saying that for all c ∈ |M|,

M |= ϕ[a(vm/c)].

This means precisely that M |= ∀vmϕ[a], as wished.
Case 5: `T ∆ ∪ {∃vmϕ} because of the ∃-rule. I.e., `T ∆ ∪ {ϕ(vm/t)}, for some t ∈ TermL.
SupposeM, a are arbitrary, as above. Inductively, we know thatM |=

∨
(∆∪{ϕ(vm/t)})[a].

As usual, if there is a χ ∈ ∆ such that M |= χ[a], then M |= χ[a] and we’re done. Otherwise,
we know that M |= ϕ(vm/t)[a]. This means that M |= ϕ[a(vm/tM(a))]. In particular, there is

some c ∈ |M| such that M |= ϕ[a(vm/c)], namely c = tM(a). So by definition, this means that
M |= ∃vmϕ[a], and in particular, M |=

∨
(∆ ∪ {∃vmϕ}).

Soundness can be used to prove correctness. Since the traditional Correctness Theorem refers
to regular formulas, not Tait formulas, a translation procedure is needed:

Definition 4.1.2. Define a function ϕ 7→ ϕT by induction on formulas as follows:

(P (t0, . . . , tn−1))T := P (t0, . . . , tn−1),

(t0=̇t1)T := t0=̇t1,

(¬ϕ)T := ∼(ϕT),

(ϕ0 ∧ ϕ1)T := (ϕT0 ∧ ϕT1),

(ϕ0 ∨ ϕ1)T := (ϕT0 ∨ ϕT1),

(∃vmϕ)T := ∃vm(ϕT),

(∀vmϕ)T := ∀vm(ϕT).

Lemma 4.1.3. Given any L-model M and any L-formula ϕ, ϕT is a Tait formula of L such
that for any full assignment a in M,

M |= ϕ[a] ⇐⇒ M |= ϕT [a].

Proof. Exercise.

There is an obvious translation procedure in the other direction which will be developed as
an exercise, too. So the expressive power of formulas and Tait formulas is the same.

Definition 4.1.4. For a set Σ ⊆ FmlL, let ΣT = {ϕT | ϕ ∈ Σ}. If moreover, ψ is an L-formula,
write Σ ` ψ to mean that ΣT ` ψT .

Theorem 4.1.5 (Correctness). Let Σ ∪ {ϕ} ⊆ FmlL be a set of formulas. Then

Σ ` ϕ =⇒ Σ |= ϕ.

4.2. COMPLETENESS 53

Proof. Assume Σ ` ϕ, i.e., ΣT ` ϕT . Let Σ0 be a finite set of formulas each of which is an
identity axiom or a member of ΣT such that `T (∼Σ0 ∪ {ϕT }). Let M be a model and a a full
assignment such that M |= Σ[a], or, equivalently, M |= ΣT [a]. Since every model satisfies the
identity axioms, it follows thatM |= Σ0[a]. By soundness, we know thatM |=

∨
(∼Σ0∪{ϕT })[a].

But since M |= ΣT [a], there is no ψ ∈ ∼Σ0 such that M |= ψ[a]. So the only possibility is that
M |= ϕT [a], or equivalently, M |= ϕ[a].

4.2 Completeness

To prove the Completeness Theorem, let L be a fixed language. Let Σ be a set of L-formulas
which is at most countable (meaning countable or finite). Fix an enumeration ~Σ of Σ. Let us
require that there are infinitely many variables that don’t occur in any formula from Σ. 1 Let
∆ be a finite set of L-formulas. It is then easy to see that there are at most countably many,
but infinitely many, terms which can be built up from constants, function symbols occurring in
Σ ∪ ∆, and from arbitrary variables. Let ~t := 〈ti | i < ω〉 be an enumeration of these terms,
which I shall call the relevant terms.

The aim is to show that if Σ |=
∨

∆, then `T ∼Σ0 ∪∆, for some finite Σ0 ⊆ Σ.2 This will
literally only be true if the identity axioms are part of Σ, but the search tree construction can
be carried out without that assumption.

The argument will proceed as follows: Supposing there is no such Σ0, we will build a tree
“searching” for such a Σ0 and such a derivation. Since by assumption, there is no such Σ0, the
search will be unsuccessful, thus producing an infinite tree. The tree will be locally finite, and
hence will have an infinite branch. Such a branch will determine a term model M and a full
assignment a such that in M all formulas from Σ hold, while none of the formulas in ∆ hold
under the assignment a.

To define the tree, view ∆ as a finite sequence ~∆ which lists all (of the finitely many) formulas

in ∆ in some order. If ~Γ is some finite list of formulas, let the redex of ~Γ, R(~Γ), be the formula

with least index in ~Γ which is not atomic, if there is such a formula - otherwise, it is undefined.
If it is defined, then ~Γr will be the sequence of formulas obtained from ~Γ by omitting R(~Γ).

The tree S := S
~Σ
~∆,~t

we are about to construct is a labeled tree. We construct it together with

a labeling function δ : S → <ωFmlL. The tree will be at most 2-splitting, meaning that every
node will have at most two immediate successors. In fact, it will be a tree on the set 2. It will
be constructed by recursion on its levels, together with δ. To start off,

(S∅) ∅ ∈ S and δ(∅) = ~∆.

Now assume s ∈ S. If ran(δ(s)) is an axiom according to tertium non datur (i.e., there is an
atomic formula ϕ such that {ϕ,∼ϕ} ⊆ ran(δ(s))), then s has no successors in S.

Now suppose this is not the case. Then it is determined which of s_0 and s_1 are in S, and
what the values δ(s_0) and δ(s_1) are, by the following clauses. For ease of notation, assuming
δ(s�n) has been defined for all n ≤ dom(s), set δ≤(s) =

⋃
n≤dom(s) ran(δ(s�n)).

(Sid) If R(δ(s)) = ∅, then s_0 ∈ S. If there is a formula in Σ whose negation does not occur in
δ≤(s), then let ψ be the one that’s mentioned first in the fixed enumeration of Σ, and set
δ(s_0) = δ(s)_∼ψ. If there is no such formula, then let δ(s_0) = δ(s).

1If only at most finitely many variables don’t occur in Σ, then one can replace every occurrence of vl in Σ∪∆
with v2l, simultaneously. Denoting the resulting sets by Σ′ and ∆′, this renaming does not change anything about
our assumptions. So if Σ |=

∨
∆, also Σ′ |=

∨
∆′, and for a finite subset Σ0 ⊆ Σ, `T ∼Σ0 ∪∆ iff `T ∼Σ′0 ∪∆′,

where Σ′0 is the result of renaming the variables occurring in Σ0 as described. Σ′ satisifies our assumption.
2Here, I used the notation ∼Γ = {∼ϕ | ϕ ∈ Γ}, for a set Γ of Tait formulas.

54 CHAPTER 4. SAME SAME... BUT DIFFERENT

(S∧) If R(δ(s)) is of the form (ϕ0∧ϕ1), then both s_0 and s_1 are in S, and δ(s_i) = δ(s)r_ϕi,
for i < 2.

(S∀) If R(δ(s)) is of the form ∀vmϕ, then s_0 ∈ S, s_1 /∈ S, and δ(s_0) = δ(s)r_ϕ(vm/vn),
where n is least such that vn does not occur in δ(s) ∪ Σ.

(S∨) If R(δ(s)) is of the form (ϕ0 ∨ ϕ1), then s_0 ∈ S and s_1 /∈ S. Let Y := δ≤(s). Define
δ(s_0) to be δ(s)r_ϕ0

_ϕ1, if ϕ0, ϕ1 /∈ Y . If ϕ0 ∈ Y , omit ϕ0, and if ϕ1 ∈ Y , omit ϕ1.

(S∃) If R(δ(s)) is of the form ∃vmϕ, then s_0 ∈ S and s_1 /∈ S. Let t be the first relevant
term mentioned in the enumeration such that ϕ(vm/t) /∈ δ≤(s). Let x = δ(s)r_ϕ(vm/t),
otherwise x = δ(s)r. Further, let χ be the first formula mentioned in the enumeration of
Σ such that ∼χ /∈ δ≤(s), if such a formula exists. In that case, let x′ = x_∼χ, otherwise,
x′ = x. Finally, δ(s_0) = x′_R(δ(s)).

In a way, this tree can be viewed as searching simultaneously for a proof of (∼Σ0)∪∆, for some
finite Σ0 ⊆ Σ, and (in case this search fails) for a model of Σ ∪

∧
∼∆.

Lemma 4.2.1 (Syntactical Main Lemma, Schütte). If S is well-founded, then for every s ∈ S,
there is a finite set Σs ⊆ Σ such that `T ∼Σs ∪ ran(δ(s)).

Proof. Suppose this were not the case. Since S is well-founded by assumption, there must be a
>S-minimal counterexample (that is, a <S-maximal one).

Case 1. s has no successors in S.
This is only possible if ran(δ(s)) is an axiom according to tertium non datur. So in this case,

`T ran(δ(s)), which means that Σs := ∅ is as wished. So s is no counterexample and this case is
excluded.

Case 2. Case 1 fails.
Then we have to distinguish subcases according to the nature of R(δ(s)).
Case 2.1 R(δ(s)) = ∅.
Then s_0 is the sole successor of s in S. By minimality, we know that there is a finite subset

Σs_0 ⊆ Σ such that `T ∼Σs_0 ∪ ran(δ(s_0)).
If X := Σ \ δ≤(s)) 6= ∅, then letting ψ be the member of X that’s mentioned first in the

fixed enumeration of Σ, δ(s_0) = δ(s)_∼ψ. So letting Σs := Σs_0 ∪ {ψ}, it follows that
∼Σs ∪ ran(δ(s)) = ∼Σs_0 ∪ ran(δ(s_0)), so that `T ∼Σs ∪ ran(δ(s)).

If X = ∅, then δ(s_0) = δ(s), so setting Σs := Σs_0 will do.
Case 2.2. R(δ(s)) = (ϕ0 ∧ ϕ1).
In this case, s_0 and s_1 both are successors of s in S, and δ(s_0) = δ(s)r_ϕ0, δ(s_1) =

δ(s)r_ϕ1. So by minimality, we know that there are Σs_0 and Σs_1 such that `T ∼Σs_0 ∪
ran(δ(s)r_ϕ0) and `T ∼Σs_1 ∪ ran(δ(s)r_ϕ1). Let Σs = Σs_0 ∪ Σs_1. Then by monotonicity
(the structural rule, saying that if `T Γ and Γ ⊆ Γ′, then `T Γ′, which was proven in the
exercises), we have that

`T (∼Σs ∪ ran(δ(s)r)) ∪ {ϕ0}
and

`T (∼Σs ∪ ran(δ(s)r)) ∪ {ϕ1}.
So by the ∧-rule, it follows that

`T ∼Σs ∪ ran(δ(s)r) ∪ {(ϕ0 ∧ ϕ1)}.

But (ϕ0 ∧ ϕ1) = R(δ(s)), which is omitted in δ(s)r. So this just means that

`T ∼Σs ∪ ran(δ(s)),

4.2. COMPLETENESS 55

as desired.
Case 2.3 R(δ(s)) = ∀vmϕ.
Then s_0 is the only successor of s in S. Moreover, letting n be minimal such that vn

does not occur in ran(δ(s)) ∪ Σ, by definition, δ(s_0) = δ(s)r_ϕ(vm/vn). So by minimality,
there is a finite set Σs_0 ⊆ Σ such that `T ∼Σs_0 ∪ ran(δ(s)r) ∪ {ϕ(vm/vn)}. Since vn is a
new variable, the ∀-rule yields that `T ∼Σs_0 ∪ ran(δ(s)r) ∪ {∀vmϕ}, or, in other words, that
`T ∼Σs_0 ∪ ran(δ(s)). So setting Σs := Σs_0 does the job.

Case 2.4 R(δ(s)) = (ϕ0 ∨ ϕ1).
Then s_0 ∈ S is the unique successor of s in S. Let Y := δ≤(s). Then δ(s_0) is δ(s)r,

with ϕ0, ϕ1 added (depending on whether or not these formulas occur in Y). In any case, since
inductively, `T ∼Σs_0∪ran(δ(s_0)), it follows by monotonicity that `T ∼Σs_0∪ran(δ(s_0))∪
{ϕ0}, and hence, by the ∨-rule (possibly applied twice, in the case that ϕ0, ϕ1 /∈ Y), that
`T ∼Σs_0 ∪ ran(δ(s)). So we can set Σs = Σs_0.

Case 2.5 R(δ(s)) = ∃vmϕ.
Then s_0 is the unique successor of s in S. Let t be the first relevant term mentioned in

the enumeration such that ϕ(vm/t) /∈ δ≤(s). Let x = δ(s)r_ϕ(vm/t). Further, let χ be the first
formula mentioned in the enumeration of Σ such that ∼χ /∈ δ≤(s), if such a formula exists. In
that case, let x′ = x_∼χ, otherwise, x′ = x. Finally, δ(s_0) = x′_R(δ(s)).

Inductively, we know that there is a finite set Σs_0 ⊆ Σ such that `T ∼Σs_0 ∪ ran(δ(s_0)).
This assumption is weakest if both t and χ exist (by the structural rule/monotonicity). So in
this case, we have

`T ∼Σs_0 ∪ ran(δ(s)r) ∪ {R(δ(s))}︸ ︷︷ ︸
=δ(s)

∪{∼χ} ∪ {ϕ(vm/t)}.

So setting Σs := Σs_0 ∪ {χ}, this is the same as to say that

`T ∼Σs ∪ ran(δ(s)) ∪ {ϕ(vm/t)}

(if χ doesn’t exist, then taking Σs = Σs_0 will do). Applying the ∃-rule yields

`T ∼Σs ∪ ran(δ(s)),

since ∃vmϕ = R(δ(s)) ∈ ran(δ(s)). Again, applying the ∃-rule is only necessary if t is defined.
Thus, there is no counterexample, and the lemma is proven.

The following is an adaptation of the classical lemma, dealing with pure logic, to logic with
identity.

Lemma 4.2.2 (Semantical Main Lemma, Schütte). If S is ill-founded and Σ contains the identity
axioms, then there is a model M and a full assignment a in M such that M |= (Σ ∪ ∼∆)[a].

Proof. Let f : ω −→ 2 be a cofinal branch of S. Let δ(f) :=
⋃
{ran(δ(f�n)) | n < ω}. The

following properties are crucial:

1. If an atomic formula occurs in ran(δ(f�m)), for some m < ω, then it also occurs in
ran(δ(f�n)), for every n > m.

2. ∼Σ ⊆ δ(f).

3. If a non-atomic formula ϕ occurs in some ran(δ(f�m)), then there is an n ≥ m such that
ϕ = R(δ(f�n)).

56 CHAPTER 4. SAME SAME... BUT DIFFERENT

4. If a formula of the form (ϕ0∧ϕ1) occurs in δ(f), then there is an i < 2 such that ϕi occurs
in δ(f).

5. If a formula of the form ∀vmϕ occurs in δ(f), then there is a variable vn such that ϕ(vm/vn)
occurs in δ(f).

6. If a formula of the form (ϕ0 ∨ ϕ1) occurs in δ(f), then {ϕ0, ϕ1} ⊆ δ(f).

7. If a formula of the form ∃vmϕ occurs in δ(f), then ϕ(vm/t) occurs in δ(f), for every relevant
term t.

Let’s check these properties: 1 is clear, because atomic formulas are never discarded. Only
the redex is sometimes thrown away, and this is never an atomic formula, by definition.

To see 2, note that it cannot be the case that only for finitely many n, R(f�n) is of the form
∃vmϕ or undefined. This is because otherwise, there is some n such that for all m > n, R(δ(f�m))
either of the form (ϕ0 ∧ ϕ1), ∀viϕ, or (ϕ0 ∨ ϕ1), which means that δ(f�(m+ 1)) is either of the
form δ(s)r_ϕ0, δ(s)r_ϕ1, δ(s)r, δ(s)_ϕ0

_ϕ1, or δ(s)r_ϕ(vi/vj). Any formula ψ has at most

2|ψ| many subformulas, where |ψ| is the length of ψ - this is of course a ridiculously crude upper
bound. It is obvious now that, letting b =

∑
ψ∈ran(δ(f�n)) 2|ψ|, the redex of δ(f�(n + b)) would

have to be undefined, a contradiction.
Property 3 is clear: Suppose a non-atomic formula ϕ occurs in ran(δ(f�m)). If there were no

n ≥ m such that R(δ(f�n)) = ϕ, then for every n ≥ m, there would be a non-atomic formula
which occurs before the first occurrence of ϕ in δ(f�n). But clearly, the number of non-atomic
formulas occurring in δ(f�n) before the first occurrence of ϕ would have to be strictly decreasing
(for n ≥ m), which is a contradiction.

Property 4 is clear by definition of S.
Property 5 follows from 3: If ∀vmϕ ∈ δ(f), then let k be such that ∀vmϕ ∈ ran(δ(f�k)).

By 3, there is some n > k such that R(δ(f�n)) = ∀vmϕ, and then, by definition, ϕ(vm/vl) ∈
ran(δ(f�(n+ 1))), for some l.

Properties 6 and 7 are easily checked.

(∗) If ϕ is an atomic formula in δ(f), then ∼ϕ /∈ δ(f).

Proof of (∗). This is because ∼ϕ is also an atomic formula. Suppose both ϕ and ∼ϕ were in
δ(f). Once an atomic formula is in δ(f�m), it stays in (meaning it is in δ(f�n), for all n > m).
So pick n large enough so that {ϕ,∼ϕ} ⊆ δ(f�n). Then ran(δ(f�n)) is a tertium non datur
axiom, so that f�n is a terminal node of S, and hence, f can’t be a cofinal branch. 2(∗)

Now define a relation ≡ on relevant terms:

t0 ≡ t1 ⇐⇒ t0 ˙6=t1 ∈ δ(f).

This is an equivalence relation:
Reflexivity: Since ∀v0(v0 = v0) is an identity axiom, this formula is in Σ, so ∼∀v0(v0 = v0) =

∃v0(v0 6= v0) ∈ ∼Σ ⊆ δ(f), by 2. But then by 7, it follows that t 6= t ∈ δ(f), in other words,
that t ≡ t.

The proofs of symmetry and transitivity follow the same pattern and are left to the reader.
Moreover, ≡ is a “congruence” relation over the predicates:

(C1) If P ∈ P ∪ P̄ with #(P) = n, s0, . . . , sn−1 and t0, . . . , tn−1 are relevant terms with si ≡ ti,
for all i < n, then ∼P (~s) ∈ δ(f) iff ∼P (~t) ∈ δ(f).

4.2. COMPLETENESS 57

Proof. Suppose ∼P (~s) ∈ δ(f). By assumption, si ˙6=ti ∈ δ(f), for all i < n. Moreover, the Tait
negation of the adequate identity axiom (of the category “congruence over predicates”) is in ∼Σ,
and hence in δ(f):

∃v0∃v1 . . . ∃vn−1∃vn∃vn+1 . . . ∃v2n−1 (((v0 = vn) ∧ (v1 = vn+1) ∧ . . . ∧ (vn−1 = v2n−1))

∧(P (v0, v1, . . . , vn−1) ∧ ∼P (vn, vn+1, . . . , v2n−1))).

By property 7, the following “instance” of this formula is in δ(f):

(s0 = t0 ∧ s1 = tn ∧ . . . ∧ sn−1 = tn−1 ∧ P (s0, s1, . . . , sn−1) ∧ ∼P (t0, t1, . . . , tn−1)).

By property 4, at least one conjunct of this formula must be in δ(f). By assumption si ˙6=ti ∈
δ(f), for all i < n, so that by (∗), si=̇ti /∈ δ(f). Analogously, ∼P (s0, s1, . . . , sn−1) ∈ δ(f)
by assumption, so that P (s0, s1, . . . , sn−1) /∈ δ(f). So the only possibility that’s left is that
∼P (t0, t1, . . . , tn−1) ∈ δ(f), which is what we want. The converse is proven analogously.

One has to use the corresponding identity axiom of the category “congruence over functions”
for the following claim:

(C2) If F ∈ F with #(F) = n and s0, . . . , sn−1 and t0, . . . , tn−1 are relevant terms with si ≡ ti,
for all i < n, then F (~s) ≡ F (~t).

Now I’m ready to define the desired model M: Let |M| consist of the ≡-equivalence classes
of relevant terms. So, writing [t] for the ≡-equivalence class of the relevant term t,

|M| = {[t] | t is a relevant term}.

