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Abstract. We explore Woodin’s Univerality Theorem and consider to what

extent large cardinal properties are transferred into HOD (and other inner

models). We also separate the concepts of supercompactness, supercompact-
ness in HOD and being HOD-supercompact. For example, we produce a model

where a proper class of supercompact cardinals are not HOD-supercompact

but are supercompact in HOD. Additionally we introduce a way to measure
the degree of HOD-supercompactness of a supercompact cardinal, and we de-

velop methods to control these degrees simultaneously for a proper class of

supercompact cardinals. Finally, we also produce a model in which the unique
supercompact cardinal is also the only strongly compact cardinal, no cardinal

is supercompact up to an inaccessible cardinal, level by level inequivalence
holds and the unique supercompact cardinal is not HOD-supercompact.

1. Introduction

The following dichotomy follows from Jensen’s Covering Lemma for L which says
exactly one of the following holds: (1) L computes the singular cardinals and their
successors correctly, or; (2) every uncountable cardinal is inaccessible in L. That
is, either L is “close to V ” or L is “far from V ”.

Canonical inner models other than L have been defined and shown to satisfy
corresponding dichotomies, all of these inner models are contained in HOD, the
class of hereditarily ordinal definable sets. The following result of Woodin, known
as the HOD Dichotomy, extends the dichotomy of core models to HOD itself and
is, in a sense, the abstract generalization of the L dichotomy.

Theorem 1.1. [20, Theorem 2.34]
Assume that δ is an extendible cardinal. Then exactly one of the following holds.

(1) For every singular cardinal γ > δ, γ is singular in HOD and (γ+)HOD =
γ+.

(2) Every regular cardinal greater than δ is measurable in HOD.

This result of Woodin expresses the idea that either HOD is“close to V ” or else
HOD is “far from V ”. Woodin’s HOD Conjecture proposes that HOD is close to V
in a particular way; namely that (1) of the HOD dichotomy holds.

More formally, Woodin’s HOD Hypothesis [20, Definition 2.42] postulates the
existence of a a proper class of regular cardinals which have the property of not
being ω-strongly measurable in HOD. Here, an uncountable regular cardinal λ is
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defined to be ω-strongly measurable in HOD iff there is κ < λ such that (2κ)HOD < λ
and there is no partition 〈Sα|α < κ〉 of cof(ω) ∩ λ into stationary sets such that
〈Sα|α < κ〉 ∈ HOD [20, See definition 2.35]. If a regular cardinal is ω-strongly
measurable in HOD, then it is measurable there [22, Lemma 10]. The HOD Con-
jecture [20, Definition 2.48] is just one sentence, expressing that ZFC + “There is
a supercompact cardinal” proves the HOD Hypothesis. For a brief overview of the
theorems see Section 3 in [4] and for more details see [20].

Woodin has convincing arguments that the HOD Conjecture is true. Indeed,
there seem to be no current methods to produce a model of set theory with a
supercompact cardinal in which the HOD Hypothesis fails. The pursuit of this
model, however, and the exploration of to what extent large cardinal properties are
exhibited in HOD, is a fruitful area of interest. One can consider to what extent
HOD and V can be forced to disagree and then conversely, what are the limits
of their disagreement. For example, in [6], a model is produced where the α+ of
HOD is strictly less than α+ for every infinite cardinal α. In [5], Cheng, Friedman
and Hamkins produce a variety of models where large cardinals in V are forced
not to exhibit their large cardinal properties in HOD, for example, a model of a
proper class of supercompact cardinals that are not even weakly compact in HOD.
They leave a family of open questions relating to further forcing that HOD have
no other large cardinals of a smaller type. However, in the case of a model with a
supercompact cardinal, Woodin has proven that if there is a supercompact cardinal,
there is a measurable cardinal in HOD[21]. Additionally under the assumption of
the HOD Hypothesis, we get the following fact which we will discuss further in
Section 2, that any HOD-supercompact cardinal is supercompact in HOD (see [19,
Theorem 193]. Note that in this paper, what is referred to as the HOD Conjecture
is in later papers, referred to as the HOD Hypothesis).

In this paper will explore both aspects of this question, that is, which large
cardinal concepts are necessarily expressed in HOD and then, how far apart can we
force HOD from V .

This paper is organized in the following way: In Section 2, we survey Woodin’s
results on when large cardinal properties are transferred into HOD, including defin-
ing HOD-supercompactness. This relates directly to Section 3 where we separate
the implications between supercompactness, HOD-supercompactness and super-
compactness in HOD. In Section 4 we introduce the way to measure the degree
of HOD-supercompactness of a supercompact cardinal and we also develop meth-
ods to control these degrees simultaneously for a proper class of supercompact
cardinals. In Section 5 we produce a model in which the unique supercompact
cardinal is also the only strongly compact cardinal, no cardinal is supercompact
up to an inaccessible cardinal, level by level inequivalence holds and the unique
supercompact cardinal is not HOD-supercompact.

2. HOD-large cardinals and downward transference

Let us begin with Woodin’s results on when large cardinal properties are trans-
ferred into inner models of ZFC. In his work on the HOD Conjecture, Woodin
isolates the concept of of an inner model N being a weak extender model for δ
is supercompact : N is an inner model of ZFC, and for every γ > δ, there is a δ-
complete normal fine measure U on Pδ(γ) such that N ∩Pδ(γ) ∈ U and U ∩N ∈ N ,
see [20, Definition 2.5]. His Universality Theorem encapsulates striking phenomena
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of downward transference of large cardinal properties from V to a weak extender
model.

Theorem 2.1 (Universality, [20, Theorem 2.15]). Suppose that N is a weak exten-
der model for δ is supercompact and γ > δ is a cardinal in N. Suppose that
j : H(γ+)N −→ H(j(γ)+)N with cp(j) ≥ δ. Then j ∈ N .

The following theorem is a consequence of the Universality Theorem:

Theorem 2.2 ([20, Theorem 2.28]). Suppose N is a weak extender model for δ is
supercompact, and κ ≥ δ is supercompact. Then κ is supercompact in N .

Thus, if one wants to use the Universality Theorem in order to conclude that
certain large cardinal properties in V , which are witnessed by the existence of
certain embeddings, are transferred down to N , these embeddings have to move N
correctly, motivating the following definition.

Definition 2.3 ([19, Definition 132]). Let N be an inner model, and let j : V −→
M be an elementary embedding, where M is transitive. Then we write j(N) for⋃
α∈On j(Vα ∩N).
A cardinal κ is N -supercompact if for every α > κ, there is an elementary

embedding j : V −→ M , where M is transitive, such that crit(j) = κ, α < j(κ),
VαM ⊆M and

j(N) ∩ Vα = N ∩ Vα

Note that if N is an inner model defined by some formula in some parameter,
say N = {x | ϕ(x, p)}, and j : V −→ M is as in the previous definition, then
j(N) = {x | M |= ϕ(x, j(p))}. In particular, if N is definable without parameters
(for example, if N = HOD), then j(N) = NM in the usual sense. Thus, in the case
that N = HOD, the formula displayed in the previous definition is equivalent to
saying

HODM ∩ Vα = HOD ∩ Vα
.

It follows from Theorems 2.1 and 2.2 that if there is an extendible cardinal
δ, then δ is HOD-supercompact [19, Lemma 188], and under the assumption of
the HOD Hypothesis, HOD is a weak extender model for δ is supercompact [19,
Lemma 193]. In particular, under these assumptions, it follows that supercompact
cardinals greater than δ are supercompact in HOD. The HOD Hypothesis allows
one to conclude this, with just the assumption of a HOD-supercompact cardinal
without assuming the existence of an extendible cardinal. This gives us the fact
mentioned in Section 1.

Fact 2.4 ([19, Theorem 193]). Under the HOD Hypothesis, any HOD-supercompact
cardinal is supercompact in HOD.

In order to discuss downward transference phenomena at weaker large cardinal
concepts, let us make the following definition.

Definition 2.5. Let N be an inner model. Let κ be a cardinal and X a set. Then
κ is (N,X)-measurable if there is a j : V −→ M with crit(j) = κ, j(κ) > rnk(X)
and

j(N) ∩X = N ∩X.
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We shall mostly be interested in the case where X is of the form P(α) or Vα.
Note that κ is λ-strong iff κ is (V, Vλ)-measurable. Similarly, κ is λ-supercompact
iff κ is (V, λVα)-measurable, for every α.

