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Abstract. I analyze the hierarchies of the bounded and the weak bounded

forcing axioms, with a focus on their versions for the class of subcomplete for-

cings, in terms of implications and consistency strengths. For the weak hier-
archy, I provide level-by-level equiconsistencies with an appropriate hierarchy

of partially remarkable cardinals. I also show that the subcomplete forcing

axiom implies Larson’s ordinal reflection principle at ω2, and that its effect on
the failure of weak squares is very similar to that of Martin’s Maximum.

1. Introduction

The motivation for this work is the wish to explore forcing axioms for subcom-
plete forcings in greater detail. Subcomplete forcing was introduced by Jensen in
[18]. It is a class of forcings that do not add reals, preserve stationary subsets of
ω1, but may change cofinalities to be countable, for example. Most importantly,
subcomplete forcing can be iterated, using revised countable support. Examples
of subcomplete forcings include all countably closed forcings, Namba forcing (assu-
ming CH), Př́ıkrý forcing (see [19] for these facts), generalized Př́ıkrý forcing (see
[24]), and the Magidor forcing to collapse the cofinality of a measurable cardinal of
sufficiently high Mitchell order to ω1 (see [10]).

Since subcomplete forcings can be iterated, they naturally come with a forcing
axiom, the subcomplete forcing axiom, SCFA, formulated in the same way as Mar-
tin’s axiom or the proper forcing axiom PFA. The overlap between proper forcings
and subcomplete forcings is minimal, though. Proper forcings can add reals, which
subcomplete forcings cannot. Subcomplete forcings can change cofinalities of re-
gular cardinals to ω, or change the cofinality of a regular cardinal to ω1 without
collapsing cardinals, which proper forcings cannot (see [13]). The class of proper
forcings contains all ccc forcings, while no nontrivial subcomplete forcing is ccc (see
[24]). It was shown by Jensen in [17] that the subcomplete forcing axiom can be
forced over a model with a supercompact cardinal, using essentially the same con-
struction as for PFA. Since subcomplete forcing does not add reals, however, the
resulting model will satisfy the continuum hypothesis. So unlike PFA, which implies
that 2ω = ω2, SCFA is compatible with CH, and even with ♦, since subcomplete
forcing preserves ♦, see [17, §4, Lemma 4]. Interestingly, though, Jensen showed
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that SCFA implies the failure of �κ, for every uncountable cardinal κ, and that
it has other consequences similar to PFA, or Martin’s Maximum, like the singular
cardinals hypothesis.

I originally wanted to explore the extent of the failure of weak square principles
under the subcomplete forcing axiom, and to find other uses for the arguments
establishing these failures. It soon turned out that these arguments make it possible
to determine the consistency strength of the bounded subcomplete forcing axioms
BSCFA(≤κ), saying that given a collection of ω1 many maximal antichains, each
having size at most κ, of a subcomplete complete Boolean algebra, there is a filter
meeting them all, in the cases κ = ω1 or κ = ω2. The consistency strengths of
these are exactly the same for the bounded subcomplete and the bounded proper
forcing axioms (a reflecting cardinal for κ = ω1, and a +1-reflecting, or strongly
unfoldable cardinal for κ = ω2). The weak proper forcing axiom, wPFA, of [4]
takes a characterization of the proper forcing axiom that guarantees the existence
of certain elementary embeddings (see Fact 3.8) and weakens this to the existence of
such an embedding in some forcing extension, that is, a generic embedding. It was
shown that the consistency strength of wPFA is a remarkable cardinal, and it turned
out that this is the case for the corresponding weak subcomplete forcing axiom,
wSCFA, as well. A remarkable cardinal can be viewed as a “virtual” version of a
supercompact cardinal, if one takes the characterization of supercompactness given
in [22] and replaces the embeddings in the characterization by generic ones. Thus,
the virtual version of PFA has the consistency strength of a virtual supercompact
cardinal, and the same is true of the virtual version of SCFA.