Set:

FM([t0], . . . , [tn−1]) = [F (t0, . . . , tn−1)], for F ∈ F such that F occurs in Σ ∪∆,

〈[t0], . . . , [tn−1]〉 ∈ PM ⇐⇒ ∼P (t0, . . . , tn−1) ∈ δ(f), for P ∈ P,
cM = [c], for relevant c ∈ C.

The interpretation of function symbols and constant symbols which don’t occur in Σ ∪ ∆ is
irrelevant and can be prescribed in some simple, arbitrary way.

The correctness of these definitions follows from (C1) and (C2). Define a full assignment a
in M in the obvious way:

a(vm) := [vm].

It follows by induction on terms t that

tM(a) = [t].

Further, it follows by induction on formulas ϕ that:

(D) ∼ϕ ∈ δ(f) =⇒ M |= ϕ[a].

Starting with the atomic case: If ϕ = P (t0, . . . , tn), where P ∈ P and ∼ϕ ∈ δ(f), then by
definition, M |= P ([t0], . . . , [tn−1]), which means precisely that M |= P (t0, . . . , tn−1)[a], by
the previous remark. This argument works for the case P = =̇ as well. Now assume ϕ =
P̄ (t0, . . . , tn−1), and ∼ϕ ∈ δ(f). By (∗), ϕ /∈ δ(f). So ∼P (t0, . . . , tn−1) /∈ δ(f), which means
that by definition of PM, 〈[t0], . . . , [tn−1]〉 /∈ PM. So by definition, 〈[t0], . . . , [tn−1]〉 ∈ P̄M, or,
in other words, M |= P̄ (t0, . . . , tn−1)[a]. Again, this argument works for P = =̇ as well.

58 CHAPTER 4. SAME SAME... BUT DIFFERENT

In the rest of the argument, the properties 4-7 will be used.
So suppose ∼(ϕ0 ∨ ϕ1) ∈ δ(f). By the definition of Tait-negation, this means that (∼ϕ0 ∧

∼ϕ1) ∈ δ(f). By property 4, let i < 2 be such that ∼ϕi ∈ δ(f). Inductively, we know that
M |= ϕi[a]. But then M |= (ϕ0 ∨ ϕ1)[a] also.

Now assume that ∼∃vmϕ ∈ δ(f), which means that ∀vm∼ϕ ∈ δ(f). By 5, pick vn such that
∼ϕ(vm/vn) ∈ δ(f). Inductively, M |= ϕ(vm/vn)[a]. In particular, M |= ∃vmϕ[a].

If ∼(ϕ0 ∧ ϕ1) ∈ δ(f), then this means that (∼ϕ0 ∨ ∼ϕ1) ∈ δ(f), and by 6, this, in turn,
means that both ∼ϕ0 and ∼ϕ1 are in δ(f), so that inductively, M |= ϕ0[a] and M |= ϕ1[a].
This means, of course, that M |= (ϕ0 ∧ ϕ1)[a].

If ∼∀vmϕ ∈ δ(f), i.e., ∃vm∼ϕ ∈ δ(f), then by 7, ∼ϕ(vm/t) ∈ δ(f), for every relevant term t.
So inductively,M |= ϕ(vm/t)[a], for every relevant term t. In other words,M |= ϕ[a(vm/tM(a))],
for every relevant term t (this is a general fact that can easily be shown by induction on terms).
But since tM(a) = [t], and |M| consists precisely of such [t], this previous statement can be
rephrased as saying that M |= ϕ[a(vm/b)], for every b ∈ |M|. This means that M |= ∀vmϕ[a],
as wished.

Now it is an immediate consequence that M |= Σ[a], since if ϕ ∈ Σ, i.e., ∼ϕ ∈ ∼Σ ⊆ δ(f)
(by property 2), it follows from (D) that M |= ϕ[a]. To see that M |= ∼∆, note that ∆ =
ran(δ(f�0)) ⊆ δ(f). So given ϕ ∈ ∆, ∼(∼ϕ) ∈ δ(f), so that by (D), M |= ∼ϕ[a].

Theorem 4.2.3 (Completeness). Let Σ be a countable set of L-formulas and ϕ be a formula
such that Σ |= ϕ. Then Σ ` ϕ.

Proof. We may assume only variables with even index occur in Σ ∪ {ϕ}. Having said this, the
reader may forget about this technicality, see the beginning of the definition of the search tree.
Also, replace Σ by ΣT = {ϕT | ϕ ∈ Σ} and ϕ by ϕT , so that we are actually dealing with Tait
formulas. Let Σ∗ be Σ, together with the identity axioms.

Let ~t enumerate the at most countably many terms which can be built up using constants
and function symbols occurring in Σ∗ ∪ {ϕ}, and variables, the relevant terms. Fix also an

enumeration ~Σ∗ of Σ∗. Let S = S
~Σ∗

{ϕ},~t, δ be the search tree determined by these objects, together

with its labeling function.
S must be well-founded: Otherwise, it is ill-founded, so that the Semantical Main Lemma 4.2.2

applies, giving a modelM and a full assignment a withM |= (Σ∗ ∪{∼ϕ})[a], which contradicts
the assumption that Σ |= ϕ. So S is well-founded, which means that the Syntactical Main Lemma
4.2.1 applies. This gives, for every s ∈ S, a finite set Σ∗s ⊆ Σ∗ such that `T ∼Σs ∪ ran(δ(s)). For
s = ∅, this means: Σ∗∅ ⊆ Σ∗ is finite and `T ∼Σ∗0 ∪ {ϕT }, where Σ∗0 is a finite set of formulas

each of which is an identity axiom or a member of ΣT . By definition, this means that Σ ` ϕ.

4.3 Compactness

Work in a fixed countable language.

Theorem 4.3.1. If Σ |= ϕ, then there is a finite Σ0 ⊆ Σ such that Σ0 |= ϕ.

Proof. By the completeness theorem, Σ ` ϕ. This means there is a finite set Σ0 ⊆ Σ and a
finite set Γ of identity axioms such that `T ∼(Σ0 ∪ Γ) ∪ {ϕ}. By correctness, this means that
Σ0∪Γ |= ϕ. But since every model satisfies the identity axioms, as the identity symbol is always
interpreted by the true identity relation, this implies that Σ0 |= ϕ.

Definition 4.3.2. Let Σ be a set of formulas. Σ is consistent, con(Σ), is the statement that
there is a formula ϕ such that it is not the case that Σ ` ϕ.

4.4. ULTRAFILTERS AND ULTRAPRODUCTS 59

Σ has a model if there is a model M and a full assignment a in M such that M |= Σ[a].

Theorem 4.3.3. A set Σ of formulas is consistent if and only if it has a model.

Proof. Suppose Σ is not consistent. Then for every ϕ, Σ ` ϕ. If there were a model of Σ,
witnessed by M and a, then it would follow that M |= ϕ[a], for every ϕ, by correctness. This
is of course a contradiction, since it would follow that M |= ϕ[a] and M |= ¬ϕ[a], which means
that M 6|= ϕ[a]. Vice versa, if there is no model of Σ, then Σ |= ϕ, for any formula ϕ, by fiat.
So by completeness, Σ ` ϕ.

Theorem 4.3.4. If every finite subset of Σ has a model, then Σ has a model.

Proof. Suppose Σ has no model. Then Σ is inconsistent. Let ϕ be a sentence. Then Σ ` ϕ and
Σ ` ¬ϕ. So there is a finite subset Σ0 of Σ such that Σ0 ` ϕ and Σ0 ` ¬ϕ; I tacitly used the
monotonicity of the deductive calculus here, namely that if Γ0 ⊆ Γ1 and Γ0 ` ψ, then Γ1 ` ψ. It
follows that Σ0 has no model, a contradiction.

4.4 Ultrafilters and Ultraproducts

In this section, I’ll develop a useful tool for constructing models. As a motivation, suppose
〈Mi | i ∈ I〉 is a sequence of models of a (not necessarily countable) fixed language L. We want
to construct a model M such that a sentence ϕ is true in M if “for almost every i ∈ I”, ϕ is
true in Mi. The first step is to make the meaning of “for almost every i ∈ I” precise. This is
done using the concept of ultrafilters.

4.4.1 Filters and ultrafilters

Definition 4.4.1. Let I 6= ∅ be a set. A filter on I is a set F of subsets of I with the following
properties:

1. ∅ /∈ F , I ∈ F .

2. If X ∈ F and X ⊆ Y ⊆ I, then Y ∈ F .

3. If X, Y ∈ F , then X ∩ Y ∈ F .

A filter F on I is an ultrafilter on I if in addition, for every X ⊆ I, X ∈ F or I \X ∈ F .
F is a principal filter on I if there is an i ∈ I such that F = {X ⊆ I | i ∈ X}. Clearly, a

principal filter is an ultrafilter on I.

Lemma 4.4.2. Let F be a filter on I. Then the following are equivalent:

1. F is an ultrafilter on I.

2. There is no filter G on I with F $ G. (I.e., F is a maximal filter.)

Proof. 1. =⇒ 2.: Suppose there were such a G, Pick X ∈ G \ F . Since F is ultra, I \ X ∈ F .
Since F ⊆ G, I \X ∈ G. So ∅ = X ∩ (I \X) ∈ G, a contradiction.

2. =⇒ 1.: Let X ⊆ I. Suppose neither X ∈ F nor (I \ X) ∈ F . Let G = {Y ⊆ I | ∃Z ∈
F Z ∩X ⊆ Y }. Obviously, F ⊆ G. Also, X ∈ G\F . But G is a filter: I ∈ G, since I ∈ F ⊆ G.

Suppose ∅ ∈ G. Then pick Z ∈ F such that Z ∩X = ∅. This means that Z ⊆ (I \X). Since
Z ∈ F , it would follow that I \X ∈ F , a contradiction.

Let Y0, Y1 ∈ G. We have to see that Y0 ∩ Y1 ∈ G. Pick Z0, Z1 ∈ F such that X ∩ Z0 ⊆ Y0,
X∩Z1 ⊆ Y1. Then X∩(Z0∩Z1) ⊆ (Y0∩Y1), and since F is a filter, Z0∩Z1 ∈ F . So Y0∩Y1 ∈ G.

60 CHAPTER 4. SAME SAME... BUT DIFFERENT

Finally, it’s obvious that if Y0 ∈ G and Y0 ⊆ Y1 ⊆ I, it follows that Y1 ∈ G. For if Z witnesses
that Y0 ∈ G, then it also witnesses that Y1 ∈ G.

So altogether, we have that F $ G, and G is a filter on I, a contradiction.

Theorem 4.4.3 (Ultrafilter Theorem, ZFC). Suppose I 6= ∅ and F is a filter on I. Then there
is an ultrafilter U on I such that F ⊆ U .

Proof. Let F be given. Consider the partial order P consisting of all filters on I which contain
F , ordered by inclusion. This is obviously a partial order in the strict sense. Moreover, it is
chain-closed: If C ⊆ |P | is a chain, then

⋃
C is a filter: Clearly, I ∈

⋃
C. ∅ /∈

⋃
C, since ∅ /∈ H,

for any H ∈ C. Given X,Y ∈
⋃
C, there is one H ∈ C with X,Y ∈ H (here it is crucial that C

is a chain!). Hence, X ∩Y ∈ H, and so, X ∩Y ∈
⋃
C. Finally, if X ∈

⋃
C and X ⊆ Y ⊆ I, then

there is H ∈ C with X ∈ H, so Y ∈ H, so Y ∈
⋃
C. So by Zorn’s lemma, there is a maximal

member of P , and by the previous lemma, this maximal member is an ultrafilter on I.

4.4.2 Ultraproducts

Definition 4.4.4. Let 〈Mi | i ∈ I〉 be a sequence of models of a fixed language L. Then∏
i∈I |Mi| is the set of functions f with domain I such that for all i ∈ I, f(i) ∈ |Mi|.
Given a formula ϕ with free variables vm0

, vm1
, . . . , vmn−1

(in increasing order) and functions
f0, . . . , fn−1 ∈

∏
i∈I |Mi|, let

||ϕ[f0, . . . , fn−1]|| = {i ∈ I | Mi |= ϕ[f0(i), . . . , fn−1(i)]}.

Let F be a filter on I. Given f , g ∈
∏
i∈I |Mi|, define

f ∼F g ⇐⇒ {i ∈ I | f(i) = g(i)} ∈ F.

So f ∼F g iff ||f = g|| ∈ F .

Lemma 4.4.5. In the situation of the previous definition, if P is an n-ary predicate symbol
(including the possibility that P = =̇), then for any f0, . . . , fn−1, g0, . . . , gn−1 ∈

∏
i∈I |Mi| with

f0 ∼F g0, . . . , fn−1 ∼F gn−1, it follows that

||P [f0, . . . , fn−1]|| ∈ F ⇐⇒ ||P [g0, . . . , gn−1]|| ∈ F.

Proof. The situation is symmetric, so it suffices to prove the direction from left to right. Let
X = ||P [f0, . . . , fn−1]|| ∩ ||f0 = g0|| ∩ . . . ∩ ||fn−1 = gn−1||. Since F is a filter, X ∈ F . For
i ∈ X, since i ∈ ||P [f0, . . . , fn−1]||, it follows that Mi |= P [f0(i), . . . , fn−1(i)]. Since i ∈ ||f0 =
g0|| ∩ . . . ∩ ||fn−1 = gn−1||, it follows that f0(i) = g0(i), . . . , fn−1(i) = gn−1(i). So Mi |=
P [g0(i), . . . , gn−1(i)]. This means that i ∈ ||P [g0, . . . , gn−1||. So X ∈ F , X ⊆ ||P [g0, . . . , gn−1||,
which shows that ||P [g0, . . . , gn−1]|| ∈ F , as claimed.

Analogously:

Lemma 4.4.6. If H is an n-ary function symbol, then for any f0, . . . , fn−1, g0, . . . , gn−1 ∈∏
i∈I |Mi| with f0 ∼F g0, . . . , fn−1 ∼F gn−1, it follows that

||H(f0, . . . , fn−1) = H(g0, . . . , gn−1)|| ∈ F,

meaning that the set of i with HMi(f0(i), . . . , fn−1(i)) = HMi(g0(i), . . . , gn−1(i)) is in F .

4.4. ULTRAFILTERS AND ULTRAPRODUCTS 61

Moreover, ∼F is an equivalence relation on
∏
i∈I |Mi|: Given f, g, h ∈

∏
i∈I |Mi|, it follows

that f ∼F f , since ||f = f || = I ∈ F , f ∼F g =⇒ g ∼F f , since ||f = g|| = ||g = f ||, and
if f ∼F g and g ∼F h, it follows that ||f = g|| ∩ ||g = h|| ⊆ ||f = h|| ∈ F , so that f ∼F h.
This, together with the previous lemma, allows us to turn

∏
i∈I |Mi| into a model, giving the

correctness of the following definition.

Definition 4.4.7. In the notation of the previous definition, define a model M :=
∏
i∈IMi/F

as follows. |M| consists of the ∼F -equivalence classes of functions f ∈
∏
i∈I |Mi|. Write [f]F

for the ∼F -equivalence class of f . Then the interpretations of the symbols in M are given by:

cM := [〈cMi | i ∈ I〉]F , for c ∈ C,
〈[f0]F , . . . , [fn−1]F 〉 ∈ PM ⇐⇒ ||P [f0, . . . , fn−1]|| ∈ F, for P ∈ P with #(P) = n,

FM([f0]F , . . . , [fn−1]F) = [〈FMi(f0(i), . . . , fn−1(i)) | i ∈ I〉]F .

The following is the Hauptsatz on ultraproducts.

Theorem 4.4.8 (Loś). Let 〈Mi | i ∈ I〉 be a sequence of models of a fixed language L, I 6= ∅. Let
U be an ultrafilter on I. Let ϕ be an L-formula with free variables vm0

, . . . , vmn−1
(in increasing

order) and let f0, . . . , fn−1 ∈
∏
i∈I |Mi|. Then(∏

i∈I
Mi/U |= ϕ[[f0]U , . . . , [fn−1]U]

)
⇐⇒ (||ϕ[f0, . . . , fn−1]|| ∈ U) .

Proof. Set M :=
∏
i∈IMi/U .

First, one shows by a straightforward induction on terms t that if ~f ∼U ~g, it follows that
[〈tMi(~f(i))〉]U = [〈tMi(~g(i))〉]U . Knowing this, the theorem is now proved by induction on ϕ.
It’s clear for atomic formulas.

Now consider the case ϕ = (ϕ0 ∧ ϕ1). Then

M |= ϕ[[f0]U , . . . , [fn−1]U] ⇐⇒ M |= ϕ0[[f0]U , . . . , [fn−1]U] and M |= ϕ1[[f0]U , . . . , [fn−1]U]

⇐⇒ ||ϕ0[f0, . . . , fn−1]|| ∈ U and ||ϕ0[f0, . . . , fn−1]|| ∈ U
⇐⇒ ||ϕ0[f0, . . . , fn−1]|| ∩ ||ϕ0[f0, . . . , fn−1]|| ∈ U
⇐⇒ ||(ϕ0 ∧ ϕ1)[f0, . . . , fn−1]|| ∈ U
⇐⇒ ||ϕ[f0, . . . , fn−1]|| ∈ U

The ∨-step is similar, with one little additional argument: The first relevant observation is
that ||(ϕ0∨ϕ1)[f0, . . . , fn−1]|| = ||ϕ0[f0, . . . , fn−1]||∪||ϕ1[f0, . . . , fn−1||. The additional argument
is that if X ∪ Y ∈ U , then X ∈ U or Y ∈ U . The reason is that if both possibilities failed, it
would follow that both I \X ∈ U and I \Y ∈ U , since U is an Ultrafilter. So (I \X)∩ (I \Y) =
I \ (X ∪ Y) ∈ U . But then ∅ = (X ∪ Y) ∩ I \ (X ∪ Y) ∈ U , a contradiction.

It becomes more obvious how the ultrafilter property of U is used in the ¬-step (and actually,
since (ϕ0 ∨ ϕ1) is equivalent to ¬(¬ϕ0 ∧ ¬ϕ1), the ∨-step can be reduced to the ∧-step and the
¬-step). We get:

M |= ¬ϕ[[f0]U , . . . , [fn−1]U] ⇐⇒ M 6|= ϕ[[f0]U , . . . , [fn−1]U]

⇐⇒ ||ϕ[f0, . . . , fn−1]|| /∈ U
⇐⇒ I \ ||ϕ[f0, . . . , fn−1]|| ∈ U
⇐⇒ ||¬ϕ[f0, . . . , fn−1]|| ∈ U.

62 CHAPTER 4. SAME SAME... BUT DIFFERENT

The ∃-step is of interest, since the axiom of choice is needed here. Consider a formula of the
form ∃vmϕ, where wlog m is larger than the index of all the free variables of that formula.

M |= ∃vmϕ[f1, . . . , fn−1] ⇐⇒ there is a [f]U ∈ |M| such that M |= ϕ[[f0]U , . . . , [fn−1]U , [f]U]

⇐⇒ there is an f ∈
∏
i∈I
|Mi| such that ||ϕ[f0, . . . , fn−1, f]||︸ ︷︷ ︸

⊆||∃vmϕ[f0,...,fn−1]||

∈ U.

=⇒ ||∃vmϕ[f0, . . . , fn−1]|| ∈ U.

For the converse, assume X := ||∃vmϕ[f0, . . . , fn−1]|| ∈ U . For i ∈ X, the set

Xi := {c ∈ |Mi| | Mi |= ϕ[f0(i), . . . , fn−1(i), c]}

is nonempty. For i /∈ X, let Xi = |Mi|. By the axiom of choice, there is a function f :
I −→

∏
i∈I Xi. I.e., for all i ∈ I, f(i) ∈ |Mi|, and if i ∈ X, then f(i) ∈ Xi. Then

clearly, X = ||ϕ[f0, . . . , fn−1, f]|| ∈ U , which, by induction hypothesis, means that M |=
ϕ[[f0]U , . . . , [fn−1]U , [f]U]. So in particular, M |= ∃vmϕ[[f0]U , . . . , [fn−1]U].

The remaining case, ∀vmϕ, can in principle be reduced to ¬∃vm¬ϕ, and is left to the reader.

4.4.3 Compactness revisited

Here is a direct proof of the general version of the compactness theorem, in which it is not
necessary to assume that the language is countable.

Theorem 4.4.9 (Compactness Theorem, AC). If Σ is a set formulas of a fixed language such
that every finite subset of Σ has a model. Then Σ has a model.