Recall the concept of ineffability (introduced in [12], see also [11, Exercise 17.25]).

Definition 2.6. An inaccessible cardinal κ is ineffable if for every sequence 〈aα |
α < κ〉 such that aα ⊆ α, for every α < κ, it follows that there is a set A ⊆ κ such
that

{α < κ | A ∩ α = aα}
is stationary in κ.

Lemma 2.7. Suppose that N is an inner model such that κ is (N,P(κ))-measurable.
Then κ is ineffable in N .

Proof. First note that since κ is inaccessible in V , it is also inaccessible in N . Let
~a = 〈aα | α < κ〉 ∈ N be as in the definition of ineffability, and let j : V −→ M
be an elementary embedding witnessing that κ is (N,P(κ))-measurable. Let ~a′ =
j(~a) = 〈a′α | α < j(κ)〉, and set

A = a′κ.

We claim that B = {α < κ | A ∩ α = aα} is stationary in κ. To see this, let C ⊆ κ
be club. Then j(C) ∩ κ = C, so κ is a limit point of j(C), and since j(C) is club
in j(κ) > κ, it follows that κ ∈ j(C). Hence, in M , the statement “there is an
α ∈ j(C) such that j(A) ∩ α = a′α” is true, for this is witnessed by κ – note that
j(A)∩κ = A = a′κ. Hence, if we pull this statement back to V , it follows that there
is an α ∈ C such that A ∩ α = aα. The point is now that since ~a ∈ N , it follows
that ~a′ ∈ j(N), so that in particular, A = a′α ∈ j(N). And since j witnesses that
κ is (N,P(κ))-measurable, we have that A ∈ P(κ) ∩ j(N) = P(κ) ∩N . Since the
stationarity of B goes down to N , this shows that κ is ineffable in N . �

Recall that for n < ω, an inaccessible cardinal κ is Π1
n-indescribable iff for every

A0, A1, . . . , Am ⊆ Vκ (where m < ω) and any Π1
n sentence ϕ (in the language of set

theory with extra predicate symbols for A0, A1, . . . , Am), if 〈Vκ,∈, A0, . . . , Am〉 |=
ϕ, then there is a κ̄ < κ such that 〈Vκ̄,∈, A0 ∩ Vκ̄, . . . , Am ∩ Vκ̄〉 |= ϕ. An inacces-
sible cardinal that is Π1

n-indescribable for every n < ω is just called indescribable.
It is well-known that Π1

1-indescribability is equivalent to weak compactness. In-
effability implies weak compactness (see [11, Exercise 17.26]), and in fact, it is not
hard to see that it even implies Π1

2-indescribability. Since ineffability is a Π1
3 prop-

erty, the least ineffable cardinal is not Π1
3-indescribable, and hence, ineffability does

not imply Π1
3-indescribability. Thus, the following lemma adds something new.

Lemma 2.8. Suppose that N is an inner model such that κ is (N,P(κ))-measurable.
Then κ is indescribable in N .

Proof. Let j : V −→ M be an elementary embedding, M transitive, κ = crit(j),
such that P(κ) ∩ j(N) = P(κ) ∩ N . Since κ is inaccessible in N , there is in N a
bijection f : κ −→ Vκ ∩ N . It follows that P(Vκ) ∩ j(N) = P(Vκ) ∩ N , because
if X ⊆ Vκ ∩ j(N), then X̄ = f−1“X = j(f)−1“X ∈ P(κ) ∩ j(N) = P(κ) ∩ N , so
X = f“X̄ ∈ N ; the reverse direction holds generally.

Now let A0, . . . , Am ⊆ Vκ ∩N , and let ϕ be a Π1
n sentence in the language of set

theory with extra predicate symbols for A0, . . . , Am, such that in N , it is the case
that 〈Vκ,∈, A0, . . . , Am〉 |= ϕ (so the domain of this model is Vκ∩N and “|=” refers
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to second order satisfaction). Then, in M , it is true that this same statement holds
when relativized to j(N). Note here that Ai = j(Ai) ∩ Vκ, so that in particular,
Ai ∈ j(N), for i ≤ m. The point here is that P(Vκ) ∩ j(N) = P(Vκ) ∩ N , so
that second order satisfaction over 〈Vκ ∩N,∈, A0, . . . , Am〉 is absolute between N
and j(N). Thus, in M , it is true that there is a κ̄ < j(κ) such that in j(N), it
is the case that 〈Vκ̄,∈, j(A0) ∩ Vκ̄, . . . , j(Am) ∩ Vκ̄〉 |= ϕ, as witnessed by κ̄ = κ.
Pulling back via j shows that in V , there is a κ̄ < κ such that in N , it is the case
that 〈Vκ̄,∈, A0 ∩ Vκ̄, . . . , Am ∩ Vκ̄〉 |= ϕ, showing that κ is indescribable in N , as
desired. �

Thus, since the ineffability of κ is second order expressible over Vκ, Lemmas 2.7
and 2.8 show, using standard arguments, that if κ is (N,P(κ))-measurable, then in
N , it is an ineffable stationary limit of ineffable cardinals (meaning that the set of
ineffable cardinals below κ is stationary in κ), and of stationary limits of ineffable
cardinals, etc.

Question 2.9. Are there large cardinal properties stronger than ineffability that
are transferred down to N , given an (N,P(κ))-measurable cardinal? How about if
κ is (N,P(κ+))-measurable, etc.?

Gödel’s constructible universe L, when relativized to a transitive model of set
theory, depends only on that model’s ordinal height, and as a result, if κ is measur-
able, it is automatically (L,X)-measurable, for any set X. Hence, in full generality,
just assuming (N,X)-measurability of a cardinal κ, one cannot prove that κ retains
any large cardinal properties in N , beyond what is consistent with the axiom of
constructibility.

Recall the following concept, due to Kunen.

Definition 2.10 (Kunen [13, Definition 1.1]). Let M |= ZFC be transitive (either
a set or a proper class), let κ ∈ M , and let U ⊆ P(κ) ∩M . U is an M -ultrafilter
if 〈M,∈, U〉 |=“U is a normal ultrafilter on P(κ)”,1 and if U is weakly amenable to
M , meaning that if 〈xξ | ξ < κ〉 ∈ M is a sequence of subsets of κ, then the set
{ξ < κ | xξ ∈ U} is in M .

Observation 2.11. If κ is (N,P(κ))-measurable, then there is a normal ultrafilter
U on κ such that U ∩N is an N -ultrafilter.

Proof. Let j : V −→M be an elementary embedding witnessing that κ is (N,P(κ))-
measurable, and let U = {X ⊆ κ | κ ∈ j(X)} be the normal ultrafilter on κ derived
from j. Clearly then, 〈N,∈, U ∩N)〉 |=“U ∩ N is a normal ultrafilter on κ.” To
see that U ∩N is weakly amenable to N , let ~x = 〈xξ | ξ < κ〉 ∈ N be a sequence of

subsets of κ. Then a = {ξ < κ | xξ ∈ U} ∈ N , because ~Y = j( ~X) ∈ j(N), and so,
a = κ ∩ {ξ < j(κ) | κ ∈ Yξ} ∈ j(N) ∩ P(κ) = N ∩ P(κ). �

Note that the N -ultrafilter U ∩ N in the previous observation yields a well-
founded ultrapower of N , since it is the restriction of an actual normal ultrafilter
(in V ). It is not hard to see that if an ordinal κ carries an N -ultrafilter U such
that the ultrapower of N by U is well-founded, then κ is ineffable and indescribable

1This means that for all x ∈ M ∩ P(κ), either x ∈ U or κ \ x ∈ U , if x ⊆ y ⊆ κ, x ∈ U and

y ∈M , then y ∈ U , ∅ /∈ U , κ ∈ U , if 〈xi | i < β〉 ∈M ∩ βU , where β < κ, then
⋂
i<β xi ∈ U , and

if 〈xi | i < κ〉 ∈M ∩ κU , then the diagonal intersection, {α < κ | ∀β < α α ∈ xβ} ∈ U .
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in N , using the arguments in the proofs of Lemmas 2.7 and 2.8. This makes it an
assumption that’s interesting in its own right.

Let us close this section with the observation that sufficiently large cardinals
imply the existence of supercompact cardinals that satisfy a considerable degree of
HOD-supercompactness.

Definition 2.12. A cardinal δ is Woodinized supercompact if for every X ⊆ Vδ,
there is a κ < δ such that for every λ < δ, there is a λ-supercompactness embedding
j : V −→M such that X ∩ Vλ = j(X) ∩ Vλ.