The weak subcomplete forcing axiom is not a bounded forcing axiom, and I
realized that there is a hierarchy of weak forcing axioms leading up to it, and since
the same can be done with other classes of forcings, I did not limit the investigation
to this class. At stages ω1 and ω2, the weak hierarchy and the usual hierarchy
coincide, but then they diverge, and it turns out that there is a hierarchy of partially
remarkable cardinals that precisely capture the levels of the weak bounded forcing
axioms beyond ω2.

The paper is organized as follows. In section 2, I give a little bit of background
on how Jensen obtained the failure of �κ for every uncountable cardinal κ from the
assumption of SCFA, and I show that his arguments actually show an amount of
stationary reflection that implies failures of weak square principles almost as strong
as those known to be implied by Martin’s Maximum. Most of these results come
from combining known connections between stationary reflection and the failure
of weak square, established by work of Cummings, Foreman and Magidor. There
is a difference at ω1, because SCFA is consistent with CH and even ♦, and it is
unclear whether SCFA implies the failure of weak square at cardinals of cofinality
ω. Theorem 2.11 summarizes the situation. There are two potential routes to
clarifying the situation at cofinality ω. One might try to show directly that SCFA
implies that for singular λ, there is no good scale of length λ+, using a variant
of Namba forcing consisting of trees that are stationarily splitting (as was done in
the context of Martin’s Maximum in [7]). One would have to find such a variant
that is provably subcomplete, which I leave for a future project. The other route
would be by proving a principle of stationary reflection strong enough to derive
the desired failure of weak square, such as a principle known as Refl∗([λ+]ω). This
principle is known to follow from the “plus” versions of forcing axioms, even from
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MA+(σ-closed), and it follows from Martin’s Maximum, but at this point, I cannot
see how to get it from SCFA. The known proofs using Martin’s Maximum use
the saturation of the nonstationary ideal, which is not available under SCFA. In
search of strong reflection principles, though, I prove that SCFA implies a form
of simultaneous stationary reflection, called OSRω2

, that Larson showed to be a
consequence of Martin’s Maximum, see Theorem 2.25. I also answer a question of
Tsaprounis in this section.

In section 3, I study the hierarchy of bounded (subcomplete) forcing axioms.
I show that BSCFA, at the bottom, is equiconsistent with a reflecting cardinal
(Theorem 3.6), and that the next level, BSCFA(≤ω2), is equiconsistent with a +1-
reflecting, or strongly unfoldable cardinal (Theorem 3.11). I also explore the effects
of the bounded forcing axioms on the failure of square, via stationary reflection,
see Theorem 3.13.

Section 4 introduces the weak subcomplete forcing axiom wSCFA, and lifts the
argument from the previous section to show that wSCFA is equiconsistent with a
remarkable cardinal. This is Theorem 4.5. Subsequently, I introduce the hierarchy
of weak bounded forcing axioms, explore their relationships to the bounded forcing
axioms, introduce the remarkably reflecting cardinals, and show that they measure
the consistency strengths of the axioms in this hierarchy. The main result in this
section is Theorem 4.14.

2. The subcomplete forcing axiom

Definition 2.1. Let Γ be a class of forcings and κ a cardinal. Then Martin’s
Axiom for Γ, or the Forcing Axiom for Γ, denoted FA(Γ), or MA(Γ), says that for
any forcing P in Γ and any collection A of ω1 many maximal antichains in P, there
is an A-generic filter F , that is, a filter in P that intersects each member of A. If
Γ is the class of all subcomplete forcings, then I write SCFA for FA(Γ). If Γ is the
class of c.c.c., semiproper, proper, or stationary set preserving forcings, then FA(Γ)
is known as MA, SPFA, PFA and MM, respectively.

Even though I will not use the definition of subcompleteness until later, I will
give it now, for the reader’s orientation. For a good introduction to this concept, I
refer to [19]. The definition of subcompleteness is due to Jensen.

Definition 2.2. A transitive set N (usually a model of ZFC−) is full if there is an
ordinal γ such that Lγ(N) |= ZFC− and N is regular in Lγ(N), meaning that if
x ∈ N , f ∈ Lγ(N) and f : x −→ N , then ran(f) ∈ N .