Proof. Let I be the collection of finite subsets of Σ. For σ ∈ I, let Mσ be a model and aσ a full
assignment in Mσ with Mσ |= σ[aσ]. For σ ∈ I, let

〈σ〉 = {τ ∈ I | σ ⊆ τ}.

Clearly, for σ, τ ∈ I, it follows that

〈σ〉 ∩ 〈τ〉 = 〈σ ∪ τ〉.

Let

F = {X ⊆ I | ∃σ ∈ I 〈σ〉 ⊆ X}.

It follows that F is a filter (it’s the filter generated by {〈σ〉 | σ ∈ I}). For example, ∅ /∈ F , since
if X ∈ F , there is a σ ∈ I s.t. σ ∈ 〈σ〉 ⊆ X. To see that if X,Y ∈ F , then also X ∩ Y ∈ F ,
pick σ, τ ∈ I s.t. 〈σ〉 ⊆ X, 〈τ〉 ⊆ Y . Then 〈σ ∪ τ〉 = 〈σ〉 ∩ 〈τ〉 ⊆ X ∩ Y ∈ F . By the ultrafilter
theorem, let U ⊇ F be an ultrafilter on I. Let

M :=
∏
σ∈I
Mσ/U.

For a variable vn, define avn ∈
∏
σ∈I |Mσ| by:

avn(σ) = aσ(vn).

4.4. ULTRAFILTERS AND ULTRAPRODUCTS 63

Define a full assignment a in M by:

a(vn) := [avn]U .

It follows that M |= Σ[a]: Let ϕ ∈ Σ, where ϕ has the free variables vm0
, . . . , vmn−1

(in in-
creasing enumeration). Then for all σ ∈ I with ϕ ∈ σ, Mσ |= ϕ[aσ], which means that
Mσ |= ϕ[aσ(vm0), . . . , aσ(vmn−1)]. So 〈{ϕ}〉 ⊆ ||ϕ[avm0

, . . . , avmn−1
]||. By the construction

of U , 〈{ϕ}〉 ∈ U , so ||ϕ[avm0
, . . . , avmn−1

]|| ∈ U , which means (by the Loś Theorem) that M |=
ϕ[[avm0

]U , . . . , [avmn−1
]U]. Since a(vmi) = [avmi]U , this means precisely that M |= ϕ[a].

This theorem has the general completeness theorem as a consequence:

Theorem 4.4.10 (Completeness, AC). Assume Σ |= ϕ, where Σ ∪ {ϕ} is a set of formulas in
an arbitrary fixed language. Then Σ ` ϕ.

Proof. By the general compactness theorem, there is a finite set Σ0 ⊆ Σ such that Σ0 |= ϕ. For
otherwise, every finite subset of Σ ∪ {¬ϕ} would have a model, which by compactness would
mean that Σ ∪ {¬ϕ} has a model, but this would contradict the assumption that Σ |= ϕ. Now
we can apply the completeness theorem to Σ0, yielding Σ0 ` ϕ, in particular, Σ ` ϕ.

64 CHAPTER 4. SAME SAME... BUT DIFFERENT

Chapter 5

Incompleteness

This exposition of incompleteness phenomena follows [End72].

5.1 Arithmetic with Exponentiation and Representability

The language of number theory is given by: C = {0}, P = {<}, F = {S,+, ·, E}, #(<) = 2,
#(S) = 1, #(+) = 2, #(·) = 2, #(E) = 2.

I will use infix notation for the function symbols + and ·, and for the predicate symbol <. Of
course, the canonical model for this language is N := 〈ω, 0, <, S,+, ·, E〉 where S is the successor
function and E is exponentiation of natural numbers. We will use a fragment of the theory of
this model, i.e., a subset of the set of sentences true in N. Following [End72], this fragment is
called AE . It consists of the following axioms:

(S1) ∀v0 ¬S(v0) = 0

(S2) ∀v0∀v1 (S(v0) = S(v1)→ v0 = v1)

(L1) ∀v0∀v1(v0 < S(v1)↔ (v0 < v1 ∨ v0 = v1))

(L2) ∀v0 ¬v0 < 0

(L3) ∀v0∀v1(v0 < v1 ∨ v0 = v1 ∨ v1 < v0)

(A1) ∀v0 v0 + 0 = v0

(A2) ∀v0∀v1 (v0 + S(v1) = S(v0 + v1))

(M1) ∀v0 v0 · 0 = 0

(M2) ∀v0∀v1 (v0 · S(v1) = (v0 · v1) + v0)

(E1) ∀v0 E(v0, 0) = S(0)

(E2) ∀v0∀v1 E(v0, S(v1)) = E(v0, v1) · v0

For every natural number n, there is a canonical name in the language of AE , namely Sn(0).
This is called the numeral for n, and I’ll write ṅ for it.

65

66 CHAPTER 5. INCOMPLETENESS

Definition 5.1.1. A relation R ⊆ ωn is represented by a a formula ϕ(v0, . . . , vn−1) with the free
variables listed, if for every tuple 〈m0, . . . ,mn−1〉 ∈ ωn,

〈m0, . . . ,mn−1〉 ∈ R → AE ` ϕ(v0/ṁ0
) . . . (vn−1/ṁn−1

), and

〈m0, . . . ,mn−1〉 /∈ R → AE ` ¬ϕ(v0/ṁ0
) . . . (vn−1/ṁn−1

)

R is representable if there is a formula which represents R.
A function f : ωn −→ ω is represented by a formula if that formula represents the relation

{〈m0, . . . ,mn−1, f(m0, . . . ,mn−1)〉 | 〈m0, . . . ,mn−1〉 ∈ dom(f)}

which I shall refer to as the graph of f . f is representable if there is a formula which represents
the graph of f .

A formula ϕ(v0, v1, . . . , vn) functionally represents the function f : ωn → ω if for all natural
numbers m0, . . . ,mn−1,

AE ` ∀vn(ϕ(v0/ṁ0
) · · · (vn−1/ṁn−1

)↔ vn = Sf(m0,...,mn−1)(0)).

I shall often write ϕ(ṁ0, . . . , ṁn−1) in place of ϕ(v0/ṁ0
) . . . (vn−1/ṁn−1

), to save some space.
If a relation R as above is representable, then there is a computer program for an idealized
computer which can check, given ~m, whether ~m ∈ R or not. This works as follows: Let ϕ witness
that R is representable. Given ~m, let ϕ′ = ϕ(ṁ0, . . . , ṁn−1) (this is a different formula, actually
a sentence). The program can search for a proof (from AE) of ϕ′ or of ¬ϕ′, simultaneously. Since
either AE ` ϕ′ or AE ` ¬ϕ′, by our assumption that R is represented by ϕ, after finitely many
steps, the program will have found a proof. When this occurs, the program halts and outputs
“yes” if the search for a proof of ϕ′ was successful, and “no” if the search for a proof of ¬ϕ′ was.
It is less obvious but nevertheless true that every relation that is computable in this way is also
representable.

In the following, I will provide some facts about the class of representable relations and
functions.

Definition 5.1.2. A formula ϕ(v0, . . . , vn−1) is numeralwise determined by AE if for every tuple
〈m0, . . . ,mn−1〉 of natural numbers, either

AE ` ϕ(ṁ0, . . . , ṁn−1)

or
AE ` ¬ϕ(ṁ0, . . . , ṁn−1).

Also, if M is a model of some language, and ϕ(v0, . . . , vn−1) is a formula of that language,
then the relation defined in M by ϕ is

{〈a0, . . . , an−1〉 ∈ |M|n | M |= ϕ[a0, . . . , an−1]}.

In this case, this set is lightface-definable over M. A relation R ⊆ |M|i is boldface-definable
overM if there is a formula ϕ as above and members ai, ai−1, . . . , an−1 of |M|, with i < n, such
that

R = {〈a0, . . . , ai−1〉 | M |= ϕ[a0, . . . , an−1]}.

In this case, I say that R is defined by ϕ in the parameters ai, . . . , an−1 over M.

The following lemma describes the connection between definability in N and representability
of a relation.

5.1. ARITHMETIC WITH EXPONENTIATION AND REPRESENTABILITY 67

Lemma 5.1.3. A formula ϕ(v0, . . . , vn−1) represents a relation if and only if ϕ is numeralwise
determined by AE. In that case, the relation represented by ϕ is the relation defined by ϕ over
N.

Proof. It’s clear by the definition of what it means that ϕ represents a relation that this implies
ϕ is numeralwise determined.

Conversely, suppose ϕ is numeralwise determined. Let R = {〈m0, . . . ,mn−1〉 ∈ ωn | AE `
ϕ(ṁ0, . . . , ṁn−1)}. Clearly, ϕ represents R. Moreover, R is defined by ϕ over N: Let ~m :=
〈m0, . . . ,mn−1〉 ∈ ωn be given. If ~m ∈ R, then AE ` ϕ(ṁ0, . . . , ṁn−1), and since N |= AE , it
follows that N |= ϕ(ṁ0, . . . , ṁn−1), which means that N |= ϕ[m0, . . . ,mn−1], since (Sm(0))N =
m, for every natural number m. If ~m /∈ R, then by definition, AE 6` ϕ(ṁ0, . . . , ṁn−1), so since ϕ
is numeralwise determined, AE ` ¬ϕ(ṁ0, . . . , ṁn−1), which means that N |= ¬ϕ(ṁ0, . . . , ṁn−1),
so N 6|= ϕ[m0, . . . ,mn−1].

So in order to see that some relation is representable (and in particular, computable), it
suffices to check that it is definable in N by a formula which is numeralwise determined by AE .
That’s why it is useful to develop some criteria for when a formula is numeralwise determined
by AE . First, let’s give a name to a concept that occurs frequently.

Definition 5.1.4. If Σ is a set of formulas and ϕ is a sentence, then Σ decides ϕ if Σ ` ϕ or
Σ ` ¬ϕ.

So a formula ϕ(v0, . . . , vn−1) is numeralwise determined if AE decides ϕ(ṁ0, . . . , ṁn−1), for
all m0, . . . ,mn−1 < ω.

Lemma 5.1.5. 1. If ϕ0 and ϕ1 are sentences that are decided by a set of formulas Σ, then
so are ¬ϕ0, (ϕ0 ∧ ϕ1), (ϕ0 ∨ ϕ1) and (ϕ0 −→ ϕ1).

2. For any natural number n,

AE ` ∀v0(v0 < Sn+1(0)↔
∨
j≤n

v0 = Sj(0)).

3. For any variable-free term t, there is a unique natural number n such that AE ` t = ṅ.

4. Every quantifier-free sentence is decided by AE.

Proof. I shall tacitly use the completeness theorem all the time. Basically, I am arguing by
replacing ` with |=. This would not be necessary, but it makes the arguments less formalistic
and maybe more transparent. Part of the reason for this is that the choice of the particular
definition of ` is less canonical than the definition of |=.

Let’s prove 1. So suppose ϕ0 and ϕ1 are decided by Σ. If Σ ` ϕ0 and Σ ` ϕ1, then
Σ ` (ϕ0 ∧ ϕ1), and we are done. If not, then Σ ` ¬ϕi, for i = 0 or i = 1. It follows that
Σ ` ¬(ϕ0 ∧ ϕ1), since ϕi is false in any model of Σ. To see that ¬ϕ0 is decided: If Σ ` ϕ0, then
Σ ` ¬(¬ϕ0), so it decides ¬ϕ0 in the negative. If Σ ` ¬ϕ0, then it decides ¬ϕ0 in the positive.
The claim about (ϕ0∨ϕ1) reduces to ¬(¬ϕ0∧¬ϕ1). And (ϕ0 −→ ϕ1) is just short for (¬ϕ0∨ϕ1).

For 2, argue by induction on n. Work in an arbitrary model M of AE . For n = 0, we have
to show that for any a ∈ |M|, a <M S(0)M iff a = 0M. From left to right, by (L1) we have that
a <M 0M or a = 0M. By (L2), it cannot be that a <M 0M, so it must be that a = 0M, i.e.,
a = S0(0)M. I’ll drop the superscripts in similarly simple arguments to follow. The direction
from right to left is clear again by (L1), with v0 = a and v1 = 0.

Now suppose 2 has been shown for n, we try to prove it for n + 1. We again use (L1):
M |= a < Sn+1(0) means that M |= a < S(Sn(0)), which by (L1) is equivalent to M |=

68 CHAPTER 5. INCOMPLETENESS

a = Sn(0) ∨ a < Sn(0). Inductively, the latter is equivalent to M |=
∨
j<n v0 = Sj(0) in case

n > 0, and it is false in case n = 0 by (L2). Let’s take the disjunction
∨
j<n v0 = Sj(0) to be

nothing in case n = 0, and an empty disjunction to be false in any model. Then putting the two
disjunctions together gives M |=

∨
j<n+1 v0 = Sj(0), as desired. All these transformations work

in both directions, so we have shown the desired equivalence.
For 3, uniqueness is easily seen. For suppose AE ` t = Sm(0) and AE ` t = Sn(0). Since

N |= AE , it follows that N |= Sm(0) = Sn(0), i.e., m = n. For existence, argue by induction
on t. If t = 0, then AE ` t = S0(0). Now suppose t = S(u), where AE ` u = Sm(0). Then
AE ` S(u) = Sm+1(0). Now suppose u0 and u1 are terms such that AE ` u0 = Sm0(0) and
AE ` u1 = Sm1(0), for some natural numbers m0 and m1. By applying (A2) m1 times and (A1)
once, it follows that

Sm0(0) + Sm1(0) = Sm0(0) + S(Sm1−1(0))

= S(Sm0(0) + Sm1−1(0))

= S(S(Sm0(0) + Sm1−2(0)))

= · · ·
= Sm1(Sm0(0) + 0)

= Sm1(Sm0(0))

= Sm0+m1(0).

So this shows the claim for t = u0 + u1. For t = u0 · u1, we use (M2) and (M1) instead of (A2)
and (A1) to conclude that

AE ` Sm0(0) · Sm1(0) = Sm0(0) + Sm0(0) + · · ·+ Sm0(0)︸ ︷︷ ︸
m1 times

.

But by the above, AE ` Sm0(0) + Sm0(0) = S2m0(0), and so on, so that by m1 − 1 applications
of the above, it follows that

AE ` Sm0(0) · Sm1(0) = Sm0·m1(0),

which proves the claim for t = u0 · u1(0). The case t = u0Eu1 relates to the case t = u0 · u1 as
the case t = u0 · u1 relates to the case t = u0 + u1.

For 4, note that it suffices to prove that every atomic sentence is decided by AE , in view of
1, since one can then argue by induction on quantifier free sentences.

Let ϕ be of the form t0 = t1. By 3, fix m0 and m1 such that AE ` (t0 = Sm0(0)∧t1 = Sm1(0)).
If m0 = m1, then clearly, AE ` t0 = t1, since if M is an arbitrary model of AE , M |= t0 =

Sm0(0) = Sm1(0) = t1. If m0 6= m1, then wlog, let m0 < m1. I claim that AE ` t0 6= t1. If not,
then there would be a model M |= AE with M |= t0 = t1. Then, arguing inside M, it follows
that Sm0−1(0) = Sm1−1(0), by (S2), which, in turn, implies that Sm0−2(0) = Sm1−2(0), again
by (S2). Applying (S2) m0 times, it follows that 0 = Sm1−m0(0), and m1 −m0 > 0. So letting
a = Sm1−m0−1(0), in M, 0 = S(a), which contradicts (S1).

Now let ϕ be of the form t0 < t1. Again, fix m0 and m1 such that AE ` ti = Smi(0), by 3.
If m0 < m1, then it follows that AE ` t0 < t1. For if M |= AE , then by 2, M |= ∀x(x <

Sm1(0) ↔
∨
j<m1

x = Sj(0). Substituting t0 for x in the inner formula shows that M |= (t0 <

t1 ↔
∨
j<m1

t0 = Sj(0)). But the disjunction on the right hand side is true inM by assumption,
as m0 < m1. So M |= t0 < t1, as claimed.

Now suppose m1 ≤ m0. I claim that then, AE ` ¬t0 < t1. To see this, let M |= AE ,
and assume, towards a contradiction that M |= t0 < t1, i.e., M |= Sm0(0) < Sm1(0), where

5.1. ARITHMETIC WITH EXPONENTIATION AND REPRESENTABILITY 69

m1 ≤ m0. As above, arguing in M, it follows that Sm0−1(0) < Sm1−1(0), by (S2). Applying
(S2) m1−1 more times, it follows that Sm0−m1(0) < 0, which contradicts the axiom (L2) of AE .
So such an M cannot exist, which shows that AE ` ¬(t0 < t1), as desired. This concludes the
proof of the atomic case. Boolean combinations are covered by 1.

Theorem 5.1.6. 1. Any quantifier-free formula is numeralwise determined by AE.

2. If ϕ and ψ are numeralwise determined by AE, then so are ¬ϕ, (ϕ ∨ ψ), (ϕ ∧ ψ) and
(ϕ→ ψ).

3. If ϕ is numeralwise determined by AE, then so are the “bounded quantifications” ∀x(x <
y → ϕ) and ∃x(x < y ∧ ϕ). From now on, I’ll write ∀x < y ϕ for the first formula and
∃x < y ϕ for the second.

Proof. For 1, let ϕ(x0, . . . , xn−1) be a quantifier-free formula. Given m0, . . . ,mn−1 ∈ ω, and
letting ψ := ϕ(Sm0(0), . . . , Smn−1(0)), it follows that ψ is a quantifier-free sentence, so by Lemma
5.1.5.4, it is decided by AE .

For 2, let ϕ and ψ be numeralwise determined by AE . Let v0, . . . , vk−1 list the free variables
of (ϕ∧ψ), and let a0 . . . , ak−1 ∈ ω. Then (ϕ∧ψ)(v0/Sa0 (0)) · · · (vk−1/Sak−1 (0)) = (ϕ′∧ψ′), where
ϕ′ and ψ′ are obvious instances of ϕ and ψ, respectively. Then AE decides ϕ′ and AE decides
ψ′. These instances are decided by AE , so by Lemma 5.1.5.1, so is (ϕ′ ∧ ψ′). The argument for
the other Boolean combinations is similar.

For 3, first note that ¬(∃x < y ϕ) is logically equivalent to ∀x < y ¬ϕ. By 2, ϕ is nume-
ralwise determined by AE iff ¬ϕ is. So it suffices to prove that if ϕ is numeralwise determined
by AE , then so is ∃x < y ϕ. This is because knowing that, one can argue that given a ψ which
is numeralwise determined by AE , it follows that ¬ψ is numeralwise determined by AE , hence
so is ∃x < y ¬ψ, which is the same as to say that ¬∀x < y ψ is numeralwise determined by
AE , and hence, so is ∀x < y ψ.

So let ϕ be numeralwise determined by AE . Let y, z0, . . . , zn−1 be the free variables of the
formula ∃x < y ψ. Fix natural numbers a, b0, . . . , bn−1.

Case 1. N |= (∃x < y ψ)(Sa(0), Sb0(0), . . . , Sbn−1(0)).
Let c ∈ ω witness this formula, meaning that c < a and

N |= ψ(x/Sc(0))(
y/Sa(0))(

z0/Sb0 (0)) . . . (
zn−1/Sbn−1 (0)).

Since ψ is numeralwise determined, it follows that

AE ` ψ(x/Sc(0))(
y/Sa(0))(

z0/Sb0 (0)) . . . (
zn−1/Sbn−1 (0)),

since it cannot be that AE proves the negation of this sentence, as it holds in N. But of course,
AE ` Sc(0) < Sa(0) by Lemma 5.1.5.4 as this is an atomic formula which is true in N. But then
clearly,

AE ` (∃x < y ψ)(y/Sa(0))(
z0/b0) . . . (zn−1/bn−1

),

as this is witnessed by Sc(0).
Case 2. Case 1 fails.
In that case, N |= (¬∃x < y ψ)(Sa(0), Sb0(0), . . . , Sbn−1(0)). I claim that AE proves this

sentence. Assuming the contrary, there is a model M |= AE in which the negation holds:

M |= (∃x < y ψ)(Sa(0), Sb0(0), . . . , Sbn−1(0)).

Let c ∈ |M| witness this. I.e.,

M |= c < Sa(0) and M |= ψ(y/Sa(0))(
z0/Sb0 (0)) . . . (

zn−1/Sbn−1 (0))[(
x/c)].

70 CHAPTER 5. INCOMPLETENESS

By Lemma 5.1.5.2, there is a natural number c′ < a such that

M |= c = Sc
′
(0).

Hence,
M |= ψ(x/Sc′ (0))(

y/Sa(0))(
z0/Sb0 (0)) . . . (

zn−1/Sbn−1 (0)).