It is part of the folklore that δ is Woodinized supercompact iff it is a Vopěnka
cardinal, see [18, Corollary 10.6] for a proof. Of course, the assumption of a Woo-
dinized supercompact cardinal is much more than is needed for the conclusion of
the following observation.

Observation 2.13. If δ is Woodinized supercompact, then Vδ is a model of the
theory ZFC + “there is a proper class of HOD-supercompact cardinals.”

Proof. Let κ < δ be as in Definition 2.12 with respect to X = HODVδ . Since the
fine normal measures witnessing the existence of the required embeddings lie in Vδ,
it follows that κ is HOD-supercompact in Vδ. It is easy to see that the set of such
κ is unbounded in δ, completing the proof. �

3. Separations

In this section we will separate the notions of supercompactness, HOD-supercom-
pactness and supercompactness in HOD. A reasonable place to begin is to ask, if
κ is supercompact, is it HOD-supercompact? Sargsyan [17] answered this question
in the negative in the following result.

Theorem 3.1 ([17]). Suppose κ is a supercompact cardinal. Then there is a forcing
extension of V in which κ is supercompact, but not HOD-supercompact.

Later in this section, Theorem 3.9(1) will generalize and provide an alternate
way of achieving this result while ensuring that κ remains supercompact in HOD.

Then, does HOD-supercompactness imply supercompactness in HOD? In gen-
eral, for arbitrary inner models N ⊆ V in place of HOD, this is not the case, as
for example, every supercompact cardinal κ is (trivially) L-supercompact while not
being supercompact in L.

Can we get the analogous version for HOD, i.e., a model where there is a cardi-
nal κ that is HOD-supercompact but not supercompact in HOD? This turns out
to be equivalent to forcing the failure of the HOD Hypothesis. That is because by
Fact 2.4, if the HOD Hypothesis holds, then HOD-supercompactness implies super-
compactness in HOD. So a model with a HOD-supercompact cardinal that’s not
supercompact in HOD would not satisfy the HOD Hypothesis.

We saw previously that κ being supercompact does not imply that κ is HOD-su-
percompact, but does it imply that κ is supercompact in HOD? Let us look at the
following theorem:

Theorem 3.2 ([5, Theorem 10]). There is a class forcing P such that

(1) All supercompact cardinals of the ground model are preserved and no new
ones are created.

(2) There are no supercompact cardinals in the HOD of the extension.
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(3) The supercompact cardinals of the extension are not weakly compact in the
HOD of the extension.

Putting this theorem together with our Lemma 2.7 results in:

Corollary 3.3. The class forcing P of the previous theorem has the additional
property that no supercompact cardinal in the extension is HOD-supercompact there.
In fact, if κ is supercompact in the extension, then it is not even (HOD,P(κ))-
measurable there.

This is because otherwise, such a κ would be ineffable in the HOD of the exten-
sion, but it is not even weakly compact there. In particular, in this way, we can get
a model of set theory in which there is a proper class of supercompact cardinals,
none of which is HOD-supercompact, thus answering the question implied in [2,
Remark 3]. Note that the model of Theorem 3.2 can be easily seen to show that
Fact 2.4 cannot be improved to the statement that under the HOD Hypothesis,
every supercompact cardinal is supercompact in HOD. This is because the model
in the theorem satisfies the HOD Hypothesis, i.e., it has a proper class of regular
cardinals that are not ω-strongly measurable in HOD. This can be verified by look-
ing at its proof, and it follows from its statement in case there is a proper class of
supercompact cardinals: none of these are even weakly compact in HOD.

This brings us to the next case, that is, a model where κ is supercompact and
supercompact in HOD, but not HOD-supercompact. To that end, in the following,
we use the concept of N -strongness.

Definition 3.4. Let N be a set or a proper class. Then κ is N -strong if for every
λ > κ, there is an elementary embedding j : V −→M , where M is transitive, such
that crit(j) = κ, λ < j(κ), Vλ ⊆M and

j(N) ∩ Vλ = N ∩ Vλ
Observation 3.5. Suppose κ is N -strong. Then the following are equivalent:

(1) Vκ ⊆ N ,
(2) V = N .

Proof. It suffices to show that (1) implies (2). Let a ∈ N , and pick λ > rnk(a)∪ κ.
Let j : V −→ M be a λ-strongness embedding that verifies that κ is (N, {a})-
strong. Then by elementarity, j(Vκ) ⊆ j(N). But j(κ) > λ, and Vλ = VMλ , so
a ∈ Vλ = VMλ ⊆ j(Vκ) ⊆ j(N). So a ∈ Vλ ∩ j(N) = Vλ ∩N , that is, a ∈ N . �

Observation 3.6. Suppose κ is supercompact and indestructible under <κ-directed
closed forcing (or strong and indestructible under ≤κ-strategically closed forcing).
Then the following are equivalent:

(1) κ is HOD-supercompact (or HOD-strong),
(2) V = HOD.

Proof. Clearly, (2) implies (1), so it suffices to prove the converse. It was noted in
[2] that if κ is an indestructible supercompact cardinal, then Vκ ⊆ HOD, because
for any set a ∈ Vκ, there is a <κ-directed closed forcing that codes it into the
continuum function beyond κ, and this forcing preserves the supercompactness of
κ, so that the fact that a is coded is reflected below κ. Clearly, indestructible
strongness suffices for this argument to go through. Now, Observation 3.5 applies
and yields the result. �
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To keep the statement of the following theorem relatively free from technicalities,
let us introduce the following terminology.

Definition 3.7. We say that V is securely coded if whenever g is generic over V

for some set-sized forcing notion P, then V ⊆ HODV [g].

Thus, if V is securely coded, then not only do we have that V = HOD, because
V is a forcing extension of itself by trivial forcing, so that we get that HOD ⊆ V ⊆
HOD, but moreover, every set in V is ordinal definable in any set-forcing extension
of V . One way to achieve this property is by forcing the continuum coding axiom
CCA, which states that every set is encoded into the continuum function, see [16].

When analyzing HODV [g], where V [g] is a forcing extension of V , an indispens-
able tool for us will be the concept of almost homogeneity: a notion of forcing P is
called almost homogeneous if for every p, q ∈ P, there is an automorphism π of P
such that π(p) is compatible with q (see [14, P. 244, ex. (E1)]). The crucial fact for
us is:

Fact 3.8. (Folklore) Let P be an almost homogeneous notion of forcing, and let g
be P-generic. Then

HODV [g] ⊆ HODV{P}.

Proof. To clarify, HODV{P} is the class of all sets that are hereditarily definable in
V from ordinals and the parameter P.

Since P is almost homogeneous, it follows that whenever ϕ(ǎ0, . . . , ǎn−1) is a for-
mula in the forcing language for P, either P ϕ(ǎ0, . . . , ǎn−1) or  ¬ϕ(ǎ0, . . . , ǎn−1),
(see [14, P. 245, ex. (E1)]). We will use this in the following. Suppose the claimed
inclusion does not hold, and let a be an ∈-minimal counterexample. It follows that

a is a subset of HODV{P}. Since a ∈ HODV [g], it is of the form a = {b | ϕ(b, α)}V [g].

Then in V , a = {b | P ϕ(b̌, α̌}. This definition of a uses only P and α as pa-

rameters. So a ∈ ODV{P}. But since a ⊆ HODV{P}, as noted above, this means that

a ∈ HODV{P} after all, a contradiction. �

Note that in particular, if P is almost homogeneous and ordinal definable, then

if g is P generic, it follows that HODV [g] ⊆ HODV . This is true of the forcing
notions Add(κ, δ) to add δ Cohen subsets of κ: they are almost homogeneous (see
[14, P. 245, ex. (E2)]), and it is obvious that they are ordinal definable. We will
frequently make use of this in the following.

We are now ready to show that supercompactness together with supercom-
pactness in HOD does not imply HOD-supercompactness. Note that this was not
achieved by Corollary 3.3, since in the model of that corollary, no supercompact
cardinal is supercompact in HOD. Let us investigate the effects of adding Cohen
subsets to a model with a supercompact cardinal, in various settings.

Theorem 3.9. Let κ be a supercompact cardinal.