Since ψ is numeralwise determined, it follows that this sentence is actually provable in AE , or
else the negation would be provable, and hence the negation would have to hold in M. But if it
is provable in AE , then it has to hold in N as well:

N |= ψ(x/Sc′ (0))(
y/Sa(0))(

z0/Sb0 (0)) . . . (
zn−1/Sbn−1 (0)).

But then c′ witnesses that

N |= (∃x < y ψ)(Sa(0), Sb0(0), . . . , Sbn−1(0)),

contrary to our assumption.
Now we’ll clarify the relationship between representable functions and functionally represen-

table functions.

Lemma 5.1.7. If a formula ϕ(v0, . . . , vn) functionally represents a function f : ωn −→ ω, then
ϕ also represents the graph of f .

Proof. Let ~m := 〈m0,m1, . . . ,mn〉 ∈ ωn+1 be given. If 〈m0, . . . ,mn〉 is in the graph of f , i.e.,
mn = f(m0, . . . ,mn−1), then since ϕ functionally represents f , this means that

AE ` ∀vn(ϕ(v0/Sm0 (0)) · · · (vn−1/Smn−1 (0))↔ vn = Sf(m0,...,mn−1)(0)).

So in an arbitrary model M |= AE , this sentence is true. Since

M |= vn = Sf(m0,...,mn−1(0)[(vn/
Sf(m0,...,mn−1)(0)M

)],

this means that

M |= ϕ(v0/Sm0 (0)) · · · (vn−1/Smn−1 (0))(
vn/

Sf(m0,...,mn−1)(0)
),

so that AE proves that sentence, as M was arbitrary.
On the other hand, if 〈m0, . . . ,mn〉 is not in the graph of f , then f(m0, . . . ,mn−1) 6= mn.

It follows that in the above formula, the right hand side of the equivalence over which the
∀-quantifier is ranging is false if Smn(0) is substituted for vn. As before, this means that

AE ` ¬ϕ(v0/Sm0 (0)) · · · (vn−1/Svn−1mn−1
)(vn/

Sf(m0,...,mn−1)(0)
).

This is the other half of what was to be shown in order to see that ϕ represents the graph of
f .

Lemma 5.1.8. If the graph of a function f is representable, then f is also functionally repre-
sentable.

Proof. Let ϕ(v0, . . . , vn) represent the graph of f . Let θ be the formula

(ϕ ∧ ∀vn+1 < vn ¬ϕ(vn/vn+1
)).

5.1. ARITHMETIC WITH EXPONENTIATION AND REPRESENTABILITY 71

So θ(v0, . . . , vn) expresses that vn is least such that ϕ(v0, . . . , vn) holds. Let natural numbers
m1, . . . ,mn be given. In order to see that θ functionally represents f , it has to be shown that

AE ` ∀vn(θ(v0/Sm0 (0)) · · · (vn−1/Smn−1 (0))↔ vn = Sf(m0,...,mn−1)(0)).

So fix a model M |= AE , and fix an element a ∈ |M|. We have to see that

M |= θ[(v0/Sm0 (0)M) · · · (vn−1/Smn−1 (0)M)(vn/a)] ⇐⇒ M |= a = Sf(m0,...,mn−1)(0).

For the direction from right to left: Since ϕ represents the graph of f ,

M |= ϕ[(v0/Sm0 (0)M) · · · (vn−1/Smn−1 (0)M)(vn/a)],

and there can be no c ∈M such that M |= c < a and

M |= ϕ[(v0/Sm0 (0)M) · · · (vn−1/Smn−1 (0)M)(vn/c)],

for since M |= a = Sf(m0,...,mn−1)(0), it would follow that M |= c = Sk(0), for some k <
f(m0, . . . ,mn−1) (by Lemma 5.1.5.2), and hence that 〈m0, . . . ,mn−1, k〉 ∈ f , as ϕ represents the
graph of f as a relation. But this would mean that f(m0, . . . ,mn−1) = k < f(m0, . . . ,mn−1), a
contradiction.

For the converse, the argument is similar, but let me argue a little less formally. The point
is that there is a natural number k, namely k = f(m1, . . . ,mn), such that

M |= ϕ(Sm0(0)M, . . . , Smn−1(0)M, Sk(0)M),

because the graph of f is represented by ϕ. Below a numeral, there are only numerals, so since a is
least (inM) such thatM |= ϕ[Sm0(0)M, . . . , Smn−1(0)M, a], it follows that a ≤ Sk(0) inM, and
hence, a is equal to a numeral Sl(0)M, l ≤ k. So we have M |= ϕ(Sm0(0), . . . , Smn−1(0), Sl(0)),
which means that l = f(m0, . . . ,m0) = k, and in particular,

M |= a = Sf(m0,...,mn−1)(0).

These facts allow us to formulate some closure properties of the class of representable functi-
ons.

Lemma 5.1.9. Suppose f0, . . . , fm−1 are representable functions with dom(f0) = . . . = dom(fm−1) =
ωk, and that g : ωm −→ ω is representable. Then the function h = g ◦ (f0, . . . , fm−1) : ωk −→ ω,
defined by

h(a0, . . . , ak−1) := g(f0(a0, . . . , ak−1), . . . , fm−1(a0, . . . , ak−1))

is representable.

Proof. We may by Lemma 5.1.8 choose functional representations ϕ0, . . . , ϕm−1, γ of f0, . . . , fm−1, g.
Note that the set of free variables of ϕi is contained in {v0, v1, . . . , vk}. Choose variables
x0, . . . , xm−1 which do not occur in any of these formulas. Let η be the following formula:

∃x0 . . . ∃xm−1


 ∧

0<l<m

ϕl(
vk/xl)︸ ︷︷ ︸

“xl=fl(v0,...,vk−1)”

 ∧ γ(v0/x0) · · · (vm−1/xm−1)︸ ︷︷ ︸
“vm=g(x0,...,xk−1)”

 .

We check that η represents the graph of h:

72 CHAPTER 5. INCOMPLETENESS

Let 〈a0, . . . , ak−1, b〉 ∈ ωk+1. There are two cases.
Case 1: b = h(a0, . . . , ak−1).
Then let b0 = f0(a0, . . . , ak−1), . . . , bm = fm(a0, . . . , ak−1). Let M be an arbitrary model of

AE . Since ϕi represents fi, for 0 < i < k, it follows that for each such i, we have:

M |= ϕi(
v0/Sa0 (0)), . . . , (

vk−1/Sak−1 (0))(
vk/Sbi (0)),

and trivially also that

M |= ϕi(
v0/Sa0 (0)), . . . , (

vk−1/Sak−1 (0))(
vk/xi)(

xi/Sbi (0)).

Moreover, since γ represents g, it follows that

M |= γ(v0/Sb0 (0)) · · · (vm−1/Sbm−1 (0))(
vm/Sb(0)),

so that

M |=

((∧
i<m

ϕi(
v0/Sa0 (0)) . . . (

vk−1/Sak−1 (0))(
vk/xi)(

xi/Sbi (0))

)
∧ γ(v0/Sb0 (0)) · · · (vm−1/Sbm−1 (0))(

vm/Sb(0))

)
.

So the terms Sb0(0), . . . , Sbm−1(0) witness that

M |= η(v0/a0) · · · (vk−1/ak−1
)(vm/Sb(0)).

Since M was arbitrary, this means that

AE ` η(v0/a0) · · · (vk−1/ak−1
)(vk/Sb(0)),

as wished.
Case 2: b 6= h(a0, . . . , ak−1).
Let M be an arbitrary model of AE . We have to show that

M |= ¬η(v0/Sa0 (0)) · · · (vk−1/Sak−1 (0))(
v0/Sb(0)).

Assuming the contrary means that there are b0, . . . , bm−1 ∈ |M| such that for every i < m,

M |= ϕi(
v0/Sa0 (0)) · · · (vk−1/Sak−1 (0))[(

vk/bi)]

and
M |= γ[(v0/b0) · · · (vm−1/bm−1

)(vm/Sb(0)M)].

Since ϕi functionally represents fi, it follows from the former that

M |= bi = Sfi(a1,...,ak)(0).

And hence, the latter means that

M |= γ(v0/
Sf0(a0,...,ak−1)(0)

) · · · (vm−1/
Sfm−1(a0,...,ak−1)(0)

)(vm/Sb(0)),

which, since γ represents g, means that

b = g(f0(a0, . . . , ak−1), . . . , fm−1(a0, . . . , ak−1)) = h(a0, . . . , ak−1),

a contradiction.

5.1. ARITHMETIC WITH EXPONENTIATION AND REPRESENTABILITY 73

Definition 5.1.10. Given a relation R ⊆ ωn, let χR be its characteristic function, χR : ωn −→ 2,
defined by: χR(m0, . . . ,mn−1) = 1 iff 〈m0, . . . ,mn−1〉 ∈ R.

Theorem 5.1.11. A relation R is representable iff its characteristic function is.

Proof. From left to right, let ϕ(v0, . . . , vn−1) represent R. Let ϕ′(v0, . . . , vn−1, vn) be the formula

((ϕ ∧ vn = S(0)) ∨ (¬ϕ ∧ vn = 0)).

Clearly, ϕ′ is numeralwise determined by AE , being a Boolean combination of such formulas.
And ϕ′ obviously defines χR over N.

From right to left, let ϕ(v0, . . . , vn) represent χR. Let ϕ′(v0, . . . , vn−1) be the formula

ϕ(vn/S(0)).

It follows immediately that ϕ′ is numeralwise determined by AE , since ϕ is. Again, ϕ′ defines R
over N, so we’re done.

Lemma 5.1.12. Suppose R ⊆ ωn is representable and f0, f1, . . . , fn−1 are representable functi-
ons with domain ωk. Then so is the relation

S = {〈m0, . . . ,mk〉 | 〈f0(~m), . . . , fn−1(~m)〉 ∈ R}.

Proof. Since

χS = χR ◦ (f0, . . . , fn−1),

and χR, f0, . . . , fn−1 are representable, χS is also representable.

Theorem 5.1.13. Let g : ωn+1 −→ ω be representable, and let g have the property that for
every tuple 〈m0, . . . ,mn−1〉, there is an m such that g(m0, . . . ,mn−1,m) = 0. Then the function
f : ωn −→ ω defined by

f(m0, . . . ,mn−1) = min{m | g(m0, . . . ,mn−1,m) = 0}

is representable.

Proof. Let γ(v0, . . . , vn+1) be a functional representation of g. Then the following formula defines
the graph of f over N: (

γ(vn+1/0) ∧ ∀vn+2 < vn¬γ(vn/vn+2
)(vn+1/0)

)
.

I leave it to the reader to convince him- or herself that the formula γ(vn+1/0) is numeralwise
determined. It follows then from Lemma 5.1.6 that the entire formula is numeralwise determined.
Hence, by Lemma 5.1.3, it represents the graph of f .

Theorem 5.1.14. The following relations are representable:

1. P := {p | p is a prime number},

2. Q := {〈p, q〉 | p < q and [p, q] ∩ P = {p, q}},

3. The monotone enumeration p of P .

74 CHAPTER 5. INCOMPLETENESS

Proof. 1.) P is represented by the following formula:

Π(v0) := (0 < v0 ∧ ∀v1 < v0∀v2 < v0¬v1 · v2 = v0).

2.) Here is a formula which represents Q:

(Π(v0) ∧Π(v1) ∧ v0 < v1 ∧ ∀v2 < v1(v0 < v2 → ¬Π(v0/v2))),

where in Π(v0/v2), an implicit replacement of the bound variable v2 occurs, by our convention.
In the future, I shall sometimes abuse notation and write instead:

“v0 ∈ P” ∧ “v1 ∈ P” ∧ v0 < v1 ∧ ∀v2 < v1(v0 < v2 → “v2 /∈ P”).

3.) Instead of writing down a formula representing the set in question explicitly, I will use
abbreviations as in the proof of 2.). The reader will no doubt be able to translate this into a
genuine formula. The formula should express the following:

“v1 ∈ P” and there is an a ≤ vv
2
0

1 such that

1. 2 does not divide a,

2. for all u, v < a, if 〈u, v〉 ∈ Q, then for all i < v0:

“ui divides a”↔ “vS(i)divides a”.

3. v1 is the least prime number r such that rv0 divides a.

It is obvious that the relation {〈u, v〉 ∈ ω2 | u divides v} is representable (by a bounded formula).

So the above formula results from substituting the representable functions 〈x, y〉 7→ xy
2

, 〈x, y〉 7→
xy and 〈x, y〉 7→ xS(y) into a representable relation. The result is a representable relation, by
Lemma 5.1.12.

To see that the relation defined over N by the above formula actually is the graph of the
monotone enumeration of P , two directions have to be verified. First, assume that p(m) = n.
Then let a = p(0)0 ·p(1)1 · · · · ·p(m)m. Clearly, 1.-3. above hold in N with v0 = m and v1 = p(m),

and a ≤ p(m)m
2

. For the converse, assume that 1.-3. hold in N, with v0 = m and v1 = q, where q

is a prime number, and with a ≤ qm2

. By induction on i ≤ m, it follows that p(i)i divides a but
p(i)i+1 doesn’t, using 1. for the start of the induction and 2. for the induction step. It follows
that q = p(m), since p(m)m divides a, and it is the least prime number with this property, as is
q, so they must be equal.

5.2 A different Gödelization: Ackermann’s coding of Vω

Definition 5.2.1 (Ackermann). For a natural number n, let un be the uniquely determined
finite set of natural numbers such that

n =
∑
m∈un

2m.

Define a relation ∈̃ ⊆ ω2 by:
m∈̃n ⇐⇒ m ∈ un.

So m∈̃n iff the m-th digit in the binary representation of n is 1. Note that

m∈̃n =⇒ m < n.

5.2. A DIFFERENT GÖDELIZATION: ACKERMANN’S CODING OF Vω 75

Theorem 5.2.2. ∈̃ is representable.

Proof. v0∈̃v1 iff, in N, there is b ≤ p(v0)v0·v1 such that:

1. 2v1 divides b but 2S(v1) does not (think of 2 as p(0) here).

2. For all i < v0, for all j < v1 + 2:

“p(i)j divides b” ⇐⇒ “p(i+ 1)[j:2] divides b.”

3. The largest i < S(v1) such that p(v0)i divides b is odd.

Here [j : 2] is the result of dividing j by 2 and discarding the remainder. It’s clear that the
relation defined by the above clauses is representable. To see that it defines ∈̃ over N, let n ∈ ω
be given, and define a sequence 〈ai | i < k〉 by: a0 = [n : 2], and if ai > 0, then ai+1 = [ai : 2];
otherwise k = i + 1. Clearly, n =

∑
i<k 2li , where li = 1 if ai is odd, and li = 0 otherwise. In

other words, un = {i | ai is odd}, or, i∈̃n iff ai is odd. This characterization can be used to see
that the above formula defines ∈̃ over N.

For one direction, suppose m∈̃n. Then 1. -3. hold with v0 = m, v1 = n and b =∏
i≤m p(i)

ai ≤ p(m)mn.
Vice versa, suppose the clauses hold for v0 = m, v1 = n and b in N. By induction on i ≤ m,

it can be shown that ai is the largest l such that p(i)l divides b. So it follows from the last clause
that am is odd, which means that m∈̃n.

Theorem 5.2.3 (Ackermann). The structure 〈ω, ∈̃〉 is well-founded and extensional. So it is
isomorphic via the Mostowski collapse to a transitive structure. In fact, letting π be the collapse,
it follows that

π : 〈ω, ∈̃〉 ∼←→ 〈Vω,∈ �Vω〉.

Definition 5.2.4. Let π : 〈ω, ∈̃〉 ∼←→ 〈Vω,∈ �Vω〉 be the Mostowski isomorphism. For R ⊆
(Vω)n, let

R̃ = {〈m0, . . . ,mn−1〉 | 〈π(m0), . . . , π(mn−1)〉 ∈ R}.

Definition 5.2.5. A bounded quantifier in the language of set theory is a quantifier of the form
∃x ∈ y or ∀x ∈ y, where x and y are variables. Occurrences of these bounded quantifiers can be
eliminated and so these quantifiers can be viewed as being abbreviations:

∃x ∈ y ϕ means ∃x(x ∈ y ∧ ϕ),

and
∀x ∈ y ϕ means ∀x(x ∈ y −→ ϕ).

A Σ0-formula is a formula in which all quantifiers are bounded. Such formulas are sometimes
also referred to as ∆0-formulas.

Theorem 5.2.6. If R ⊆ Vn
ω is definable over 〈Vω,∈〉 by a Σ0-formula (using parameters), then

R̃ is representable.

Proof. By induction on formulas ϕ in the language of set theory (with bounded quantifiers), I
show:

(∗) If ϕ is Σ0, then there is a numeralwise determined formula ϕ̃ in the language of AE with
the same free variables as ϕ, such that for all a1, . . . , an ∈ Vω,

〈Vω,∈〉 |= ϕ[a1, . . . , an] ⇐⇒ N |= ϕ̃[π−1(a1), . . . , π−1(an)].

76 CHAPTER 5. INCOMPLETENESS

It will be clear in each case that the displayed claim holds, but I’ll check that the formulas
produced are numeralwise determined. To start off, let’s deal with the atomic cases. If ϕ = x=̇y,
then we can let ϕ̃ = ϕ. If ϕ = x∈̇y, then let

ϕ̃ = “x∈̃y”,

where “x∈̃y” stands for the formula representing ∈̃ according to the previous lemma, with x and
y substituted for v0 and v1, respectively.

Boolean combinations are trivial. Thus, ˜(ϕ0 ∧ ϕ1) = (ϕ̃0 ∧ ϕ̃1), et cetera. This produces nu-
meralwise determined formulas, since Boolean combinations of numeralwise determined formulas
are numeralwise determined.

Finally, let’s turn to bounded quantification. Suppose ψ = ∃x ∈ y ϕ, where ϕ̃ is already
defined. By renaming the bounded variables of ϕ̃ if necessary, wma x and y don’t occur as
bound variables in ϕ̃. Then set

ψ̃ = ∃x < y(“x∈̃y” ∧ ϕ̃).

The crucial point here is that m∈̃n =⇒ m < n. Since bounded quantification over numeralwise
determined formulas produces numeralwise determined formulas, this produces a numeralwise
determined formula. The case of bounded universal quantification is analogous, so we are done.

Definition 5.2.7. A formula in the language of set theory is Σ1 if it is of the form ∃xϕ, where
ϕ is Σ0. Given a model of set theory M, a relation R ⊆ |M|n is Σ1(M) if it is definable over
M by a Σ1-formula. It is ∆1(M) if both R and ¬R := |M|n \R are Σ1(M).

I’ll also say that a formula ϕ(x0, . . . , xn−1) is ΣT1 , where T is some theory, if there is a
Σ1-formula σ(x0, . . . , xn−1) such that T ` ϕ↔ σ. It is ∆T

1 if ϕ and ¬ϕ both are ΣT1 .

The importance of ∆1(Vω)-relations is evidenced by the following theorem:

Theorem 5.2.8. If R ⊆ Vn
ω is ∆1(〈Vω,∈〉), then R̃ is representable.

Before beginning the proof, let me remark that we don’t need to worry about parameters
that might occur in a ∆1(Vω) definition of a relation over Vω, because the inverse image of such
a parameter is a natural number, represented by a numeral, so that by substituting the numeral
for the preimage of the parameter, it disappears.

Proof. Let R be defined over Vω by ϕ = ∃xϕ and ¬R by ψ = ∃xψ, where ϕ and ψ are Σ0-
formulas. By claim (∗) of the proof of the previous lemma, it follows that R̃ is defined by ∃xϕ̃
and ¬R is defined by ∃xψ̃ over N. Note that ϕ̃ and ψ̃ are numeralwise determined formulas, by
the previous lemma. I claim that the following formula ϕ∗ represents R̃:

∃x(ϕ̃ ∧ ∀x̄ < x(¬ϕ̃(x/x̄) ∧ ¬ψ̃(x/x̄))).

To see this, we have to check two things:
First, suppose ~a ∈ R̃. Then N |= ∃xϕ̃[~a]. Let n ∈ ω be the least witness. Then

N |= ϕ̃[S~a(0), Sn(0)] ∧ ∀x̄ < n(¬ϕ̃(x/x̄)(S~a(0)) ∧ ¬ψ̃(x/x̄)(S~a(0))).

But this is a numeral instance of a numeralwise determined formula, so AE proves it. So AE `
ϕ∗(S~a(0)).

5.2. A DIFFERENT GÖDELIZATION: ACKERMANN’S CODING OF Vω 77

Secondly, suppose ~a /∈ R̃. Then N |= ∃xψ̃(S~a(0)). Pick the least witness n. So

N |= ψ̃(S~a(0), Sn(0)) ∧ ∀x̄ < Sn(0)(¬ϕ̃(x/x̄)[~a] ∧ ¬ψ̃(x/x̄)[~a]))︸ ︷︷ ︸
χ

.

So AE ` χ. I claim that AE ` ¬ϕ∗(S~a(0)). If not, then let M |= AE be such that M |=
ϕ∗(S~a(0)). Pick a witness b ∈ |M|, so that

M |= ϕ̃(S~a(0))[b] ∧ ∀x̄ < b(¬ϕ̃(x/x̄)(S~a(0)) ∧ ¬ψ̃(x/x̄)(S~a(0)))).

Moreover, M |= χ. It is impossible that M |= Sn(0) < b, since M |= χ, and hence, M |=
ψ̃(S~a(0), Sn(0)). So M |= b ≤ Sn(0) (by (L3)). But we’ve known for a long time that there are
only numerals below numerals (Lemma 5.1.5.2), so that this implies that M |= b = Sl(0), for
some l ≤ n. So then, M |= ϕ̃(S~a(0), Sl(0)). But this is a numeral instance of a numeralwise
determined formula, and hence decided by AE . So AE ` ϕ̃(S~a(0), Sl(0)), and in particular,

N |= ϕ̃(S~a(0), Sl(0)). So N |= ∃xϕ̃(S~a(0)), i.e., ~a ∈ R̃, a contradiction.

Theorem 5.2.9. Let T = ZF− − Infinity − Foundation.

1. If ϕ(x0, . . . , xn−1) is ΣT1 , then so is ∃xiϕ, for i < n.

2. If ϕ0 and ϕ1 are ΣT1 , then so are (ϕ0 ∧ ϕ1) and (ϕ0 ∨ ϕ1).

3. If ϕ(x0, . . . , xn−1) is ΣT1 , and y, z are variables which don’t occur as bound variables in ϕ,
then the formulas ∃y ∈ zϕ and ∀y ∈ zϕ are also ΣT1 .

4. If M |= T and F : |M| → |M| is a function whose graph is Σ1(M), then it is ∆1(M).

Proof. 1.) Suppose ϕ is of the form ∃zψ(x0, . . . , xn−1). Then, provably in T ,

∃xi∃zψ(x0, . . . , xn−1)↔ ∃u∃xi ∈ u∃z ∈ uψ(x0, . . . , xn−1),

where u is some new variable that doesn’t occur in ϕ. This uses the pairing axiom.
2.) Wlog, we may assume that ϕ0 and ϕ1 are Σ1-formulas, and also that they don’t have a

bound variable in common. Let ϕ0 = ∃xϕ′0 and ϕ1 = ∃yϕ′1. Then, provably in T ,

(ϕ0 ∧ ϕ1)↔ ∃u∃x ∈ u∃y ∈ u(ϕ0 ∧ ϕ1),

and analogously for ∨.
3.) Wlog, let ϕ be a Σ1-formula, say ϕ = ∃xϕ′(x, x0, . . . , xn−1), where ϕ′ is Σ0. So ∃y ∈ zϕ

is equivalent to the formula
∃y(y ∈ z ∧ ϕ),

which is ΣT1 , by 1. and 2.
Now consider the formula ∀y ∈ zϕ, i.e., ∀y ∈ z∃xϕ′(x, y, z, x0, . . . , xn−1). I claim that it is

equivalent, in T , to the formula

∃v∀y ∈ z∃x ∈ vϕ′(x, y, z, x0, . . . , xn−1).

To see this, recall that the theory T contains the Relativization scheme:

∀z∃v∀y ∈ z((∃x〈x, y〉 ∈ A) −→ (∃x ∈ v〈x, y〉 ∈ A)).

78 CHAPTER 5. INCOMPLETENESS

Applying this scheme to A = {〈x, 〈y, z, x0, . . . , xn−1〉〉 | ϕ′(x, x0, . . . , xn−1)} proves the desired
equivalence.

One can argue without using Relativization, but using Power Set instead (indeed, Power Set
and Replacement, together with ZF−−, imply Relativization): I’ll need the following basic tool:
Since I’m assuming the Power Set axiom, I can define, by recursion on the ordinals, a function
α 7→ Vα, by letting V0 = ∅, Vs(α) = P(Vα) and Vλ =

⋃
α<λ Vα, for limit ordinals λ. I

have introduced the first ω + 1 steps of this recursion already. Just as then, it follows from
the Foundation axiom that V =

⋃
α∈On Vα. Now, working in some model M of T , and fixing

a0, . . . , an−1 ∈ |M|, assume that

M |= ∀y ∈ z∃xϕ′[a0, . . . , an−1].

Working inM, let F be the function defined by: F (y) =the least α such that if there is a b with
ϕ′[a0, . . . , an−1(x/b)], then there is such a b ∈ Vα. By replacement, the range of F is a set of
ordinals which has a supremum, say λ. So

M |= ∃w∀y ∈ z∃x ∈ wϕ′[a0, . . . , an−1],

as witnessed by w = VMλ . Vice versa, if this latter formula holds in M then M models that
∀y ∈ z∃xϕ′[a0, . . . , an−1] is true. SinceM was arbitrary, this shows that the original formula is,
provably in T , equivalent to the Σ1-formula ∃w∀y ∈ z∃x ∈ wϕ′.

4.) Let ϕ define the graph of F over M. Then 〈a, b0, . . . , bn−1〉 ∈ ¬F iff a 6= F (b0, . . . , bn−1)
iff

M |= ∃z(z 6= a ∧ ϕ(z, b0, . . . , bn−1)).

We’ll keep working with the fragment T of set theory that was used in the previous theorem.

Theorem 5.2.10. Let M be a model of T . Let R ⊆ |M|n be a Σ1(M) relation, and let Fi be
an m-ary partial Σ1(M)-function, for i < n. Then the relation S ⊆ |M|m defined by

S(a0, . . . , am−1) ⇐⇒ R(F0(a0, . . . , am−1), . . . , Fn−1(a0, . . . , am−1))

is (uniformly) Σ1(M).

Proof. Saying that S is uniformly Σ1(M) means that given a Σ1-formula ϕR(x0, . . . , xn−1, ~w)
defining R over M, and given Σ1-formulas ϕi(y0, . . . , ym−1, ym, ~w

i) defining the function Fi, for
i < n,1 there is a Σ1-formula ψ(x0, . . . , xn−1, ~w, ~w

0, . . . , ~wn−1) which is defined only referring to
the formulas ϕR, ϕ0, . . . , ϕn−1, and not to M. I.e., the formula ψ defines the desired relation in
any model M′ of T in which the Fi’s define functions.

The following formula does this:

∃u0 . . . ∃un−1

(
(
∧
i<n

ϕFi(
ym/ui)) ∧ ϕR(u0, . . . , un−1)

)

as the definition of ψ. This is equivalent to a Σ1-formula.

Remark 5.2.11. It is possible that a Σ1-formula ϕ defines a function in one model of set theory,
but not in another. Expressing that ϕ defines a function has complexity Π1.

Lemma 5.2.12. The following formulas are ∆T
1 :

1The variables ~w, ~w0, . . . , ~wn−1 come from the parameters that may or may not have been used in the definitions
of R,F0, . . . , Fn−1.

5.2. A DIFFERENT GÖDELIZATION: ACKERMANN’S CODING OF Vω 79

1. “v0 = ∅”

2. “v1 = {v0}”

3. “vn = 〈v0, . . . , vn−1〉.”

4. “v0 is a function.”

5. “v1 = ran(v0).”

6. “v1 = dom(v0).”

7. “v2 = v0 � v1.”

8. “v2 = v0(v1).”

Proof. Exercise.

Theorem 5.2.13 (T). Suppose G : A × V −→ V is defined by a Σ1-formula (in parameters),
R ⊆ A×A is strongly well-founded, and the function A 3 x 7→ R“{x} is Σ1. Then the uniquely
determined function F : A −→ V (given by the Recursion Theorem) such that

∀x ∈ A F (x) = G(x, F �R“{x})

is a Σ1-function.

Proof. By the recursion theorem, the following formula defines F :

∃f(ϕ(f) ∧ f(v0) = v1),

where ϕ(f) expresses the following:

• f is a function,

• dom(f) is closed under R,

• for all x ∈ dom(f), f(x) = G(x, f�R“{x}).

The second point is expressed by the formula ∀y ∈ dom(f)∀z ∈ R“{y}z ∈ dom(f). The third
one is obviously expressible by a Σ1-formula.

Up to now, there were two equally acceptable views of what a formula is: One view is that it
is an actual finite sequence of symbols, well-formed according to our definitions. When viewed
this way, it is not an object about which we can prove things in set theory, since set theory only
talks about sets, and not about real world objects. The other view, though, is that formula are
members of the semi-group generated by some alphabet, which consists of sets. According to
this view, everything we have proven thus far about logic (such as the completeness theorem)
was actually a theorem of ZFC (of a fragment of that theory). It is this latter view that I would
like to adopt from now on. The question arises then, how complicated is the formula that defines
the set of all AE-formulas. This and other questions are addressed in the following theorem.

Theorem 5.2.14. The following functions and relations/sets are ∆1(Vω):

1. ω, and the functions +, · defined on ω.

2. The set Σ of symbols of the language of AE, in some convenient coding.

80 CHAPTER 5. INCOMPLETENESS

3. The set of variables of that language, also the set of constants, the set of function symbols
and the set of relation symbols (the latter three are finite).

4. The free semi-group generated by these symbols, in the following sense: There is a class
Z ⊆ Vω and a function _ : Z × Z −→ Z such that 〈Z,_〉 is a free semi-group generated
by Σ, and such that Z and _ are ∆1(Vω).

5. The set of terms and the set of formulas.

6. The function π.

5.3 Tarski’s undefinability of truth

In order to make some notation more readable, let’s introduce the following shorthand: If ϕ is a
formula (or any element of Vω), then let pϕq = Sπ

−1(ϕ)(0). So pϕq is the canonical AE-term that
stands for ϕ. Anticipating a possible confusion, note, given a natural number n, the difference
between ṅ and pnq!

Lemma 5.3.1 (Fixed-point lemma). Let β(x) be a formula with one free variable x. Then there
is a sentence σ such that

AE `
(
σ ↔ β(x/Sπ−1(σ)(0))

)
.

So, using the shorthand introduced above:

AE ` (σ ↔ β(x/pσq)) .

Thus, in a way, the sentence σ expresses that β is true of (the code of) σ.

Proof. Consider the relation

R = {〈ϕ(y), π(r), ϕ(y/Sr(0))〉 | ϕ has the one free variable y, and r ∈ ω}.

It is easy to see that this relation is Σ1(Vω). It is actually a function, with the value in the
last component. The expanded function f that maps 〈u, v〉 to 0 if there is no w such that
〈u, v, w〉 ∈ R is also Σ1(Vω) and total, and hence the pullback of that function is representable.
So let θ(v0, v1, v2) be a functional representation of the pullback f̃ of f , i.e., the function defined
by f̃(π−1(u), π−1(v)) = π−1(f(u, v)). So we have, for any formula ϕ(y) with one free variable y
and all natural numbers r:

(1) AE ` ∀v2

(
θ(v0/Sπ−1(ϕ)(0))(

v1/Sr(0))↔ v2 = Sπ
−1(ϕ(y/Sr(0)))(0)

)
.

Expressed less formally, (1) says: AE ` ∀v2 (θ(pϕq, ṙ, v2)↔ v2 = pϕ(y/ṙ)q).
Now set:

ψ(v1) := ∀v2 (θ(v0/v1) −→ β(x/v2)) .

Let p = π−1(ψ), and set:
σ := ψ(v1/Sp(0)),

or, in other words, σ = ψ(pψq), noting that Sp(0) = ṗ = pψq. Unraveling a bit further,

σ = ∀v2(θ(pψq, pψq, v2) −→ β(x/v2)).

By (1), it follows that

5.3. TARSKI’S UNDEFINABILITY OF TRUTH 81

(2) AE ` ∀v2

(
θ(v0/Sπ−1(ψ)(0))(

v1/Sp(0))↔ v2 = Sπ
−1(σ)(0)

)
,

which is the same as to say that

(2’) AE ` ∀v2

(
θ(v0/Sp(0))(

v1/Sp(0))↔ v2 = Sπ
−1(σ)(0)

)
,

since p = π−1(ψ). As before, this can be expressed as follows, using the shorthand:

AE ` ∀v2 (θ(pψq, ṗ, v2)↔ v2 = pσq)

I claim that σ is as desired. To see this, let M be an arbitrary model of AE . It must be
shown that

(M |= σ) ⇐⇒ (M |= β(x/pσq)) .

For the direction from left to right, assume that M |= σ. This means that M |= ψ(v1/Sp(0)), by
definition of σ. Unraveling further, by definition of ψ, this means that

(3) M |= ∀v2

(
θ(v0/Sp(0))(

v1/Sp(0)) −→ β(x/v2)
)
.

Since M |= AE , the sentence that according to (2′) is a consequence of AE holds in M, so that

M |= ∀v2

(
θ(v0/Sp(0))(

v1/Sp(0))↔ v2 = Sπ
−1(σ)(0)

)
.

In particular,
M |= θ(v0/Sπ−1(ψ)(0))(

v1/Sp(0))(
v2/Sπ−1(σ)(0)),

which by (3) implies that M |= β(x/Sπ−1(σ)(0)), as desired.

For the converse, assume that M |= β(x/Sπ−1(σ)(0)). We have to show that M |= σ, which

means, unraveling as above, that (3) holds. In order to do this, we have to show that whenever
a ∈M is such that

M |= θ(v0/Sp(0))(
v1/Sp(0))[(

v2/a)],

then
M |= β[(x/a)].

But by (2’), we know that if M |= θ(v0/Sp(0))(
v1/Sp(0))[(

v2/a)], it follows that M |= a =

Sπ
−1(σ)(0), and since our assumption is thatM |= β(x/Sπ−1(σ)(0)), this means thatM |= β[(x/a)],

as desired.
Let’s rewrite this argument, using the more suggestive notation. We have:

(a) AE ` ∀v2 (θ(pψq, pψq, v2)↔ v2 = pσq)

(b) σ = ∀v2(θ(pψq, pψq, v2) −→ β(x/v2))

Letting M |= AE , we have to show that M |= σ iff M |= β(x/pσq).
From left to right, since M |= AE , by (a), M |= ∀v2 (θ(pψq, pψq, v2)↔ v2 = pσq). In

particular, M |= θ(pψq, pψq, pσq). But since M |= σ, (b) tells us that then, M |= β(x/pσq).
From right to left: AssumeM |= β(x/pσq). To show thatM |= σ, we have to see by (b) that

M |= ∀v2(θ(pψq, pψq, v2) −→ β(x/v2)). So let a ∈ |M| be such that M |= θ(pψq, pψq, a). By
(a), M |= a = pσq. So since M |= β(x/pσq), it follows that M |= β[(x/a)].

Definition 5.3.2. If M is a model of a language L, then let Th(M) be the set of sentences
which are true in M.

82 CHAPTER 5. INCOMPLETENESS

Theorem 5.3.3 (Tarski’s undefinability of truth). The set T̃h(N) is not definable in N.

Proof. Assume the contrary. Note that if Th(N) was bold-face definable, then also lightface,
since every parameter can be replaced by its numeral. So there would be a formula β(v0) such
that for every sentence ϕ,

(N |= ϕ) ⇐⇒ (N |= β(v0/pϕq)) .

Now, by Lemma 5.3.1, applied to the formula ¬β(v0), let σ be a sentence such that AE proves
that σ ↔ ¬β(v0/pσq). Since N |= AE , this sentence holds in N, and we get:

N |= σ ⇐⇒ N |= ¬β(pσq) ⇐⇒ N 6|= σ,

a contradiction.

5.4 Computability and Recursiveness

For further reading on this section, I recommend [Sip06].

5.4.1 Turing Machines

Definition 5.4.1. A Turing machine is a tuple (of finite sets) of the form T = 〈Q,Σ,Γ, q0, δ, q+, q−〉
with:

1. Σ is a set of symbols, called the input alphabet,

2. Σ ⊆ Γ, and Γ contains a special symbol which we shall denote . Γ is called the tape alphabet,

3. Q is the set of states.

4. q0 ∈ Q is the initial state of T , q+ ∈ Q is the accepting state and q− is the rejecting state.

5. δ : Q × Γ −→ Q × Γ × {L,R} is a function, and L, R are distinct fixed symbols; for
definiteness, let L = 0, R = 1.

A snapshot, or constellation of T is a tuple of the form c = 〈t, p, q〉 such that t : n −→ Γ, for
some n ∈ ω, p < n and q ∈ Q. n is the length of c.

If c = 〈t, p, q〉 is a snapshot of T of length n, then the T -next snapshot after c is the snapshot
c′ = 〈t′, p′, q′〉 of length n′ defined as follows: Let δ(t(p), q)) = 〈q̃, x, d〉, where d ∈ {L,R} and
x ∈ Γ.

1. q′ = q̃,

2. if d = R, then p′ = p+ 1,

3. if d = L and p > 0, then p′ = p− 1,

4. if d = L and p = 0, then p′ = p,

5. if d = R and p = n− 1, then n′ = n+ 1, otherwise n′ = n,

6. t′(l) =

 x if l = p,
t(l) if p 6= l < n,

if l = n < n′.

5.4. COMPUTABILITY AND RECURSIVENESS 83

An input is a function i : n −→ Σ. The run of T on input i is the following function r with
domain N ∈ ω + 1 whose values are snapshots of T :

1. r(0) = 〈i_ , 0, q0〉.

2. If r(k) = 〈t, p, q〉 and q ∈ {q+, q−}, then N = k + 1, and otherwise, N > k + 1.

3. If N > k + 1, then r(k + 1) is the T -next snapshot after r(k).

If r is finite, then let dom(r) = N > 0. The last state of r is the unique member of {q+, q−}
which is the last component of r(N − 1).

T accepts an input i if the run of T on input i is finite with last state q+. It rejects an input
i if the run is finite with last state q−. If the run of T on input i is finite, T is said to terminate
on input i.

Viewing an input, which is a function s : n −→ Σ, for some n, as a word over the alphabet
Σ, let’s define the language of T (or the language recognized by T), L(T), to be the collection of
all input words that T accepts. T decides L(T) if it terminates on all inputs, equivalently, if T
has no infinite runs, equivalently, if T rejects every word that doesn’t belong to L(T). A Turing
machine that has no infinite run is called a decider.

A language (i.e., a collection of words over some finite alphabet) is Turing-recognizable (or
recursively enumerable, or computably enumerable) if it is the language of some Turing machine.
It is decidable, or recursive, or computable if it is the language of a decider.

A set R of natural numbers is recursive (or decidable, or computable) if the language L =
{1n | n ∈ R} is decidable (here, 1n stands for the word consisting of n consecutive 1s). It is
recursively enumerable (or computably enumerable) if L is.

Example 5.4.2. The language L = {12n | n ∈ ω} is decidable.

Proof. We have to construct a Turing machine that is a decider and that recognizes L. The idea
is to define a Turing machine that will work as follows:

1. If the input word is empty, then reject.

2. Move the head from left to right, crossing off every other 1.

3. If the tape contains only a single 1, then accept.

4. If the tape contained an odd number of 1s (greater than 1), then reject.

5. Return the head to the left end of the tape.

6. Continue with stage 2.

If we succeed in building a Turing machine that performs these steps, then it will clearly
decide the desired language. Let’s set:

• Q = {q0, q1, q2, q3, q4, q+, q−},

• Σ = {1},

• Γ = {1,×, }.

Let δ be given by the following table:

84 CHAPTER 5. INCOMPLETENESS

q0 q1 q2 q3 q4

1 (q1, ,R) (q2,×,R) (q3, 1,R) (q2,×,R) (q4, 1, L)
× (q−,×,R) (q1,×,R) (q2,×,R) (q3,×R) (q4,×, L)

(q−, ,R) (q+, ,R) (q4, , L) (q−, ,R) (q1, ,R)

The machine starts out in state q0. If the tape is blank, i.e., if the first cell contains the
symbol , then the input is rejected. It also switches to the reject state if it reads the symbol ×,
but this will actually never happen. If it reads a 1, then it overwrites it with a , to mark the
left end of the tape, and it switches to state q1.