(1) Suppose κ is indestructible and g ⊆ κ is generic for Add(κ, 1). Then in
V [g], κ is supercompact but not HOD-supercompact. If, in addition, V is

securely coded, then κ is supercompact in HODV [g] = V .
(2) Suppose V is securely coded and g ⊆ κ̄ is generic for Add(κ̄, 1), where

κ̄ < κ. Then in κ is HOD-supercompact in V [g], but V [g] 6= HODV [g] = V .
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Before proving this theorem, let us remark that it is well-known that if κ is
supercompact, then there is a set forcing extension V [g] in which κ’s supercom-
pactness is indestructible under <κ-directed closed forcing (see [15]), and one can
then perform a class forcing that codes itself into the continuum function above
κ, thus obtaining a model that is securely coded and in which κ is indestructibly
supercompact, see the proof of Theorem 4.10.

Proof. For part (1): Since κ is indestructible, it remains supercompact, and inde-

structibly so, in V [g]. Clearly, g /∈ HODV [g], since Add(κ, 1) is almost homogenous.

Hence, HODV [g] 6= V [g], and it follows by Observation 3.6 that κ is not HOD-su-
percompact in V [g] (because that observation shows that if κ were HOD-super-

compact in V [g], then V [g] would have to be equal to HODV [g]). If V is securely

coded, then, by the almost homogeneity of Add(κ, 1), it follows that V = HODV [g],

as V ⊆ HODV [g] ⊆ V . So, since κ is supercompact in V , it is supercompact in

HODV [g].
For part (2): As before, it follows that V = HODV [g] 6= V [g]. κ remains super-

compact in V [g], because the forcing is small. To see that κ is HOD-supercompact
in V [g], let λ be given, and let j : V −→ M be a δ-supercompactness embed-
ding with critical point κ, where δ > |Vλ|, so that Vλ = VMλ . Then j lifts to
a δ-supercompactness embedding j′ : V [g] −→ M [g] with critical point κ. By

elementarity, M is securely coded, and so, HODM [g] = M . We get:

HODV [g] ∩ Vλ = Vλ = M ∩ Vλ = HODM [g] ∩ Vλ,
showing that κ is HOD-supercompact in V [g]. �

We will analyze in more detail the result of adding a Cohen subset to a regular
cardinal above a supercompact cardinal in Theorem 4.4.

Let us now summarize what we know about the implications between HOD-su-
percompactness, supercompactness, and supercompactness in HOD.

Lemma 3.10. Suppose there is a supercompact cardinal. Then there exist class
forcing notions P (possibly trivial) to force each of the following to hold:

(1) ZFC+ there is a cardinal that is supercompact, HOD-supercompact, and
supercompact in HOD. In addition, we can ensure that V 6= HOD holds in
the forcing extension.

(2) ZFC+ there is a cardinal that is not supercompact, (hence not HOD-super-
compact), and supercompact in HOD.

(3) ZFC+ there is a cardinal that is supercompact, not HOD-supercompact and
supercompact in HOD.

(4) ZFC+ there is a cardinal that is supercompact, not HOD-supercompact and
not supercompact in HOD.

It is trivial to obtain a model of ZFC in which there is a cardinal that is not super-
compact, not HOD-supercompact and not supercompact in HOD.

Proof. Part (1) follows from Theorem 3.9, part (2) and the following remark.
For (2), as mentioned in the remark after the statement of Theorem 3.9, if κ is

supercompact, then there is a set forcing extension V [g] in which κ is indestructible
under <κ-directed closed forcing (see [15]), and one can then perform a class forcing
that codes itself into the continuum function above κ, thus obtaining a model that
is securely coded and in which κ is indestructibly supercompact. Let us call this
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model which is securely coded and where κ is indestructibly supercompact, V̄ .
Force over V̄ to collapse κ to ω with Col(ω, κ). In this forcing extension, V̄ [c], κ is
clearly no longer supercompact, and hence not HOD-supercompact. Since collapse
forcing is almost homogeneous and V̄ is securely coded, by Fact 3.8 we get that

HODV̄ [c] = V̄ , so that κ is supercompact in HODV̄ [c]. Let us remark that there is
some flexibility here. For example, instead of forcing with Col(ω, κ), we could have
destroyed the supercompactness of κ by adding a homogeneous κ-Souslin tree - this
forcing is also almost homogeneous, so that the above argument goes through, but
in the forcing extension, κ will still be inaccessible.

For (3): This is exactly the model obtained in the proof of Theorem 3.9, part
(1), where we start in a model that is securely coded and κ is supercompact.

Part (4) follows from Corollary 3.3.
Finally, to obtain a model of ZFC in which there is a cardinal that is not super-

compact, not HOD-supercompact and not supercompact in HOD, we can work in
V = L, or any model that has no inner model with a supercompact. �

Note that as stated previously, using Fact 2.4, a model where κ is HOD-super-
compact but not supercompact in HOD requires forcing the failure of the HOD
Hypothesis. This covers the remaining possible constellations.

4. Controlling the degree of HOD-supercompactness

In analogy to Definition 2.5, we can define a version suitable for supercompact
cardinals.

Definition 4.1. Let N be an inner model. Let κ be a cardinal and X a set. Then
κ is (N,X)-supercompact if for every λ, there is a λ-supercompactness embedding
j : V −→M with j(κ) > rnk(X) and

j(N) ∩X = N ∩X.
Let’s say that the N -supercompactness degree of κ, degN-SC(κ), is the least α such
that κ is not (N,P(α))-supercompact, if there is such an α, and let degN-SC(κ) =∞
otherwise (i.e., if κ is N -supercompact).

Clearly, one can define analogues of this for other large cardinal notions as well.
In particular, it is clear what it should mean that a strong cardinal is (N,X)-strong.

The choice of P(α) to measure the degree of N -supercompactness may seem
somewhat arbitrary, but it is actually quite natural. It is easy to see that if κ
is (N,P(α))-supercompact and |β| = α, then κ is also (N,P(β))-supercompact.
It also follows in this case that κ is (N,P(α))-supercompact iff it is (N,Hα+)-
supercompact, since members of Hα+ are naturally coded by subsets of α.

If the definition of the inner model N is sufficiently local, then one direction
of the equality demanded in the definition of (N,X)-supercompactness is vacuous.
The same proof works to show that the same is true of (N,X)-strongness.

Observation 4.2. Let κ be a supercompact cardinal, and let X be a set. Then for
any λ, there is an elementary embedding j : V −→M with λM ⊆M , j(κ) > rnk(X)
and

HOD ∩X ⊆ j(HOD) ∩X.

Proof. Let X and λ be given. By reflection, we may choose a λ′ > rnk(X) such

that HOD ∩ Vλ′ = HODVλ′ , and let j : V −→ M be a (κ, |Vλ′ |)-supercompactness
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embedding. Then Vλ′ = VMλ′ , and so, every a ∈ TC(X) that’s ordinal definable
in V is also ordinal definable in M (in fact, in VMλ′ ). In particular, HOD ∩ X ⊆
j(HOD) ∩X. �

The methods of Section 2 allowed us to construct models of set theory in which
there is a proper class of supercompact cardinals whose HOD-supercompactness fails
as early as possible, i.e., such that whenever κ is supercompact, then degHOD-SC(κ) =
κ (and in fact, κ is not even (HOD,P(κ))-measurable). Here, we devise a technique
to produce models where the failure of HOD-supercompactness occurs later. The
following theorem is a natural extension of Theorem 3.9, giving more information on
the failure of HOD-supercompactness. To facilitate its formulation, let’s introduce
the following terminology.

Definition 4.3. For an ordinal λ, let Pbd(λ) be the collection of bounded subsets
of λ, and let us say that degHOD-SC(κ) = λ in the strict sense if κ is (HOD,Pbd(λ))-
supercompact but not (HOD,P(λ))-supercompact.

Another way to say this, in the case where λ is regular, is that κ is (HOD, Hλ)-
supercompact but not (HOD, Hλ+)-supercompact. This is because for any two inner
models M and N , we have that HM

λ = HN
λ iff Pbd(λ)M = Pbd(λ)N .

Theorem 4.4. Suppose V is securely coded and κ is an indestructible supercompact
cardinal. Let λ ≥ κ be a regular cardinal and let g be generic for Add(λ, 1). Then
in V [g], the following is true: κ is supercompact, κ is supercompact in HOD and
degHOD-SC(κ) = λ in the strict sense.

Proof. It follows as in the proof of Theorem 3.9 that HODV [g] = V , and that κ is

supercompact in V [g] as well as in HODV [g].

(1) In V [g], κ is not (HOD,P(λ))-supercompact.