In state q1, the machine moves the head right until it reads a symbol different from ×. If this
symbol is a , then it has reached the right “end” of the tape, so there was precisely one 1 on the
tape (replaced by the symbol on the first cell), and the machine accepts. If it is a 1, then the
symbol is crossed out, and the machine changes to state q2. So being in state q1 signifies that
only one 1 (replaced by) has been read so far.

From now on, the machine oscillates between states q2 and q3. In both states, it scans the
tape to the right, looking for a symbol different from ×. In state q2, if that symbol is a 1, it
switches to state q3 and writes nothing. In state q3, if that symbol is a 1, it crosses it out and
switches back to state q2. If that symbol is a , then the right end of the relevant part of the
tape is reached. If this happens in state q3, then there was an odd number of 1s on the tape, so
the machine switches to the reject state. If it happens in state q2, then the number of 1s was
even, so now the machine moves the head back to the beginning of the tape; this happens in
state q4. So the machine moves left until it reads the symbol , which is when it switches back
to state q1, for another scan.

5.4.2 Variants of Turing Machines, Simulation, Equivalence and Church’s
Thesis

As an example of a variant of the Turing Machine model, lets look at Turing Machines with a
finite number k of tapes. This is called a Multi Tape Turing Machine. Formally, the difference
to the usual Turing machine is that the transition function now takes the form δ : Q × Γk −→
Q × Γk × {L,R}k. The input is written on the first tape, and as with usual Turing Machines,
the computation stops when the accept or reject state is reached. If M is a Multi Tape Turing
Machine, then the language of M , denoted L(M), is the collection of words over the input
alphabet that result in a computation that ends in the accept state.

Lemma 5.4.3. Multi Tape Machines and One Tape Turing Machines are equivalent, in the
following sense: If M is a Multi Tape Machine, then there is a One Tape Turing Machine T
such that L(M) = L(T), and conversely for every One Tape Turing Machine T there is a Multi
Tape Machine M such that L(T) = L(M).

Proof. Note that the direction from One Tape TMs to Multi Tape Machines is trivial, since every
One Tape TM is also a Multi Tape Machine.

The idea for the substantial direction is that the One Tape TM T will simulate the Multi
Tape TM M . Say M has k tapes. Note that at any point during a computation, M will only
have used a finite amount of cells on each of its tapes. T will keep track of these k tapes by
writing their relevant contents next to one another on its single tape, separated by a new symbol,
say ∗. In addition, it will keep track of the locations of the different heads, as follows: For each
symbol a of Ms machine alphabet Γ, it has a symbol ǎ which it will use to mark the cell above

5.4. COMPUTABILITY AND RECURSIVENESS 85

which the heads of M are located. So in the beginning, on input w0 . . . wn−1, M sets the tape
up so that it looks like this:

∗w̌0w1 . . . wn−1 ∗ ˇ ∗ ˇ ∗ . . . ∗ ˇ∗

To simulate the next step of the computation of M , T does the following: Its state encodes the
state M is in. T moves its head from left to right across the tape, remembering the symbols
the k heads of the simulated machine are reading (by changing its state correspondingly). When
the head of T reaches the k + 1-st ∗ symbol, it knows the vector of symbols the heads of M are
reading, and it knows the state M is in. Now Ms transition function tells us what to do next:
T remembers the state M would switch to, and it remembers the vector of symbols to write and
the vector of directions to move in. Now the head of T moves to the beginning of the tape, and
then to the right, updating the contents of each tape: It replaces the marked symbols ǎ with the
symbol the corresponding head has to write, and it moves theˇmark in the correct direction. If
it is being moved onto a ∗ symbol (i.e., if the head of the corresponding machine is moved into a
previously unused region of its tape), that ∗ is replaced by a ˇ, and the rest of the tape is moved
one to the right. When all tape contents have been updated, the head is moved back to the
beginning of the tape, and T is ready to simulate the next step of the computation of M .

Corollary 5.4.4. A language is Turing-recognizable iff it is recognizable by a Multi Tape Turing
Machine. It is decidable iff it is decided by a Multi Tape Turing Machine.

There are many other variants of Turing Machines, for example the nondeterministic ones,
where the transition function takes the form δ : Q×Γ −→ P(Q×Γ×{L,R}). The interpretation
is that δ(q, a) gives a set of possible next steps in the computation. So there is a set of possible
runs of such a machine. The language of a nondeterministic Turing Machine is the collection of
words for which there is a run which terminates in the accept state. A nondeterministic TM is
a decider if it has no infinite runs on any inputs.

The method of simulation can be used to show:

Lemma 5.4.5. A language is Turing-recognizable iff it is recognizable by some nondeterministic
Turing Machine. It is decidable iff it is recognized by some nondeterministic decider.

Proof. I am leaving out the details of the construction here. The idea is that a nondeterministic
Turing machine N can be simulated by a deterministic three tape TM as follows: The first tape
contains the input word w and is not going to be changed. The second tape is the simulation
tape, its contents will be the same as the contents of the simulated machine, along a branch of the
computation tree. To explain what the third tape is for, note that since the set of states as well
as the tape alphabet of the nondeterministic machine are finite, there is a natural number, call
it b such that δ(q, x) has at most size b, for any state q and any symbol x. So the tree of possible
runs of N on input w is at most b-branching, meaning that every node in that tree has at most
b immediate successors. The content of the third tape will now contain a sequence of numbers
less than b. If the sequence has length n, then this sequence can be viewed as specifying a node
at the n-th level of the tree. This is going to be the sequence of choices that will be made next
in simulating N . When such a sequence was unsuccessfully explored (i.e., the accepting state
was not reached, or the sequence didn’t correspond to a valid sequence of choices), then next,
the third tape is updated (the lexicographically next sequence is calculated), the second tape
is erased, and the next simulation is started. It is crucial that when the third tape is updated,
the shorter sequences come earlier. So a width first search is performed, instead of a depth first
search. If at some point, in the simulation of N along some branch, the accept state is reached,
then w is accepted. This way, if there is an accepting run of N on input w, some shortest
accepting run on input w will be found. Otherwise, the process will never terminate. This

86 CHAPTER 5. INCOMPLETENESS

shows that the deterministic (simulating) TM recognizes the same language that N recognizes,
and hence proves the first part of the lemma. For the second part, the procedure needs to be
improved slightly so as to make sure that the simulating machine will always terminate, granted
that N has no infinite run. Again, fix an input word w. Note that the tree of runs of N on input
w is a finite branching tree which has no infinite branch. So by König’s Lemma, the tree must
be finite. This means that if the simulating machine never will find an accepting state, sooner
or later it will try searching that tree beyond its height. When this happens, it has to look no
further, so all that needs to be done is to make sure it will recognize this situation. This is easily
achieved: We can use a flag that is initially set to 0. When a simulation ran successfully along
the length of the content of the third tape (meaning that the third tape contained a valid path),
it is set to 1. When the third tape is updated, and the lexicographically next sequence is longer
than the previous one (say the next sequence has length n + 1), then the flag is checked: If it
is still 0, that means that there was no valid sequence of length n. In that case, the simulating
terminates in its reject state. Otherwise, the flag is set to 0, to check whether there is a valid
sequence of length n+ 1.

The phenomenon that variations of the computational model don’t affect the class of langua-
ges described is called robustness. It indicates that this class of languages is very canonical, and
it led to the Church-Turing Thesis, which says that this class is precisely the class of languages
membership to which can be decided by an algorithm.

5.4.3 Enumerating Languages

An enumerator E can be modeled as a two-tape Turing Machine with a special “print” state.
Such a machine doesn’t take an input. It just starts computing and continues calculating forever.
The language described by the machine is the collection of words that are written on the output
tape when the machine enters the “print” state. It is called the language enumerated by E.

Lemma 5.4.6. A language is Turing-recognizable iff it is enumerated by some enumerator.
(That’s why Turing-recognizable languages are also referred to as recursively enumerable).

5.4.4 The Acceptance and the Halting Problem

As was the case when dealing with formulas in the language of arithmetic, one crucial step
towards fascinating results will again be some form of Gödelization. Before, we needed to code
formulas by natural numbers, so as to put them (the formulas) in the domain of objects about
which they (the formulas) can speak. In the context of Turing machines the corresponding step
is to code Turing machines as words, which then can be input to Turing machines. This way,
Turing machines can operate on Turing machines.

It should be clear that this can be done in many ways, and it is not important which way is
chosen.

First off, note that it does not matter what the states of a Turing machine actually are; all
that matters is how many states a Turing machine has. Also, it does not really matter what the
symbols of the input or tape alphabet of a Turing machine are. Let’s say that a Turing machine
is standard if its set of states and its set of symbols are natural numbers (plus the symbol). It is
then easy to “code” a standard Turing machine by a sequence of 0s, 1s, 2s and symbols: Say
the machine is the 7-tuple 〈Q,Σ,Γ, q0, δ, q+, q−〉. The word coding that machine could be:

• Q, written in binary, followed by 2 (as a separator),

• Σ, written in binary, followed by a 2,

5.4. COMPUTABILITY AND RECURSIVENESS 87

• q0, written in binary, followed by a 2,

• q+, written in binary, followed by a 2,

• q−, written in binary, followed by a 2,

• the concatenation of all strings of the form a2b2c2d2e2, where a is a binary string represen-
ting a number k, b is either the symbol or a binary string representing a natural number
- let l be either that number or the symbol , c is again a binary string representing a
number m, d is again either a number or the symbol - let n stand for that object, and e
is either the symbol 0 or the symbol 1, and

δ(k, l) = 〈m,n, e〉.

In order to make the code of a standard Turing machine unique, one can insist that these
strings be listed in the lexicographical order, with coming before 0, say.

One could be more economic in terms of the number of symbols needed to code a standard
Turing machine. Indeed, the above coding uses 4 symbols. But note that every word over the
alphabet {0, 1, 2, } can be viewed as a 4-ary number, and hence easily be coded by a natural
number n. This number, in turn, can be coded by the string 1n, which is formed over an alphabet
with only one symbol. One could now enumerate those natural numbers which code a standard
Turing machine, from smallest to largest, say in the sequence 〈ei | i < ω〉. It should be clear by
now that the function i 7→ ei is computable. So this function gives us yet another way of coding
any standard Turing machine by a natural number: i codes the Turing machine whose code as
a word over {0, 1, 2, } is the 4-ary expansion of the number ei. This way, every natural number
codes a standard Turing machine, and every standard Turing machine is coded by a natural
number. Of course, as before, natural numbers can be coded by strings over the alphabet {1}.

Since it rarely will be important which type of coding is used, lets just write pMq for some
simple coding (such as above) of a standard Turing machine M by a string over some fixed
alphabet (such as {1}). And in general, when X is some finitary object (i.e., something that can
be viewed as being a member of Vω), then let pXq be a string coding X.

There are two interesting languages that can now be defined, using these conventions:

A = {p〈M,w〉q |M is a Turing machine that accepts w}
H = {p〈M,w〉q |M is a Turing machine that terminates on input w}

The latter is called the Halting Problem, and I’ll call the former the Acceptance Problem.

Universal Turing Machines

A universal Turing machine U works as follows: Given an input v over its alphabet, U checks
whether this string codes a standard Turing machine M , followed by an input word w for M .
If this is not the case, U rejects v. Otherwise, U starts simulating the run of M on input w.
Making use of the tape to take notes, U can keep track of which state M is in at each stage
of the computation, and in fact of the entire snapshots M goes through. When the simulated
machine enters its accept state, U accepts v, and when it enters its reject state, U rejects v. If
none of these states are ever entered, U does not terminate.

It may feel strange at first that a fixed Turing machine should be able to simulate all possible
Turing machines, but it’s not all that surprising after all. For example, it should be clear that

88 CHAPTER 5. INCOMPLETENESS

it is possible to write an interpreter for a programming language, such as Java, in Java. This is
then a program, written in Java, that can simulate every other program thats written in Java.
Similar things happen in real life - that C-compilers are written in C, for example.

Corollary 5.4.7. The Acceptance Problem is recognizable (recursively enumerable).

Proof. Any universal Turing Machine recognizes A.

Corollary 5.4.8. The Halting Problem is recognizable (recursively enumerable).

Proof. The following procedure describes how a Turing machine will work that will recognize H:

On input v, run a universal Turing machine U on v (as a subroutine). If U terminates, either
accepting or rejecting, then accept v. Otherwise the subroutine doesn’t terminate, so the entire
machine does not terminate.

Diagonalization, Undecidability and Reduction

The first proof using the diagonalization method was used by Cantor in order to prove that the
set of real numbers is uncountable. Here is the argument:

Theorem 5.4.9 (Cantor). Given any set x, there is no surjection f : x� P(x).

Proof. Suppose f were such a surjection. Let d = {y ∈ x | y /∈ f(y)}. Since d is a subset of
x, there must be an a ∈ x such that f(a) = d. The question is: Is a ∈ d or is a /∈ d? Well,
saying a ∈ d is (by definition of d) equivalent to saying that a /∈ f(a), but since f(a) = d, this is
equivalent to saying that a /∈ d. This is a contradiction.

This proof can be viewed as constructing a set d in such a way that its characteristic function
χd differs from the characteristic function of every element f(y) of the range of f at y: χd(y) =
1− χf(y)(y).

Theorem 5.4.10. The Acceptance Problem is undecidable.

Proof. Assume T was a Turing-machine deciding A. So we’d have:

T accepts pM,wq ⇐⇒ M accepts w

T rejects pM,wq ⇐⇒ M does not accept w.

(Let’s restrict to inputs that encode pairs of Turing-machines and input words). Then we
could construct a Turing-machine D that does the following on input pMq: It passes the input
pM, pMqq to T and reverses the result. So D accepts pMq if T rejects pM, pMqq, and D rejects
pMq if T accepts pM, pMqq. So we have:

D rejects pMq ⇐⇒ M accepts pMq

D accepts pMq ⇐⇒ M does not accept pMq.

The question is now: What does D do with the input pDq? Well, by the equivalence above, D
accepts pDq iff D does not accept pDq, a contradiction.

Theorem 5.4.11. The Halting Problem is undecidable.

5.4. COMPUTABILITY AND RECURSIVENESS 89

Proof. I’ll present two ways to argue here.

For the first argument, suppose (towards a contradiction) that the Halting Problem was
decidable, say by a Turing machine H. Here is then a way to decide the Acceptance problem:
Given a Turing Machine T , and an input word w, run H on pT,wq to see whether T terminates
on input w. If it doesn’t, then reject pT,wq. If it does terminate, then simulate the run of T on
input w. If it ends in T ’s accept state, then accept, and if it ends in the reject state, then reject.
This is a contradiction, since we have already seen that the Acceptance Problem is undecidable.

The second argument follows the same idea of showing that if the Halting Problem was
decidable, then the Acceptance Problem would also be decidable. But it uses the framework of
reductions which is useful in many situations. In general, a (recursive) reduction of a language
L to a language L′ (both over the same alphabet Σ, say) is a function f : Σ∗ −→ Σ∗ (recall
that Σ∗ is the collection of all words over Σ) that is recursive (see the following subsection), so
that for any w ∈ Σ∗, w ∈ L iff f(w) ∈ L′. It is then clear that if L′ is decidable, then so is
L. For a decision procedure for L works like this: Given w, compute f(w) and then use the
decision procedure for L′ to check whether f(w) belongs to L′. Accept if the result is positive,
otherwise reject. In many situations, it is the contrapositive of this that’s most useful: If L is
not decidable, then L′ is not decidable either.

Let’s reduce the Acceptance Problem to the Halting Problem. The reduction takes the input
pM, qq and converts M to a Turing machine M ′ that terminates on input w iff M accepts w.
M ′ looks almost like M , except that it has a new reject state that will never be reached, and
the transition function of M ′ dictates that once the reject state of M is reached, then no matter
what symbol is read, that symbol is written, the head moves to the right, and the machine stays
in the same state. This conversion recursive, and it obviously reduces A to H. So this shows
that H is not decidable, since A is not decidable.

Lemma 5.4.12. If a language and its complement are recognizable, then it is decidable.

Corollary 5.4.13. The complement of the Halting Problem is not recognizable.

5.4.5 Recursive and partial recursive functions, and the Recursion
Theorem

The purpose of this section is to develop some of the main concepts of the classical theory. For
further reading, I recommend [Soa80].

Definition 5.4.14. Let Σ be an alphabet, and as before, let Σ∗ be the collection of words
formed using symbols from Σ. A Turing machine T with input alphabet Σ can be viewed as
computing a partial function f : Σ∗ −→ Σ∗, namely the function that maps the word w to the
word that’s written on the tape when T terminates its computation on input w (more precisely,
say the longest initial segment of the tape contents that forms a word over Σ). If T does not
terminate, then f(w) is undefined.

A function f : Σ∗ −→ Σ∗ is recursive if (f is total and) there is a Turing machine which
computes f . It is a partial recursive function if f is a partial function that’s computed by a
Turing machine.

As usual, one can identify natural numbers with words over the alphabet {1}, and so it
makes sense to talk about recursive and partial recursive functions from ω to ω. I.e., f : ω −→
ω is recursive if the function 1n 7→ 1f(n) is computed by a Turing machine. Similarly, if a
partial function from ω to ω is computed by a Turing machine, it is called a partial recursive
function. Finally, a function f : ωn −→ ω is recursive if the function 1m0 1m1 . . . 1mn−1 7→

90 CHAPTER 5. INCOMPLETENESS

1f(m0,m1,...,mn−1) is computed by a Turing machine. So here, we allow the input word to contain
the symbol, in order to use it as a separator.

Fixing a coding of standard Turing machines by natural numbers, let ϕ
(n)
e be the partial

be the partial n-ary function computed by the Turing machine which is coded by the natural

number e. Write ϕe for ϕ
(1)
e .

Theorem 5.4.15 (Enumeration Theorem). There is a partial recursive function ϕ
(2)
z such that

for all e and x,
ϕ(2)
z (e, x) = ϕe(x).

Proof. Basically, z is the code of a universal Turing machine U : On input e, x, U recovers the
Turing machine coded by e and simulates its run on input x, until, if ever, it reaches its halting
state, making sure that when U terminates, its tape contents will be those of the simulated
machine.

Of course, a similar theorem holds for partial recursive functions of several variables.

Theorem 5.4.16 (s-m-n Theorem). Given n,m ≥ 1, there is an injective recursive function
smn : ωm+1 −→ ω such that for all x, y0 . . . , ym−1 ∈ ω, the following holds:

ϕ
(n)
smn (x,y0,...,ym−1)(z0, . . . , zn−1) = ϕ(m+n)

x (y0, . . . , ym−1, z0, . . . , zn−1),

for all z0, . . . , zn−1 ∈ ω (in the sense that the left hand side of this equation is defined iff the
right hand side is, and if defined, both sides are equal.

Proof. Here is how a Turing machine will work that will compute a preliminary function s̄mn . On
input x, y0, . . . , ym−1:

1. Recover the Turing Machine with code x, call it T .

2. Modify T to produce a Turing Machine T ′ that works as follows:

(a) On input z0, . . . , zn−1, write y0, . . . , ym−1, z0, . . . , zn−1 on the tape.

(b) Move the head to the beginning of the tape and switch to the start state of T .

(c) Pass control to T .

3. Output the code of T ′.

s̄mn might fail to be injective. Here is a procedure that fixes this, working with a two tape
machine. On input x, y0, . . . , ym−1:

1. For every input x′, y′0, . . . , y
′
m−1 that comes lexicographically not after x, y0, . . . , ym−1

(when viewed as sequences of 1s and s - as usual, shorter sequences come first):

(a) Calculate e = s̄mn (x′, y′0, . . . , y
′
m−1).

(b) If that value is smaller than or equal to the number k that’s stored on the second tape
(which initially is 0), then modify the Turing Machine coded by e by adding unused
states until the code of the modified Turing Machine is larger than k. Now write that
number on the second tape.

2. Output the content of the second tape.

5.4. COMPUTABILITY AND RECURSIVENESS 91

Theorem 5.4.17 (Recursion Theorem, Kleene). For every recursive function f : ω −→ ω, there
is an n such that ϕn = ϕf(n). (Such a number n is called a fixed point of f .)

Proof. Consider the function ψ defined by:

ψ(u, z) =

{
ϕϕu(u)(z) if u ∈ dom(ϕu) and z ∈ dom(ϕϕu(u)),
undefined otherwise.

So ψ is a partial function from ω × ω to ω. Clearly, it is a partial recursive function. So let

ψ = ϕ
(2)
x . Let d(u) = s1

1(x, u). So d is recursive, and we have:

ψ(u, z) = ϕ(2)
x (u, z) = ϕs11(x,u)(z) = ϕd(u)(z).