To see this, working in V [g], let j : V [g] −→ M be a θ-supercompactness em-
bedding with critical point κ, where θ > λ. Then P(λ)V [g] = P(λ)M .

By elementarity, since V [g] is a forcing extension of its HOD (namely V ) by g, it

follows that M is a forcing extension of its HOD by j(g), so M = HODM [j(g)],

where j(g) is generic over HODM for j(Add(λ, 1)). Note that j(Add(λ, 1)) =

Add(j(λ), 1)M = Add(j(λ), 1)HODM . Working in M , Add(j(λ), 1) adds no bounded
subsets of j(λ), and so, it does not add a subset of λ (since λ < θ ≤ j(κ) ≤ j(λ)).
Thus,

P(λ)M = P(λ)HODM = P(λ) ∩ HODM .

But then, viewing g as a subset of λ, we have that g ∈ P(λ)V [g] = P(λ)M =

P(λ) ∩ HODM , yet g /∈ HODV [g] = V . This shows (1).

(2) In V [g], κ is (HOD,Pbd(λ))-supercompact.

To see this, let θ ≥ λ, and let j : V [g] −→M be as above. Then, as before,

P(λ)V [g] = P(λ)M = P(λ) ∩ HODM .

But now,

Pbd(λ)V [g] = Pbd(λ)HODV [g]

,

because Add(λ, 1) does not add a bounded subset to λ, and thus, Pbd(λ)V [g] =

Pbd(λ)V = Pbd(λ)HODV [g]

. Putting the two displayed formulas together results in

Pbd(λ) ∩ HODM = Pbd(λ) ∩ HODV [g].
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This completes the proof of (2), and of the theorem. �

We now turn to the problem of realizing the effect of the previous theorem
simultaneously for a possibly proper class of supercompact cardinals. Before we
do, let’s observe a limitation to the freedom in which one may manipulate the
degrees of HOD-supercompactness of several supercompact cardinals.

Lemma 4.5. Let κ0 < κ1 be supercompact cardinals such that κ0 is (HOD,Pbd(κ1))-
supercompact. Then, if κ1 is (HOD,Pbd(λ))-supercompact, so is κ0.

Proof. Let θ be given. We have to produce a θ-supercompactness embedding with
critical point κ0 such that the HOD of the target model has the same bounded
subsets of λ as the HOD of V . Clearly, we may assume that θ > λ. We may
assume too that λ ≥ κ1, since for λ < κ1, we already know that κ0 is (HOD,P(λ))-
supercompact, since we assumed that κ0 is (HOD,Pbd(κ1)-supercompact.

Let j1 : V −→M be a θ-supercompactness embedding with critical point κ1 such
that HOD∩Pbd(λ) = HODM∩Pbd(λ). In particular, j1(κ1) > θ > λ. Since j1(κ0) =
κ0, by elementarity, it is true in M that κ0 is (HOD,Pbd(j1(κ1)))-supercompact.
Since j1(κ1) > θ > λ, there is in M a θ-supercompactness embedding j0 : M −→ N

with critical point κ0 such that HODM ∩ P(λ) = HODN ∩ P(λ). But then,

j0 ◦ j1 : V −→ N

is a θ-supercompactness embedding with critical point κ0, since θN = (θN)∩M , as
M is θ-closed in V , and further, (θN)∩M ⊆ N , as N is θ-closed in M . Thus, θN ⊆
N . Moreover, we have that HOD ∩ Pbd(λ) = HODM ∩ Pbd(λ) = HODN ∩ Pbd(λ).
Thus, j0 ◦ j1 witnesses that κ is (HOD,Pbd(λ))-supercompact. �

Clearly, the argument of the previous proof did not have anything to do with
HOD, and one can easily generalize it to arbitrary classes X. For example, if κ0 <
κ1 are supercompact cardinals, κ0 is (X,Hκ1)-supercompact and κ1 is (X,Hθ)-
supercompact, for some θ > κ1, then κ0 is also (X,Hθ)-supercompact.

Corollary 4.6. Let κ0 < κ1 be supercompact cardinals such that degHOD-SC(κ0) ≥
κ1. Then degHOD-SC(κ0) ≥ degHOD-SC(κ1).

The following definition is designed to simplify the formulation for the upcoming
theorems. It expresses a sparsity property of a set S of ordinals, and in the following
remark, we will elaborate on cases in which it is satisfied.

Definition 4.7. Let S ⊆ On be a class of ordinals, and let κ be a supercompact
cardinal with κ ≤ supS. Then S is scattered across κ if for all sufficiently large
θ, if j : V −→ M is a θ-supercompactness embedding with critical point κ, then
min(j(S) \ κ) > min(S \ κ).

Note that whether or not S is scattered across κ depends only on the initial
segment S ∩ δ, where δ = min(S \ κ) + 1.

Remark 4.8. Suppose S is a class of regular cardinals such that for every λ ∈ S,
there is a supercompact cardinal κ ≤ λ such that [κ, λ)∩S = ∅. Then, if κ ≤ supS is
a supercompact cardinal, each of the following conditions implies that S is scattered
across κ:

(1) S ∩ κ is bounded in κ.
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(2) For all sufficiently large θ, if j : V −→ M is a θ-supercompactness embed-
ding with critical point κ, then in M , there are no supercompact cardinals
in the interval [κ,min(S \ κ)].

(3) The interval (κ,min(S \ κ)] does not contain a supercompact cardinal, and
for all sufficiently large θ, if j : V −→ M is a θ-supercompactness embed-
ding with critical point κ, then κ is not supercompact in M .

Proof of remark. Let λ = min(S \ κ).
For (1), let θ ≥ λ, and let j : V −→ M be a θ-supercompactness embedding

with critical point κ. Then j(S) = j(S ∩ κ) ∪ j(S \ κ) = (S ∩ κ) ∪ j(S \ κ), and so,

min(j(S) \ κ) = min(j(S \ κ)) = j(min(S \ κ)) = j(λ) > θ ≥ λ.
For (2), suppose S ∩ κ is unbounded in κ; otherwise, we can argue as in (1).

Let j : V −→ M be a θ-supercompactness embedding with critical point κ, where
θ is large enough that we know that in M , there is no supercompact cardinal in
the interval [κ, λ]. We have to show that [κ, λ] ∩ j(S) = ∅. Suppose, towards a
contradiction, that there is an α ∈ [κ, λ] ∩ j(S). By assumption on S, there is a
κ′ ≤ α such that κ′ is supercompact in M and [κ′, α) ∩ j(S) = ∅. It follows that
κ′ < κ, because there are no M -supercompact cardinals in [κ, α]. But S ∩ κ =
j(S) ∩ κ is unbounded in κ, so there is a β ∈ j(S) ∩ (κ′, κ), and in particular, in
[κ′, α), a contradiction.

For (3), we may again assume that S ∩ κ is unbounded in κ, by (1). Since (κ, λ]
does not contain a supercompact cardinal, we may choose, for every γ ∈ (κ, λ],

an ordinal θγ such that γ is not θγ-supercompact. Let θ ≥ supγ∈(κ,λ] 2θ
<κ
γ be

sufficiently large (in the sense of the statement of (3)), and let j : V −→ M
be a θ-supercompactness embedding with critical point κ. Then in M , κ is not
supercompact, and moreover, [κ, λ] does not contain an M -supercompact cardinal,
or else, if γ > κ were a counterexample, then it would be θγ-supercompact in V , a
contradiction. Assume that λ′ = min(j(S) \ κ) ≤ λ. Let κ̄ ≤ λ′ be supercompact
in M such that [κ̄, λ′) ∩ j(S) = ∅. Then, as before, κ̄ < κ, but since j(S) ∩ κ is
unbounded in κ, this implies that [κ̄, κ) ∩ j(S) 6= ∅, and so, [κ̄, λ′) ∩ j(S) 6= ∅, a
contradiction. �

Thus, for example, if there is no supercompact cardinal of Mitchell order 1,
S is the class of all supercompact cardinals, and F : S −→ On is a function
such that for every κ ∈ S, F (κ) ≥ κ is a regular cardinal such that (κ, F (κ)]
contains no supercompact cardinal, then S = ran(F ) is scattered across every κ ∈ S
(by (3) above). Note that S may contain supercompact limits of supercompact
cardinals. A special case of the following theorem says that in this situation, if V
is securely coded and every supercompact cardinal is indestructible, then we can
force to reach a model in which every κ ∈ S is still supercompact and F (κ) is the
HOD-supercompactness degree of κ (in the strict sense).