So we have now found a recursive function d (independent of f) with:

ϕd(u)(z) =

{
ϕϕu(u)(z) if u ∈ dom(ϕu) and z ∈ dom(ϕϕu(u)),
undefined otherwise.

Of course, f ◦ d is recursive, too, so we can choose an index v so that

f ◦ d = ϕv.

Let n = d(v). The claim is that n is a fixed point of f . Note that ϕv is total, so that in particular,
v ∈ dom(ϕv). So by definition of d, it follows that ϕd(v) = ϕϕv(v). We get:

ϕn = ϕd(v) = ϕϕv(v) = ϕf(d(v)) = ϕf(n).

Definition 5.4.18. Let We = dom(ϕe). So 〈We | e ∈ ω〉 enumerates all recursively enumerable
sets of natural numbers.

To illustrate a use of the Recursion Theorem, here is an application.

Theorem 5.4.19. There is no partial recursive function ψ such that for every x with the property
that Wx is recursive, ϕψ(x) is the characteristic function of Wx.

Proof. Assuming there was such a ψ, define a recursive set Wn by:

Wn =

{
{0} if n ∈ dom(ψ) and ϕψ(n)(0) = 0,
∅ otherwise.

If the reader accepts that such a Wn can be found, then we have reached a contradiction, since
0 ∈ Wn iff ϕψ(n)(0) = 0, so ϕψ(n) is not the characteristic function of Wn, even though Wn is
recursive.

The above “definition” of Wn was an informal use of the Recursion Theorem, combined with
the s-m-n Theorem. To fill in the details, let

ψ′(n,m) =

{
1 if m = 0, n ∈ dom(ψ) and ϕψ(n)(0) = 0,
undefined otherwise.

Since ψ′ is partial recursive, we can find x such that ψ′ = ϕ
(2)
x . Letting f(n) = s1

1(x, n), we get
ϕf(n)(m) = ψ′(n,m). Since f is recursive, the Recursion Theorem applies, so we can find an n
such that ϕf(n) = ϕn. For this n, we have:

ϕn(m) =

{
1 if m = 0, n ∈ dom(ψ) and ϕψ(n)(0) = 0,
undefined otherwise.

So Wn is as wished.

92 CHAPTER 5. INCOMPLETENESS

5.5 Gödel’s Incompleteness Theorems

The following theorem could have been shown right after defining the concept of a recursive set
of natural numbers.

Theorem 5.5.1. Let A ⊆ ω. Then the following are equivalent:

1. A is recursive.

2. A is ∆1(Vω).

3. π“A is ∆1(Vω).

4. A is representable.

Proof. 1 =⇒ 2: Let T be a decider for A. Then n ∈ A iff in Vω, the following holds: There is a
natural number m and a function with domain m such that “f is the run of T on input 1n”, and
the state of f(m− 1) is the accept state of T . The statement “f is the run of T on input 1n” is
easily seen to be Σ0 (but it suffices that it is Σ1). So far, we have shown that A is Σ1(Vω). But
of course, the complement of A is similarly definable: n /∈ A iff in Vω, there is a natural number
m and a function with domain m such that “f is the run of T on input 1n”, and the state of
f(m − 1) is the reject state of T . Note that T was used in the definition of A as a parameter
here. Later, it will become clear that every element of Vω can be defined in Vω without using
a parameter by a ∆1-formula. So no parameters are actually needed, but that is not a major
concern at this point.

2 =⇒ 3: We had shown previously that π is ∆1(Vω). Using this, we see that

n ∈ π“A ⇐⇒ Vω |= ∃m (“m ∈ A”︸ ︷︷ ︸
Σ1

∧ “n = π(m)”︸ ︷︷ ︸
Σ1

),

which is Σ1, and similarly,

n /∈ π“A ⇐⇒ Vω |= ∃m (“m /∈ A”︸ ︷︷ ︸
Σ1

∧ “n = π(m)”︸ ︷︷ ︸
Σ1

),

which is also Σ1.

3 =⇒ 4: By 3, π“A is ∆1(Vω), so by Theorem 5.2.8, it follows that A = π−1“(π“A) is
representable.

4 =⇒ 1: That A is representable means that there is an AE-formula ϕ(v) such that for all
m < ω,

m ∈ A ⇐⇒ AE ` ϕ(ṁ), and

m /∈ A ⇐⇒ AE ` ¬ϕ(ṁ).

But the it is easy to make a Turing machine that decides A as follows: On input m, build the
search trees S searching for a proof of ϕ(ṁ) and T searching for a proof of ¬ϕ(ṁ) simultane-
ously, level by level. One of them has to be finite (producing a proof), since ϕ is numeralwise
determined. If it is S, then accept, and if it is T , then reject.

5.5. GÖDEL’S INCOMPLETENESS THEOREMS 93

5.5.1 Incompleteness of Number Theory

Gödel’s First Incompleteness Theorem

Recommended reading for this part: [End72, 3.7] Here is an immediate consequence of Tarski’s
undefinability of truth.

Corollary 5.5.2. The set T̃h(N) is not recursive.

Proof. If the set T̃h(N) = π−1“Th(N) was recursive, then by the previous theorem, this would
mean that it is representable. Being representable means precisely being definable over N by a
formula that’s numeralwise determined. But Tarski’s undefinability of truth says precisely that
it is not definable over N, a contradiction.

Definition 5.5.3. For a set Σ of sentences, let Σ`, the deductive closure of Σ, be the set of
sentences which are provable from Σ. Σ is complete if for every sentence ϕ, ϕ or ¬ϕ is in Σ.

Theorem 5.5.4 (Gödel’s first Incompleteness Theorem). If Σ ⊆ Th(N) is recursively enumerable
(meaning that π−1“Σ is recursively enumerable), then Σ` is incomplete.

Proof. Suppose Σ` was complete. Then π−1“(Σ`) would be recursive: Given ϕ, either Σ ` ϕ or
Σ ` ¬ϕ. So searching for a proof of ϕ and a proof for ¬ϕ from Σ in parallel is possible (since
Σ is recursively enumerable), and it is a process that terminates and hence enables us to decide
Σ`.

But at the same time, the assumption that Σ` is complete has another consequence, namely
that Σ` = Th(N)!

The inclusion from left to right follows since Σ ⊆ Th(N), so Σ` ⊆ Th(N)` = Th(N).
For the converse, let ϕ ∈ Th(N). If ϕ /∈ Σ`, then by completeness of Σ`, ¬ϕ ∈ Σ`, so that

by the inclusion from left to right, ¬ϕ ∈ Th(N), which is a contradiction.
So putting these two consequences together results in Th(N) being recursive, which contra-

dicts Corollary 5.5.2.

Theorem 5.5.5 (Strong Undecidability). Let T be a set of AE-sentences such that AE ∪ T is
consistent. Then T` is not recursive.

Proof. Assume T` was recursive. Then T ′ := (AE ∪ T)` would also be recursive: To decide
whether a sentence ϕ belongs to T ′, do the following. Let χ be the conjunction of all AE-axioms,
and ask whether the sentence (χ −→ ϕ) is in T`. If so, ϕ belongs to T ′, and if not, it doesn’t.
The question whether (χ −→ ϕ) belongs to T` is clearly decidable, so all that remains is to show
that this is equivalent to the statement that (AE ∪ T) ` ϕ.

So it needs to be checked that

T ` (χ −→ ϕ) ⇐⇒ (AE ∪ T) ` ϕ.

For the direction from left to right, Let M be a model of AE ∪ T . In particular, M |= T . By
the left hand side, M |= (χ −→ ϕ). But since M |= AE , it follows that M |= χ. So M |= ϕ. For
the converse, let M |= T . We have to show that M |= (χ −→ ϕ), assuming the right hand side
is true. If M |= ¬χ, then nothing needs to be shown. But if M |= χ, then M |= (AE ∪ T), and
hence, by the right hand side, M |= ϕ. But then, trivially, M |= (χ −→ ϕ).

So we have seen now that T ′ = (AE∪T)` is recursive by our assumption that T` is recursive.

And by Theorem 5.5.1, this means that T̃ ′ is representable by some formula β(x). The Fixed
Point Lemma 5.3.1, applied to the formula ¬β, now produces a sentence σ such that

AE ` (σ ↔ ¬β(pσq).

94 CHAPTER 5. INCOMPLETENESS

So intuitively, σ says “I am not in T ′”. Now the question arises: Is σ in T ′ or not? (I.e., is σ
true or false?)

If σ /∈ T ′, then AE ` ¬β(pσq), which is equivalent to AE ` σ, which, in turn, means that σ
is in A`E , and in particular that σ ∈ T ′. So this can’t be.

So σ ∈ T ′. But this means that AE ` β(pσq), and hence AE ` ¬σ, which implies that
¬σ ∈ T ′. So T ′ would contain both σ and ¬σ, rendering AE ∪ T inconsistent. This is a
contradiction.

Theorem 5.5.6 (Church). The set of valid AE-sentences ∅` is not recursive.

Proof. Apply the previous Theorem 5.5.5 with T = ∅.

Corollary 5.5.7. If a set of AE-sentences T is such that T is recursive and AE∪T is consistent,
then T` is not complete.

Proof. If T` was complete, then by the argument in the proof of Theorem 5.5.4, it would follow
that T` is recursive, but this contradicts Theorem 5.5.5.

Gödel’s Second Incompleteness Theorem

Lemma 5.5.8. Let A be a recursive set of sentences. Then the set

PA := {〈d, ϕ〉 | d is a proof of ϕ from A}

is ∆1(Vω). So the pullback P̃A is recursive, and hence representable in AE.

So there is a formula ϕA(x, y) such that

(AE ` ϕA(ḋ, pψq)) ⇐⇒ π(d) is a proof of ψ from A,

(AE ` ¬ϕA(ḋ, pψq)) ⇐⇒ π(d) is not a proof of ψ from A.

I will write
“A ` ψ” for the formula ∃x ϕA(x, pψq).

Lemma 5.5.9. Let A be a recursive set of sentences.

1. If A ` ϕ, then AE ` “A ` ϕ”.

2. If AE ⊆ A`, then
A ` ϕ =⇒ A ` “A ` ϕ”.

Proof. The second part follows immediately from the first part, since A`E ⊆ A`, by assumption.
But the first part is clear, since if A ` ϕ, then there is a proof p of ϕ from A. Letting d = π−1(p),
this means that AE ` ϕA(ḋ, pϕq)). But then clearly, AE ` ∃x ϕA(x, pψq)).

Definition 5.5.10. Let’s say a recursive set of sentences is sufficiently strong if

1. AE ⊆ A` - so by Lemma 5.5.9, A ` ϕ =⇒ A ` “A ` ϕ”,

2. For every sentence ϕ, A ` (“A ` ϕ” −→ “A ` “A ` ϕ””),

3. For any sentences ϕ and ψ:

A ` (“A ` (ϕ −→ ψ)” −→ (“A ` ϕ” −→ “A ` ψ”)).

5.5. GÖDEL’S INCOMPLETENESS THEOREMS 95

Definition 5.5.11. Let A be a recursive set of sentences, and let T = A`. Set:

“con(T)” := ¬“A ` (0 = 1̇)”,

and con(A) has the same meaning.

Theorem 5.5.12 (Gödel’s Second Incompleteness Theorem). Let T = A` be a recursively
axiomatizable, sufficiently strong theory. Then

T ` “con(T)” ⇐⇒ T is inconsistent.

Proof. Suppose T ` “con(T)”. By the Fixed Point Lemma, let σ be a sentence such that

AE ` (σ ←→ ¬“A ` σ”).

Then
A ` (σ −→ (“A ` σ” −→ (0 = 1̇))),

since A ` (σ −→ ¬“A ` σ”). By 1.) of Definition 5.5.10, it follows that

A ` “A ` (σ −→ (“A ` σ” −→ (0 = 1̇)))”,

which yields, by 3.),

A ` “A ` σ” −→ “(A ` “A ` σ” −→ ¬“con(T)”)”,

using Modus Ponens. More precisely, let’s write ψ = “A ` σ” −→ (0 = 1̇). Then we have seen
that

A ` (σ −→ ψ).

By property 1.), we get
A ` “A ` (σ −→ ψ)”.

Independently of this, property 3.) tells us that

A ` (“A ` (σ −→ ψ)” −→ (“A ` σ” −→ “A ` ψ”)).

But since A ` “A ` (σ −→ ψ)”, this implies that

A ` (“A ` σ” −→ “A ` ψ”)).

Substituting ψ gives:

A ` (“A ` σ”︸ ︷︷ ︸
χ1

−→ “A ` (“A ` σ” −→ (0 = 1̇))”︸ ︷︷ ︸
χ2

)).

Using 3.) again,

A ` (“A ` (“A ` σ” −→ (0 = 1̇))”︸ ︷︷ ︸
χ2

−→ (“A ` “A ` σ”” −→ “A ` (0 = 1̇)”)︸ ︷︷ ︸
χ3

)

Putting these last lines together, we can conclude that A ` (χ1 −→ χ3), i.e.,

A ` (“A ` σ” −→ (“A ` “A ` σ”” −→ “A ` (0 = 1̇)”︸ ︷︷ ︸
¬“con(T)”

)).

96 CHAPTER 5. INCOMPLETENESS

Since A ` (“A ` σ” −→ “A ` “A ` σ””), it follows that

A ` (“A ` σ” −→ ¬“conT”).

This is equivalent to
A ` (“conT” −→ ¬“A ` σ”).

Note that so far, we didn’t use the assumption that T ` con(T). All of the above uses only that
T is sufficiently strong and the choice of σ. But now, since T ` con(T) by assumption, it follows
that

A ` ¬“A ` σ”.

But by our choice of σ,
A ` (σ ←→ ¬“A ` σ”),

so
A ` σ,

which implies that
A ` “A ` σ”,

by Lemma 5.5.9. So A ` “A ` σ” and A ` ¬“A ` σ”, which means that A, and hence T , is
inconsistent.

Definition 5.5.13. Peano Arithmetic (PA) is the set of sentences consisting of the axioms AE ,
together with the induction scheme

(ϕ(0) ∧ (∀x(ϕ(x) −→ ϕ(S(x))))) −→ ∀xϕ(x).

Fact 5.5.14. Peano Arithmetic is sufficiently strong.

5.5.2 Incompleteness of Set Theory

It would be possible to derive a version of the Second Incompleteness Theorem 5.5.12 by “inter-
preting AE in set theory”, as is done in [End72]. Instead, let’s try to redo the relevant steps in
Set Theory directly. So we try to replace AE with ZFC (or a weaker sub-theory thereof, such
as ZF−−F). One relevant difference between AE and ZFC is that in AE , we had numerals at our
disposal, which enabled us to easily transform formulas using natural numbers as parameters
into sentences. In set theory, we don’t have any constant or function symbols, so we have to find
a substitute for this. The solution is that we can define each natural number by a formula: If
n is a natural number, then x = n iff x is transitive, linearly ordered by ε, and x has exactly
n elements. The latter can be expressed by the formula saying that there are distinct x0 ∈ x,
x1 ∈ x, . . ., xn−1 ∈ x such that for every y ∈ x, y = x0 or y = x1 or . . . or y = xn−1. Let’s
denote the Σ0-formula expressing that x = n by ϕn(x). This already allows us to imitate the
substitution of a numeral for a free variable in a formula. But it would be even more convenient
to be able to substitute any elements of Vω in a formula. This can be done using the definition
of π : ω −→ Vω - we saw that it is ∆1(Vω). Thus, let us use the following notation: If ϕ(x) is a
formula and a ∈ Vω, then let ϕ(paq) be the sentence defined as follows: Let a = π(n). Then

ϕ(paq) = ∃x∃y (ϕn(y) ∧ “x = π(y)” ∧ ϕ(x))

where “x = π(y)” is substituted by the formula defining π. Note that if we develop logic within
set theory, and consequently may view ϕ itself as a member of Vω, then the map 〈ϕ, a〉 7→ ϕ(paq)
is ∆1(Vω), and hence recursive. We can now redo the Fixed Point Lemma:

5.5. GÖDEL’S INCOMPLETENESS THEOREMS 97

Lemma 5.5.15. For any formula β(x) in the language of set theory, there is a sentence σ such
that

ZFC ` (σ ←→ β(pσq)).

Theorem 5.5.16. Let T be a set of sentences in the language of set theory such that ZFC ∪ T
is consistent. Then T` is not recursive.

Proof. (Sketch) Recall that it was crucial in the proof of the corresponding theorem in the context
of number theory that the axiom system AE is finite. The first step in the proof was to show
that if T was recursive, then (AE ∪ T)` would be recursive. Here, it is not the case that ZFC is
finite. But the proof of the original theorem can be imitated as follows: In ZFC, the structure
〈ω, 0, S,+, ·, E〉 is definable. Using the formulas defining ω and the arithmetic operations, the
axioms AE can be expressed in the language of set theory. For example, the axiom ∀v0 ¬S(v0) = 0
becomes ∀v0(v0 ∈ ω −→ ¬(v0 = {∅})). So there is a translation of AE-formulas ϕ to formulas in
the language of set theory t(ϕ). Of course, all translations of AE-formulas are provable in ZFC,
and also, the formula ω 6= ∅ and the formulas expressing that +, · and E are binary functions
on ω and that S is a unary function on ω are provable in ZFC. Let χ be the conjunction of all of
these formulas. Suppose that T ′ = (T ∪ {χ})` was recursive. Let ∆ be the set of AE-sentences
whose translations are in T ′. It follows that ∆ is consistent (since any model of T ′ gives rise
to a model of ∆ in a straightforward way), and that AE ⊆ ∆. So ∆ is not recursive, by 5.5.5.
But then it follows that T is not recursive. For if T were recursive, we could decide whether a
sentence ϕ belongs to ∆ by checking whether (χ −→ t(ϕ)) belongs to T - the translation t is
recursive. This is a contradiction.

For more on the method of translating formulas as in the previous proof (“interpretations
between theories”), see [End72, 2.7].

And as before, we emphasize the special case where T = ∅, and note a corollary:

Theorem 5.5.17. The set of valid sentences in the language of set theory is not recursive.

Corollary 5.5.18. If a set T of sentences in the language of set theory is recursive and ZFC∪T
is consistent, then T` is not complete. (In particular, ZFC` is not complete).

Let’s now head for the Second Incompleteness Theorem for Set Theory. Let A be a set of
sentences in the language of set theory that’s ∆1(Vω). As before, it follows that the relation

PA = {〈d, ϕ〉 | d is a proof of ϕ from A}

is ∆1(Vω). Let ϕA(x, y) be a Σ1-formula defining PA, and let “A ` ϕ” stand for the Σ1 sentence

∃d ϕA(d, pϕq).

Note that when we wrote A ` ϕ in these notes, then since logic is developed within set theory, it
is actually the sentence “A ` ϕ” that we mean. So the distinction between A ` ϕ and “A ` ϕ” is
not really necessary, but it emphasizes the parallels to the development in the previous section.

We then get the following analog of Lemma 5.5.9:

Lemma 5.5.19. Let A be a recursive set of sentences in the language of set theory.

1. If A ` ϕ, then ZFC ` “A ` ϕ”.

2. If ZFC ⊆ A`, then

A ` ϕ =⇒ A ` “A ` ϕ”.

98 CHAPTER 5. INCOMPLETENESS

To see this, one could repeat the proof of the original theorem. Alternatively, it follows
because ZFC (or even a fragment thereof) serves as our metatheory.

Theorem 5.5.20. Let ZFC ⊆ A`, where A is a recursive set of sentences in the language of set
theory. Then A is sufficiently strong:

1. A ` ϕ =⇒ A ` “A ` ϕ”,

2. For every sentence ϕ, A ` (“A ` ϕ” −→ “A ` “A ` ϕ””),

3. For any sentences ϕ and ψ:

A ` (“A ` (ϕ −→ ψ)” −→ (“A ` ϕ” −→ “A ` ψ”)).

Proof. 1 is part two of Lemma 5.5.19.
To see 2, consider what part 1 of the lemma says: A ` ϕ =⇒ A ` “A ` ϕ”. We proved this

in ZFC. So what we actually showed was:

ZFC ` (A ` ϕ =⇒ A ` “A ` ϕ”).

But this is just a less precise way of saying that

ZFC ` (“A ` ϕ” −→ “A ` “A ` ϕ””).