The formulation of the next theorem is somewhat technical, but a more stratified
version follows.

Theorem 4.9. Suppose that V is securely coded. Let S be a class of regular car-
dinals such that for every λ ∈ S, there is a supercompact cardinal κ ≤ λ such that
[κ, λ) ∩ S = ∅. Let Q = QS be the Easton support product of the forcing notions
Add(λ, 1), for λ ∈ S. Then, if g is generic for Q, we have that

(1) any indestructibly supercompact cardinal κ is supercompact in V [g],
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(2) V = HODV [g].

Moreover, if κ ≤ supS is such that in V [g], κ is supercompact and S is scattered
across κ, then, letting λ = min(S \ κ):

(3) in V [g], degHOD-SC(κ) ≤ λ,
(4) if κ is indestructibly supercompact in V , then in V [g], degHOD-SC(κ) = λ in

the strict sense.

Note: When we say that in V [g], S is scattered across κ, we mean the class S, as

defined in V . Since V = HODV [g], this is easily expressible in V [g]. Thus, what we
mean is that in V [g], it is the case that SHOD is scattered across κ.

Proof of Theorem 4.9. For λ ∈ S, let us write Qλ for Add(λ, 1), and for an ordinal
α, let us also use the obvious notation Q<α for QS∩α, Q>α for QS\(α+1), Q≤α for
QS∩(α+1) and Q≥α for QS\α.

Let g be generic for Q, and let g<α, gα, g>α be the canonical factors of g, keeping
in mind that g may be a proper class.

Fix a cardinal κ, and let λ = min(S \ κ), if defined. Note that if λ is undefined,
then S ⊆ κ and Q≥κ is trivial forcing, and if λ is defined, then Q≥κ = Q≥λ is
<λ-directed closed.

(1) If κ is indestructibly supercompact, then κ is supercompact in V [g].

Proof of (1). Since κ is indestructible, it follows that κ is supercompact in W =
V [g≥κ]. If S ∩ κ is bounded in κ, then Q<κ has size less than κ, and it follows that
κ is supercompact in W [g<κ] = V [g]. If S ∩ κ is unbounded in κ, then, working in
W , there are arbitrarily large θ > λ with cf(θ) > κ, θ<κ = θ and 2θ = θ+, since
the singular cardinal hypothesis holds in W , as κ is supercompact there. Fixing
such a θ, we can find in W a θ-supercompactness embedding j : W −→ M with
critical point κ such that in M , [κ, θ] contains no supercompact cardinal. Let
λ′ = min(j(S) \κ). Then in M , there is a supercompact cardinal κ′ ≤ λ′ such that
[κ′, λ′)∩j(S) = ∅. Thus, θ < κ′ ≤ λ′, since [κ, θ] contains no supercompact cardinal
ofM . This means that min(j(S)\κ) > θ, and so, j(Q<κ) factors as Q<κ×j(Q<κ)>θ.
But in this situation, j lifts to a θ-supercompactness embedding in V [g], as in [5,
proof of Theorem 10]: in M , the second factor, j(Q<κ)>θ, is ≤θ-closed, j(κ)-c.c. and
has size j(κ). So in M , there are j(κ)<j(κ) = j(κ) many maximal antichains in
j(Q<κ)>θ. But in W , the cardinality of j(κ) is 2θ = θ+ and M is closed under θ-
sequences. This means that one can construct in V [g≥κ] a filter in j(Q<κ)>θ that’s
generic over M , by enumerating the maximal antichains in j(Q<κ)>θ that M sees
in order type θ+ and building a decreasing sequence of conditions in j(Q<κ)>θ that
meets these antichains one by one. Calling the M -generic filter generated by this
sequence g∗, one sees that j lifts to j′ : W [g<κ] −→ M [g<κ][g∗], and j′ witnesses
that κ is θ-supercompact in W [g<κ] = V [g]. �

(2) HODV [g] = V .

Proof of (2). We will use here the fact that a product of almost homogeneous forc-
ing notions is also almost homogeneous. This is easy to see: let 〈Pi | i < θ〉 be a
sequence of almost homogeneous forcing notions, and let P =

∏
i<θ Pi, with any

support (all we need is that the set of supports allowed forms an ideal on θ). Now,
given conditions p, q ∈ P, where p = 〈pi | i < θ〉 and q = 〈qi | i < θ〉, we have that
for every i < θ, there is an automorphism πi of Pi such that πi(pi) is compatible
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with qi. Clearly then, if we define π : P −→ P by π(〈ri | i < θ〉) = 〈πi(ri) | i < θ〉,
then π is an automorphism of P, and π(p) is compatible with π(q): for any i < θ,
there is an ri ∈ Pi with ri ≤ qi, πi(pi). If both pi and qi are the trivial condition of
Pi, then we may choose ri to be trivial as well. Then, the support of r = 〈ri | i < θ〉
is contained in the union of the support of pi and the support of qi, and is thus
allowed in the formation of P. So r ∈ P witnesses that π(p) and q are compatible.

Turning to the proof, the claimed equality follows now immediately if S is a set,
and hence Q is a set-sized forcing notion that’s almost homogeneous, because V is

securely coded. Namely, using Fact 3.8, it follows that V ⊆ HODV [g] ⊆ V .
So suppose S is a proper class.
We will use the following fact: if κ′ is a strong cardinal, then HOD ∩ Vκ′ =

HODVκ′ . The direction from right to left is trivial. For the other direction, suppose
a ∈ Vκ′ and a ∈ HOD. Then there is some λ′ such that a ∈ HODVλ′ . Let j : V →M
be a λ′-strong embedding with critical point κ′. Then in M , it is the case that there
is a λ̄ < j(κ′) such that a is in HODVλ̄ (as evidenced by λ′). Pulling back, this

implies that there is a λ̄ < κ′ such that a ∈ HODVλ̄ . So a ∈ HODVκ′ .

We will use this fact in proving that V ⊆ HODV [g]. So let a ∈ V . Since a can
be coded by a set of ordinals, we may assume it is a set of ordinals. Let µ < ν
be the next two members of S greater than sup(a). Let κ′ ≤ ν be a supercompact
cardinal such that [κ′, ν) ∩ S = ∅. Then µ < κ′ ≤ ν. It follows that Q<κ′ has size
less than κ′, and that κ′ is still supercompact, and hence strong, in V [g<κ′ ]. Since

V is securely coded, we know that a ∈ HODV [g<κ′ ]. By the above reflection fact,

applied in V [g<κ′ ], it follows that a ∈ HODV
V [g

<κ′ ]

κ′ . But V
V [g<κ′ ]
κ′ = V

V [g]
κ′ , and so,

a ∈ HODV
V [g]

κ′ , and in particular, a ∈ HODV [g].

For the converse, let a ∈ HODV [g], where a is a set of ordinals. By reflection, a is

ordinal definable in some V
V [g]
γ , and hence in V

V [g<α]
γ , for some sufficiently large α.

In particular, a ∈ HODV [g<α]. But g<α is generic over V for Q<α, a set sized almost
homogeneous forcing notion. As before, it follows by Fact 3.8 that a ∈ V . �

(3) Suppose that κ is supercompact in V [g] and S is scattered across κ in V [g].
Then κ is not (HOD,P(λ))-supercompact in V [g].

Proof of (3). Let W = V [g]. Since S is scattered across κ in W , there is a θ∗ ≥ λ
such that whenever θ ≥ θ∗ and j : W −→ M is a θ-supercompactness embedding
with critical point κ, then λ′ := min(j(S) \ κ) > λ. Since M is θ-closed in W , it
follows that P(λ)W = P(λ)M . In particular, gλ ∈M .

Assume that in this situation, P(λ)∩HODW = P(λ)∩HODM . Since HODW = V ,
this means that

P(λ) ∩ V = P(λ) ∩ HODM .

To derive a contradiction, first, note that

P(λ) ∩ HODM [j(g)≥κ] = P(λ) ∩ HODM = P(λ) ∩ V.

The first equality holds because λ′ = min(j(S) \ κ) > λ, so that j(g)≥κ = j(g)≥λ′

does not add subsets of λ over HODM , and the second equality holds by assumption.
But note further that g<κ = j(g)<κ, so that we get that

P(λ) ∩ HODM [j(g)≥κ][j(g)<κ] = P(λ) ∩ V [g<κ],
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because any subset of λ in HODM [j(g)≥κ][j(g)<κ] is of the form τg<κ , for some nice

Q<κ-name τ for a subset of λ in HODM [j(g)≥κ]. Such a τ is of the form
⋃
α<λ{α̌}×

Aα, where each Aα is some antichain in Q<κ. Clearly then, τ ∈ HHODM [j(g)≥κ]

λ+ =

HV
λ+ , so that τg<κ ∈ V [g<κ]. The converse uses the same argument.

But by elementarity, we know that M = HODM [j(g)], so that by the equality
displayed above,

P(λ) ∩M = P(λ) ∩ V [g<κ].

This is a contradiction, because gλ ∈ P(λ) ∩M , but gλ /∈ P(λ) ∩ V [g<κ]. �

Note that (3) shows that in V [g], degHOD-SC(κ) ≤ λ, as claimed. It remains to
prove claim (4). To this end, assume that κ is indestructibly supercompact in V
and S is scattered across κ in V [g]. By (1), κ is supercompact in V [g], and by (3),
κ is not (HOD,P(λ))-supercompact in V [g]. The next claim will state that κ is
(HOD,Pbd(λ))-supercompact in V [g], and this will complete the proof, because it
follows then that in V [g], degHOD-SC(κ) ≤ λ in the strict sense, which is what claim
(4) says.

(4) κ is (HOD,Pbd(λ))-supercompact in V [g].

Proof of (4). Since Q≥κ = QS\κ can be defined from S \ κ as Q is defined from S,
(2) applies to this forcing notion as well, so that

HODV [g≥κ] = V = HODV [g].

Moreover, since κ is indestructibly supercompact in V it follows that κ is super-
compact in V [g≥κ].

As in the proof of (1), working in V [g≥κ], there are arbitrarily large θ > λ with
cf(θ) > κ, θ<κ = θ and 2θ = θ+. Fixing such a θ, let j : V [g≥κ] −→ M be a θ-
supercompactness embedding in V [g≥κ] with critical point κ such that in M , [κ, θ]
contains no supercompact cardinal. Let λ′ = min(j(S) \ κ). It follows as in the
proof of (1) that λ < θ < λ′, j(Q<κ) factors as Q<κ × j(Q<κ)>θ and j lifts to a
θ-supercompactness embedding in V [g]. Let j′ : V [g≥κ][g<κ] −→M [j′(g<κ)] be the
lifted embedding. As in (1), it witnesses that κ is θ-supercompact in V [g], but we
shall now show that it actually witnesses that κ is (HOD,Pbd(λ))-supercompact in
V [g].

By elementarity, we have that M = HODM [j(g≥κ)]. We have

P(λ) ∩ HODM = P(λ) ∩M,

because j(Q≥κ) is <λ′-closed in M , and λ′ > λ. Moreover,

P(λ) ∩M = P(λ) ∩ V [g≥κ],

because M is θ-closed in V [g≥κ] and θ ≥ λ. And

Pbd(λ) ∩ V [g≥κ] = Pbd(λ) ∩ V,

because Q≥κ is <λ-closed in V . Since V = HODV [g≥κ], all of this taken together
shows that

Pbd(λ) ∩ HODM = Pbd(λ) ∩ HODV [g≥κ].

We have that HODV [g≥κ] = HODV [g≥κ][g<κ]. By the elementarity of j′, this implies

that HODM = HODM [j′(g<κ)]. Combining the previous displayed equality with
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these two equalities results in

Pbd(λ) ∩ HODM [j′(g<κ)] = Pbd(λ) ∩ HODV [g].

�

This completes the proof of the theorem. �

Theorem 4.10. Any model of set theory V̄ has a proper class forcing extension
V = V̄ [G], such that the following holds. In V , suppose S is a class of regular
cardinals such that for every λ ∈ S, there is a supercompact cardinal κ ≤ λ such
that [κ, λ)∩S = ∅. Let Q = QS be the Easton support product of the forcing notions
Add(λ, 1), for λ ∈ S. Then, if g is Q-generic over V , we have that

(a) V̄ , V = HODV [g] and V [g] have the same supercompact cardinals,
(b) if in V [g], κ ≤ supS is supercompact and S is scattered across κ, 2 then in

V [g], degHOD-SC(κ) = λ in the strict sense, where λ = min(S \ κ).

Proof. If in V̄ , there are unboundedly many supercompact cardinals, then we can
let P be Cohen forcing, followed by the global Laver preparation that renders every
supercompact cardinal of V̄ indestructible. Otherwise, we let P be Cohen forcing,
followed by the global Laver preparation, followed by the self-encoding forcing above
the supremum of the supercompact cardinals, as described in [16, Thm. 11]. If G
is generic for P, then V = V̄ [G] is securely coded, since V satisfies the continuum
coding axiom (either because there is a proper class of indestructible supercompact
cardinals, or because it was explicitly forced to hold, by the self-encoding forcing).

By the main result of [10], the class of supercompact cardinals in the sense of V̄
is the same as in the sense of V .

Now, working in V , let S be a class of regular cardinals as described, let Q = QS ,
and let g be Q-generic over V . Applying Theorem 4.9 in V shows that every
supercompact cardinal of V is supercompact in V [g], since every supercompact
cardinal of V is indestructible in V . Moreover, every supercompact cardinal of
V [g] is supercompact in V̄ , since the combined forcing P ∗ Q̇ has a closure point
(in the sense of [10, Def. 12]) at ω, and hence, by [10, Lemma 13 and Corollary
26] it is supercompact in V . Thus, V̄ , V and V [g] all have the same supercompact

cardinals. Moreover, by Theorem 4.9, we have that HODV [g] = V , and so, every

supercompact cardinal of V [g] is supercompact in HODV [g]. This shows part (a) of
the theorem.

For part (b), suppose in V [g], κ ≤ supS is supercompact and S is scattered across
κ. Letting λ = F (κ), it then follows from Theorem 4.9 that degHOD-SC(κ) = λ in
the strict sense, because κ is indestructible in V . �

An intriguing question that’s naturally raised by Lemma 4.5 and Theorem 4.10
is as follows.

Question 4.11. Is the function that assigns to every supercompact cardinal its
HOD-supercompactness degree necessarily weakly monotonic?

2To be more precise, what we mean is the following: if δ = min(S \ κ), and s = S ∩ (δ+ 1) (in

V ), then in V [g], s is scattered across κ – see the remark after Definition 4.7. Equivalently, since

it will be the case that HODV [g] = V , one could formulate this by asking that in V [g], SHOD (that

is, SV ) is scattered across κ.



18 APTER, FRIEDMAN, AND FUCHS

5. On the failure of HOD-supercompactness when level by level
inequivalence holds

Recall that a model V of ZFC containing at least one supercompact cardinal
satisfies level by level inequivalence between strong compactness and supercompact-
ness (which we shall henceforth abbreviate as level by level inequivalence) iff for
every non-supercompact measurable cardinal δ, there is a cardinal λ > δ such that
V |= “δ is λ-strongly compact yet δ is not λ-supercompact”. This notion is studied
in [1] (as well as elsewhere) and is dual to the notion of level by level equivalence
between strong compactness and supercompactness introduced by the first author
and Shelah in [3].

In [2, Theorem 8], the first and second authors showed the consistency, relative
to the appropriate hypotheses, of the theory ZFC + “Level by level equivalence
between strong compactness and supercompactness holds” + “The least supercom-
pact cardinal κ is not HOD-supercompact”. We now establish an analogue of this
theorem for level by level inequivalence by proving the following.

Theorem 5.1. Suppose V |= ZFC + GCH + “κ < λ are least such that κ is
λ-supercompact and λ is inaccessible”. There is then a partial ordering P ∈ V ,
a submodel V ′ ⊆ V P of ZFC, and κ0 < κ such that V ′ |= “κ0 is supercompact
and is the only strongly compact cardinal” + “No cardinal is supercompact up to
an inaccessible cardinal” + “Level by level inequivalence holds”. In V ′, κ0 is not
HOD-supercompact.

Note that we say κ is supercompact up to the inaccessible cardinal γ iff for every
cardinal η < γ, κ is η-supercompact. Also, we take as notation that for any ordinal
δ, δ′ is the least inaccessible cardinal greater than δ. Suppose now κ > ω is a regular
cardinal. A partial ordering P(ω, κ) that will be used in the proof of Theorem 5.1 is
the partial ordering for adding a non-reflecting stationary set of ordinals of cofinality
ω to κ. Specifically, P(ω, κ) is defined as {p | For some α < κ, p : α −→ {0, 1} is
a characteristic function of Sp, a subset of α not stationary at its supremum nor
having any initial segment which is stationary at its supremum, such that β ∈ Sp
implies β > ω and cf(β) = ω}, ordered by q ≤ p iff q ⊇ p and Sp = Sq ∩ sup(Sp),
i.e., Sq is an end extension of Sp. Additional details about this partial ordering
may be found in [3].