Since ZFC ⊆ A`, part 2 follows.
Part 3 follows similarly. Note that it is generally true, for any theory T , that if T ` (ϕ −→ ψ),

then T ` ϕ implies T ` ψ. For example, this can be seen using Correctness and Completeness.
All of these arguments have been carried out with ZFC as the metatheory. So what we have
actually shown is (replacing T with A):

ZFC ` (“A ` (ϕ −→ ψ)” −→ (“A ` ϕ” −→ “A ` ψ”)).

Again, the claim follows from the assumption that ZFC ⊆ A`.

Definition 5.5.21. Let A be a recursive set of sentences in the language of set theory, and let
T = A`. Write con(T) for the sentence

¬“A ` ∃x (x 6= x)”.

Theorem 5.5.22 (Gödel’s Second Incompleteness Theorem for Set Theory). Let T = A` be a
recursively axiomatizable theory in the language of set theory such that ZFC ⊆ T . Then

T ` con(T) ⇐⇒ T is inconsistent.

Proof. By Theorem 5.5.20, T is sufficiently strong, since ZFC ⊆ T . So the proof of Theorem
5.5.12 goes through.

5.6 Large Cardinals

Recall Lemma 2.3.47, which, among other things, said:

1. Every x ∈ Vω is finite.

2. If u ⊆ Vω is finite, then u ∈ Vω.

5.6. LARGE CARDINALS 99

The import of the second point is that it implies that Vω satisfies Replacement: If F : Vω −→
Vω is a function (definable over Vω, but that’s not needed for the argument) and a ∈ Vω, then
since a is finite, it follows that F“a is finite, hence a finite subset of Vω, and hence a member
of Vω. All the other axioms of ZFC, except for Infinity, hold in Vω as well. So it would be
worthwhile to search for an ordinal larger than ω that still satisfies the corresponding analogs of
the above properties. Recall Definition 2.4.5, where we defined the cardinality of a set to be the
smallest ordinal such that there is a bijection between the set and the ordinal. A cardinal is an
ordinal κ whose cardinality is κ itself. So we are looking for a cardinal κ > ω such that:

1. Every x ∈ Vκ has cardinality less than κ.

2. If u ⊆ Vκ has cardinality less than κ, then u ∈ Vκ.

Let’s call such a cardinal κ (strongly) inaccessible.

Lemma 5.6.1. Suppose κ is inaccessible. Then M := 〈Vκ,∈ �Vκ〉 |= ZFC.

Proof. To clarify, we are assuming ZFC in the meta-theory here. Note that what the lemma says
is that the statement “∀κ (if κ is inaccessible, then ∀x ∈ ZFC 〈Vκ,∈ �Vκ〉 |= x” is provable
in ZFC. Notice the difference between this and the related statement that for every ZFC-axiom
ϕ, ZFC proves that if κ is inaccessible, then 〈Vκ,∈ �Vκ〉 |= ϕ. The difference is that in the
statement we are about to prove, we actually quantify over the ZFC-axioms at the object level
(and these do not necessarily correspond to actual ZFC-axioms in the meta-theory), while the
other (weaker) version of the statement is a scheme of ZFC-theorems, one for each ZFC-axioms
(and the quantification over the ZFC-axioms occurs in the meta-theory).

It is obvious that Set Existence holds in M . To check foundation, let ϕ(x, y) be any formula
(in the object level - this may not correspond to an actual meta-theoretical formula; it is a
set). Since it matters here, let me write u for this formula. So u ∈ Vω. Let b ∈ M , and let
A = {a ∈ M | M |= u[a, b]} 6= ∅. Then A ⊆ M is a nonempty set, and by Foundation in V, it
has an ∈-minimal member, c. It follows that c ∈ A ⊆ M , and it is not hard to see that M also
believes that c is minimal in the set defined by u, using b as a parameter.

Since κ is a limit ordinal, M satisfies Pairing and Union. Note that in verifying the details, it
is useful that Σ0 statements are absolute between M and V, since M is transitive. Vκ satisfies
Power Set: Let a ∈ Vκ. Let α < κ be such that a ∈ Vα. Since Vα is transitive, it follows
that a ⊆ Vα. But then, every b ⊆ a is also a subset of Vα, and hence a member of Vα+1.
So P(a) ⊆ Vα+1. So P(a) ∈ Vα+2 ⊆ Vκ. So again, Power Set just follows from the fact that
κ is a limit ordinal. Separation holds in Vκ just because it holds in V. The crucial axiom is
replacement. But this follows exactly as in the case of Vω: If F : Vκ −→ Vκ and a ∈ Vκ, then
the cardinality of a is less than κ, so the cardinality of F“a is less than κ, and hence, F“a is a
subset of Vκ of size less than κ, so F“a ∈ Vκ.

Something even stronger is true: For every A ⊆ Vκ, 〈Vκ, A,∈〉 |= ZFCA, where in ZFCA, the
formulas occurring in the axiom schemes are formed in the language with a predicate symbol for
A. In fact, this characterization is equivalent to the strong inaccessibility of κ.

Let IA be the statement that there is an inaccessible cardinal. It is fairly easy to see that IA
not provable in ZFC: Let M be a model of ZFC. If M has no inaccessible cardinal, we are done.
Otherwise, in M , let κ be the least inaccessible cardinal. Then VM

κ is a model of ZFC which has
no inaccessible cardinal. But even more is true:

Theorem 5.6.2. Assuming that ZFC is consistent, it is not provable (in ZFC) that con(ZFC) =⇒
(con(ZFC + IA)).

Proof. Suppose ZFC ` (con(ZFC) =⇒ (con(ZFC + IA))). Then, by monotonicity

100 CHAPTER 5. INCOMPLETENESS

(1) (ZFC + IA) ` (con ZFC =⇒ con(ZFC + IA)).

But we have seen that

(2) (ZFC + IA) ` con(ZFC).

Thus, by modus ponens, it follows that

(3) (ZFC + IA) ` con(ZFC + IA).

This means, by Gödel’s Second Incompleteness Theorem for Set Theory, Theorem 5.5.22, that

(4) ZFC + IA is inconsistent.

But we assumed that ZFC ` (con(ZFC) =⇒ (con(ZFC + IA))), so, since ZFC is our metatheory,
in particular, we have that the consistency of ZFC implies the consistency of ZFC + IA. In other
words, the inconsistency of ZFC +IA implies the inconsistency of ZFC. So, by (4), it follows that
ZFC is inconsistent. This is a contradiction to our assumption.

So, the existence of an inaccessible cardinal, IA, is much like the existence of an infinite
set, the Infinity Axiom. Adding the axiom strengthens the theory, and hence allows it to prove
new theorems, but it also has the potential for producing an inconsistent theory. However, one
might argue that IA is at least a very natural axiom, since it so closely resembles the Infinity
Axiom. Inaccessible cardinals are among the weakest Large Cardinal Axioms in a long hierarchy
that have been considered as natural extensions of ZFC. We will explore the next step in this
hierarchy after inaccessibility. In the following, we will use the concepts of closed and unbounded
sets of ordinals, see Definition 2.4.11. The next definition introduces the concept of the cofinality
of a limit ordinal. It is an important measure of largeness, different from cardinality, and it has
many effects on cardinal arithmetic.

Definition 5.6.3. Let α be a limit ordinal. A function f : β −→ α is cofinal in α if f“β is
unbounded in α. The cofinality of α, cf(α), is the least ordinal β such that there is a function
f : β −→ α.

Lemma 5.6.4. Let α be a limit ordinal. Then there is function f : cf(α) −→ α that’s normal
(for the meaning of normality, see Observation 2.4.15).

Proof. Exercise.

Observation 5.6.5. Let α be a limit ordinal.

1. cf(α) ≤ α.

2. cf(cf(α)) = cf(α).

Proof. For clause (1), note that there is a function f : α�� α. Clearly, f is cofinal.
For clause (2), if not, then by (1), cf(cf(α)) < cf(α). By Lemma 5.6.4, let f : cf(α) −→ α

and g : cf(cf(α)) −→ cf(α) be normal and cofinal. Then f ◦ g : cf(cf(α)) −→ α is cofinal, where
cf(cf(α)) < cf(α), contradicting the minimality of cf(α).

Definition 5.6.6. A limit ordinal α is regular if cf(α) = α. Otherwise, α is singular.

Observation 5.6.7. Let α be a limit ordinal.

1. cf(α) is regular.

2. If α is regular, then α is a cardinal.

5.6. LARGE CARDINALS 101

3. If α is an infinite successor cardinal, then α is regular.

Proof. The first point follows by clause 2 of Observation 5.6.5. The second one follows from
clause 1 of that observation. For the third clause, suppose α = β+, β ∈ Card, and suppose α
were singular. Thus, cf(α) ≤ β. Let f : β −→ α be cofinal. For every ξ < β, f(ξ) < β+, so fix
a surjection gξ : β � f(ξ). Define h : β × β −→ α by h(ξ, ζ) = gξ(ζ). Then h : β × β � β+, a

contradiction, since β × β = β, as β ≥ ω. (Note that this argument used the axiom of choice).

A regular uncountable limit cardinal is also called weakly inaccessible. One cannot show in
ZFC that such cardinals exist, and moreover, one cannot show that if ZFC is consistent then so is
ZFC together with the assertion that there is a weakly inaccessible cardinal. The reason for this
is that if κ is weakly inaccessible, then the model Lκ, an initial segment of Gödel’s constructible
universe, satisfies the ZFC axioms. One can then argue as in Theorem 5.6.2. We will explore in
the following what goes wrong when trying to construct such cardinals.

Definition 5.6.8. Let α be a limit ordinal, or α = ∞. A ⊆ α is club in α if A is closed and
unbounded in α. If F : On −→ On is a partial function, then an ordinal γ is closed under F if
F“γ ⊆ γ.

Lemma 5.6.9. An ordinal κ is inaccessible iff κ is uncountable, regular and closed under the
function ξ 7→ 2ξ. (i.e., iff κ is an uncountable regular strong limit cardinal.)

Proof. Recall that we defined that an uncountable cardinal κ is inaccessible if

1. Every x ∈ Vκ has cardinality less than κ.

2. If u ⊆ Vκ has cardinality less than κ, then u ∈ Vκ.

Let’s show that such a cardinal has the properties stated in the lemma. By definition, κ is
uncountable. It is closed under ξ 7→ 2ξ, because if ξ < κ, then ξ ⊆ Vξ, so P(ξ) ⊆ P(Vξ) = Vξ+1.

Since Vξ+1 ∈ Vκ, we have by (1) that Vξ+1 < κ, and hence, P(ξ) = 2ξ < κ, as claimed. And κ
must be regular, because otherwise, there would be an unbounded set A ⊆ κ ⊆ Vκ of cardinality
less than κ. By (2), it would have to be that A ∈ Vκ, which means there would have to be a
ξ < κ such that A ∈ Vξ. So A ⊆ Vξ ∩ On = ξ (see Lemma 2.3.50), contradicting that A is
unbounded in κ.

Vice versa, suppose that κ is uncountable, regular and closed under ξ 7→ 2ξ. By induction

on ξ < κ, one can then show that Vξ < κ - the successor step uses that Vξ+1 = 2Vξ , and the

limit step uses that Vλ =
⋃
ξ<λ Vξ, so that Vλ ≤ λ · supξ<λ Vξ. The supremum has to be less

than κ if λ < κ, since for ξ < λ, Vξ < κ and κ is regular. This implies then that clause 1 holds,

because if x ∈ Vκ, then x ∈ Vξ for some ξ < κ, but then x ⊆ Vξ and Vξ < κ, so x < κ. Clause
2 follows by regularity of κ: if u ⊆ Vκ, then for every x ∈ u, we can let f(x) < κ be least such
that x ∈ Vα(x). Since cf(κ) > u, it follows that {α(x) | x ∈ u} is bounded by some β < κ. It
follows that u ⊆ Vβ .

Lemma 5.6.10. Let F : On −→ On. Then the class of α that are closed under F is a club class
of ordinals.

Proof. It is obvious that a limit of closure points of F is a closure point of F . To see unbounded-
ness, given an ordinal α0, we can let αn+1 = (αn+ 1)∪ supξ<αn F (ξ), and define αω =

⋃
n<ω αn.

Then αω > α0 is closed under F .

102 CHAPTER 5. INCOMPLETENESS

Lemma 5.6.11. Let κ be an uncountable regular cardinal, and let f : κ −→ κ. Then the set of
α < κ that are closed under f is club in κ.

Proof. The argument of the proof of the previous lemma goes through. For unboundedness, we
use the regularity of κ to show that αn+1 < κ, and the fact that κ has uncountable cofinality in
order to conclude that αω < κ.

Consider the club class SL of α ∈ On that are closed under the function ξ 7→ 2ξ (i.e., SL is
the class of all strong limit cardinal). Any regular cardinal in S is inaccessible. Thus, we cannot
prove in ZFC that S contains a regular cardinal.

Definition 5.6.12. Let α be a limit ordinal of uncountable cofinality. A set S ⊆ α is stationary
if it intersects every club subset of α. This definition can be extended to S ⊆ ∞, but expressing
that a proper class S is stationary becomes a scheme: for every class term, it contains the
statement “if C is club in ∞, then S ∩ C 6= ∅”.

Lemma 5.6.13. Suppose α is an ordinal of uncountable cofinality.

1. If C,D ⊆ α are club in α, then so is C ∩ D. In fact, if λ < cf(α) and 〈Ci | i < λ〉 is a
sequence of club subsets of α, then

⋂
i<λ Ci is club in α.

2. If S ⊆ α is stationary and C ⊆ α is club, then S ∩ C is stationary in α.

3. If A ⊆ α is unbounded, then the set A′ of limit points of A less than α is club in α.

Proof. 1.) Let λ < cf(α) and 〈Ci | i < λ〉 be a sequence of club subsets of α. It is obvious
that

⋂
i<λ Ci is closed in α. To see that it is unbounded, let α0 < α be given. Define a

strictly increasing sequence 〈αn | 1 ≤ n ≤ ω〉 recursively as follows. Suppose αn has been defined.
For each i < λ, define βn,i = min(Ci \ αn + 1). Since λ < cf(α), it follows that αn+1 :=
supi<λ(βn,i + 1) < α. Finally, αω = supn<ω αn < α, as cf(α) > ω. It follows that αω ∈

⋃
i<λ Ci,

since for each i < λ, αω = supn<ω βn,i is a limit point less than α of Ci.
2.) To show that S ∩ C is stationary in α, let D be club in α. We have to show that

(S ∩ C) ∩ D 6= ∅. But (S ∩ C) ∩ D = S ∩ (C ∩ D), and since by 1.), C ∩ D is club in α, the
intersection S ∩ (C ∩D) is nonempty, as S is stationary.

3.) A′ is closed, because limits of limit points of A are limit points of A. A′ is unbounded,
because given α0 < α, we can enumerate the next ω many elements of A as 〈αn | n < ω〉. The
supremum αω of this sequence is then a limit point of A, and it is less than α, as cf(α) > ω.

It follows that the collection

Cα = {A ⊆ α | ∃C ⊆ α(C ⊆ A and C is club in α)}

is a cf(α)-complete filter (if cf(α) > ω is as in the previous lemma). Cα is called the club filter
on α.

Definition 5.6.14. A cardinal κ is (strongly) Mahlo if it is inaccessible and the set {α <
κ | α is regular} is stationary in κ. The axiom “∞ is Mahlo” is the scheme expressing that the
class of regular cardinals is stationary in ∞.

Observation 5.6.15. If κ is Mahlo, then the set of inaccessible cardinals less than κ is stationary
in κ. Similarly, if ∞ is Mahlo, then the class of inaccessible cardinals in stationary.

If κ is a regular uncountable cardinal, then the club filter has an additional closure property
which turns it into a normal filter:

5.6. LARGE CARDINALS 103

Definition 5.6.16. Let κ be a limit ordinal, and let ~A = 〈Ai | i < κ〉 be a sequence of subsets
of κ. Then

4
i<κ

Ai = {α < κ | ∀β < α α ∈ Aβ}

is the diagonal intersection of ~A.

Lemma 5.6.17 (Normality of the Club Filter). Let κ be uncountable and regular. Then Cκ is
closed under diagonal intersections. In fact, if 〈Ci | i < κ〉 is a sequence of club subsets of κ,
then D = 4i<κ Ci is club in κ.

Proof. To see that D is unbounded in κ, let α0 < κ be given. Let us define a sequence 〈αn |
1 ≤ n ≤ ω〉 recursively by letting

αn+1 = min((
⋂

m<αn

Cj) \ (αn + 1))

if n < ω, and setting αω =
⋃
n<ω αn. Then αω > α0, αω < κ, since cf(κ) > ω, and αω ∈ D,

because αω is a limit ordinal of Cβ whenever β < αω: given such a β, there is an n < ω such
that β < αn. But then, for every natural number l > n, β < αl ∈ Cβ , and αl < αω. Since Cβ is
closed in κ, it follows that αω ∈ Cβ . This is true for every β < αω, so αω ∈ D.

To see that D is closed in κ, suppose that δ < κ is a limit point of D. To show that δ ∈ D,
we show that δ is a limit point (and hence a member) of Cβ , for every β < δ. So, fixing β < δ,
let ξ < δ be given. We have to find a γ ∈ Cβ ∩ δ with γ > ξ. Let δ′ ∈ D ∩ δ, δ′ > max(ξ, β).
Then δ′ ∈ Cβ (by definition of D) and δ′ > ξ.

This lemma has an interesting consequence.

Definition 5.6.18. Let S be a class of ordinals, and let F : S −→ On. F is regressive if for all
α ∈ S, F (α) < α.

Lemma 5.6.19 (Fodor). Suppose F : S −→ κ is a regressive function, where κ is uncountable
and regular, and S is stationary. Then there is a stationary subset S̄ ⊆ S such that F �S̄ is
constant.

Proof. If not, then for every α < κ, the set F−1“{α} is nonstationary. Thus, for every such α,
there is a club set Cα ⊆ κ disjoint from F−1“{α}. That is, Cα is club in κ and has the property
that for all ξ ∈ Cα, F (ξ) 6= α. Now the set D = 4α<κ Cα is club in κ, and hence, there is a
β ∈ S ∩ D. Thus, β ∈ Cα for all α < β. In particular, this is true for α = F (β). But then it
can’t be that β ∈ Cα, since that would imply that F (β) 6= α.

Definition 5.6.20. Let α < λ be ordinals. Then

Sλα = {γ < λ | cf(γ) = α}.

Lemma 5.6.21. Let κ be an ordinal of uncountable cofinality, and let ρ < cf(κ) be regular. Then
Sκρ is stationary in κ.

Proof. If C ⊆ κ is club, then, letting f be its monotone enumeration, it follows that f is a normal
function, and dom(f) ≥ cf(κ). Thus, f�ρ is the monotone enumeration of C ∩ f(ρ), which is
club in f(ρ). It is left to the reader to check that cf(f(ρ)) = ρ. Thus, f(ρ) ∈ Sκρ ∩ C, showing
that Sκρ is stationary.

In the following lemma, a cardinal κ is weakly Mahlo if it is regular, uncountable, and the
set {α < κ | α is regular} is stationary in κ.

104 CHAPTER 5. INCOMPLETENESS

Lemma 5.6.22. Let κ be a regular cardinal. The following are equivalent:

1. For every stationary subset S ⊆ κ, there is a regular ρ < κ such that S ∩ Sκρ is stationary.

2. κ is not weakly Mahlo.

Proof. To see that clause 1 implies clause 2, let’s show the contrapositive. Since κ is weakly
Mahlo, S = {α < κ | α is regular} is stationary in κ. But for every regular cardinal ρ < κ,
Sκρ ∩ S = {ρ} is not stationary. So clause 1 fails.

To see that clause 2 implies clause 1: since κ is not Mahlo, there is a club C ⊆ κ consisting
of singular limit ordinals. Thus, S0 = S ∩ C is a stationary set of singular limit ordinals. Now
the function mapping ξ ∈ S0 to cf(ξ) is regressive and hence constant on some stationary subset
S̄ ⊆ S0, by Fodor’s Lemma. If ρ is the constant value, then S̄ ⊆ Sκρ . So S̄ ⊆ S ∩ Sκρ is
stationary.

Bibliography

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

[Jec03] Thomas Jech. Set Theory: The Third Millenium Edition, Revised and Expanded. Sprin-
ger Monographs in Mathematics. Springer, Berlin, Heidelberg, 2003.

[Kun80] Kenneth Kunen. Set Theory. An Introduction To Independence Proofs. North Holland,
1980.

[Poh09] Wolfram Pohlers. Proof Theory. The first Step into Impredicativity. Springer, 2009.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. Course Technology Cengage
Learning, 2006.

[Soa80] Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer, 1980.

105