Before proving Theorem 5.1, we first establish the following lemma key to its
proof.

Lemma 5.2. For κ a regular cardinal, P(ω, κ) is cone homogeneous, i.e., given
any two conditions p, q ∈ P(ω, κ), p and q can be extended to conditions p′ and q′

such that there is an isomorphism from {r ∈ P | r ≤ p′} to {s ∈ P | s ≤ q′}.
Proof. Suppose p, q ∈ P(ω, κ). Let β = sup(Sp ∪ Sq), where β = 0 if Sp = Sq =
∅ (i.e., if p = q = 1). Let β∗ be the least ordinal of cofinality ω greater than
max(β, ω). Define p′ and q′ as the characteristic functions of Sp∪{β∗} and Sq∪{β∗}
respectively. Clearly, p′ ≤ p and q′ ≤ q. Further, for any r ∈ P(ω, κ) and ordinal γ,
write Sr = S≥γr ∪S<γr , where S≥γr = {α ∈ Sr | α ≥ γ} and S<γr = {α ∈ Sr | α < γ}.
If we now let π defined on {r ∈ P | r ≤ p′} be given by π(r) = The characteristic

function of S≥β
∗

r ∪S<β
∗

q′ , then π is well-defined and is the desired isomorphism onto

{s ∈ P | s ≤ q′}. �

We turn now to the proof of Theorem 5.1.
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Proof. Suppose V is as in the hypotheses of Theorem 5.1. Define P0 = 〈〈P0
α, Q̇0

α〉 |
α ≤ κ〉 ∈ V as the Easton support iteration of length κ+ 1 such that P0

0 = {∅} and

Q̇0
0 = ˙Add(ω, 1) (so P0 begins by adding a Cohen subset of ω). For 1 ≤ δ ≤ κ, Q̇0

δ is
a term for trivial forcing, except if V |= “δ is a measurable cardinal”. In this case,

if δ < κ, Q̇0
δ = ˙Add(δ, 1) ∗ Ṙδ, where Ṙδ is a term for the partial ordering coding

the Cohen subset of δ added by Add(δ, 1) into the continuum function above δ′ in

the manner of [17]. If δ = κ, Q̇0
κ = ˙Add(κ, 1) (so in particular, the Cohen subset of

κ added at stage κ is not coded).

Define V1 = V P0

. Let j : V −→ M be an elementary embedding witnessing
the λ-supercompactness of κ which is generated by a supercompact ultrafilter over
Pκ(λ). Since V |= “λ = κ′”, M |= “λ = κ′”. Hence, by the definition of P0,

j(P0) = P0 ∗ Ṙ′, where the first nontrivial stage in R′ is well above λ. Thus, the

proofs of [1, Lemmas 2.1 and 2.6] show that V P0 |= “κ is λ-supercompact”, i.e.,
V1 |= “κ is λ-supercompact”.

Suppose δ ≤ κ is such that V |= “δ is supercompact up to δ′”. Write P0 = P0
δ ∗

˙Add(δ, 1)∗Ṙδ. Sargsyan’s arguments from [17] show that V P0
δ∗ ˙Add(δ,1) |= “Vδ′ |= ‘δ is

supercompact but not HOD-supercompact’ ”. Since P0
δ∗ ˙Add(δ,1) “Ṙδ is <δ′-directed

closed”, V P0
δ∗ ˙Add(δ,1)∗Ṙδ = V P0 |= “Vδ′ |= ‘δ is supercompact but not HOD-super-

compact’ ” as well. It also clearly follows that V P0 |= “δ is supercompact up to δ′”.

In addition, note that we can write P0 = Add(ω, 1) ∗ Q̇′, where Add(ω, 1) is non-

trivial, |Add(ω, 1)| = ω, and Add(ω,1) “Q̇′ is ≤ℵ1-directed closed”. Consequently,
the Gap Forcing Theorem [8, 9] implies that for any γ, if V1 |= “γ is supercompact
up to γ′”, then V |= “γ is supercompact up to γ′” as well. This means that the
set A defined in V1 as A = {δ ≤ κ | δ is supercompact up to δ′ and Vδ′ |= “δ is
supercompact but not HOD-supercompact”} is composed precisely of those δ ≤ κ
such that V |= “δ is supercompact up to δ′”.

Working now in V1, define P1 = 〈〈P1
α, Q̇1

α〉 | α < κ〉 as the Easton support

iteration of length κ such that P1
0 = {∅} and Q̇1

0 = ˙Add(ω, 1). For 0 ≤ δ < κ,

Q̇1
δ is a term for trivial forcing, except if V1 |= “δ is a measurable cardinal which

is not supercompact up to δ′”. In this case, Q̇1
δ = Ṗ(ω, δ). Because V1 |= “κ is

λ-supercompact”, the arguments used in the proof of [1, Theorem 1.2] (specifically,
the proofs of [1, Lemmas 2.6 – 2.8] and the intervening and following remarks)

show that for some δ < κ which is supercompact up to δ′ in V2 = V P1

1 , (Vδ′)
V2 |=

“δ is supercompact and is the only strongly compact cardinal” + “No cardinal
is supercompact up to an inaccessible cardinal” + “Level by level inequivalence
holds”. Thus, the proof of Theorem 5.1 will be complete once we have shown that
(Vδ′)

V2 |= “δ is not HOD-supercompact”.

To do this, we first note that it is possible to write P1 = Add(ω, 1) ∗ Q̇′′, where

Add(ω,1) “Q̇′′ is ≤ℵ1-strategically closed”. Hence, by the Gap Forcing Theorem,
V1 |= “δ is supercompact up to δ′”. As we have previously observed, the Gap
Forcing Theorem yields that V |= “δ is supercompact up to δ′” and that δ ∈ A.

Now, we assume towards a contradiction that (Vδ′)
V2 |= “δ is HOD-

supercompact”. Suppose η > δ, η < δ′ is a strong limit cardinal in (Vδ′)
V2 . Fol-

lowing [17], let k∗ : (Vδ′)
V2 −→ N∗ be an elementary embedding witnessing the η-

supercompactness of δ such that HODN
∗
∩ Vη = HOD(Vδ′ )

V2 ∩ Vη = HOD(Vη
(V
δ′ )

V2
).

Again by the Gap Forcing Theorem, since (Vδ′)
V2 = ((Vδ′)

V1)P
1
δ , k∗ must lift
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k : (Vδ′)
V1 −→ N which witnesses the η-supercompactness of δ in (Vδ′)

V1 . Here,

N ⊆ N∗ and N∗ = Nk(P1
δ). In particular, because δ ∈ A, by the definition of

P0, for x the Cohen subset of δ added by Add(δ, 1), x ∈ HODN . However, be-

cause k(P1
δ) does not erase the coding of x in N , x ∈ HODN

∗
. As x ∈ (Vη)N

∗
,

x ∈ HODN
∗
∩ Vη = HOD(Vδ′ )

V2 ∩ Vη, i.e., x ∈ HOD(Vδ′ )
V2

. In addition, Lemma 5.2
and the definition of P1

δ yield that each component partial ordering of P1
δ is cone

homogeneous. Consequently, by [7, Fact 1(2), Fact 1(3), and Lemma 6], P1
δ is cone

homogeneous. Therefore, since P1
δ is ordinal definable in (Vδ′)

V1 , by the proof of [7,

Lemma 3], HOD(Vδ′ )
V2 ⊆ HOD(Vδ′ )

V1
. This means that x ∈ HOD(Vδ′ )

V1
. However,

because δ ∈ A, Sargsyan’s argument of [17, Lemma 2.2] shows that x 6∈ HOD(Vδ′ )
V1

.

This contradiction, together with defining κ0 = δ′ and P = P0 ∗ Ṗ1, complete the
proof of Theorem 5.1. �

We conclude with the following questions related to Theorem 5.1. More specifi-
cally:

Question 5.3. Is it possible to prove an analogue of Theorem 5.1 in a universe in
which the class of supercompact cardinals can be arbitrary?

Question 5.4. Is it possible to prove an analogue of Theorem 5.1 along the lines
of Theorem 4.4?
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