Definition 2.3. Let P be a poset, δ(P) the minimal cardinality of a dense subset
of P. and θ a cardinal. Then θ verifies the subcompleteness of P if P ∈ Hθ, and if
for any ZFC− model N = LAτ with θ < τ and Hθ ⊆ N , any σ : N̄ ≺ N such that N̄
is countable, transitive and full and such that P, θ ∈ ran(σ), any Ḡ ⊆ P̄ which is P̄-
generic over N̄ , and any s ∈ ran(σ), the following holds. Letting σ(s̄, θ̄, P̄) = s, θ,P,
there is a condition p ∈ P such that whenever G ⊆ P is P-generic over V with p ∈ G,
there is in V[G] a σ′ such that

(1) σ′ : N̄ ≺ N ,
(2) σ′(s̄, θ̄, P̄) = s, θ,P,
(3) (σ′)“Ḡ ⊆ G,

(4) HullN (δ(P) ∪ ran(σ′)) = HullN (δ(P) ∪ ran(σ)).
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P is subcomplete if all sufficiently large cardinals verify the subcompleteness of P.

There is a typo in the definition of subcompleteness as stated in [19, p. 114]
(CNδ (X) should be defined as the hull of X ∪ δ in N , not of X ∪ {δ}; this is fixed
in the above definition, as in [17, §3, p. 2ff.]).

Many arguments in the present paper revolve around the combinatorial principle
�κ introduced by Jensen in his seminal work [16]. Many variations of this principle
were subsequently devised, let me recall the ones needed in here.

Definition 2.4. Let κ be a cardinal. A �κ-sequence is a sequence

〈Cα | κ < α < κ+, α limit〉
such that each Cα is club in α, otp(Cα) ≤ κ and for each β that is a limit point of
Cα, Cβ = Cα ∩ β. �κ is the statement that there is a �κ-sequence.

If λ is also a cardinal, then a �κ,λ-sequence is a sequence

〈Cα | κ < α < κ+, α limit〉
such that each Cα has size at most λ, and each C ∈ Cα is club in α, has order-type
at most κ, and satisfies the coherency condition that if β is a limit point of C, then
C ∩ β ∈ Cβ . Again, �κ,λ is the assertion that there is a �κ,λ-sequence. �κ,κ is
known as weak square, denoted by �∗κ. �κ,<λ is defined like �κ,λ, except that each
Cα is required to have size less than λ.

In [17], Jensen showed that SCFA implies the failure of �κ, for every cardinal κ.
He derives this conclusion from the fact SCFA implies Friedman’s property.

Definition 2.5. Let κ > ω1 be a regular cardinal. Friedman’s property at κ,
FPκ, states that if S is a stationary subset of κ consisting of ordinals of countable
cofinality, then there is a closed set C ⊆ S of order type ω1.

Friedman’s property was known to be a consequence of MM ([8]). It obviously
implies an instance of stationary reflection: every stationary subset of κ ∩ cof(ω)
reflects to an ordinal of cofinality ω1. This stationary reflection, in turn, implies a
failure of a weak square principle. The following is a special case of [6, Theorem 2].

Lemma 2.6. Assume FPκ, and suppose κ = κω. Then �κ,ω fails.

Proof. Suppose otherwise. Let 〈Cα | α < κ+, α limit〉 be a �κ,ω-sequence. Let

S0 = {α < κ+ | κ < α and cf(α) = ω}
For α ∈ S0, let F (α) = {otp(C) | C ∈ Cα}. Since every C ∈ Cα has order type
at most κ, there are only κω = κ many possible values for F (α). So there is a
stationary set S1 ⊆ S0 on which F is constant, say the constant set of order types
is O.

Now, using Friedman’s property, let C ⊆ S1 be closed, with otp(C) = ω1. Let
γ = supC. Let E ∈ Cγ , and let D = C ∩E. Since cf(γ) = ω1, D is club in γ. Now,
for every α < γ that’s a limit point of D, it follows that it is also a limit point of
E, and so, E ∩ α ∈ Cα. But further, since α ∈ S1, it follows that otp(E ∩ α) ∈ O.
This is a contradiction, since there are ω1 many possibilities for α, and they give
different values for otp(E ∩ α), while there are only ω many ordinals in O. �

Since SCFA implies that κω1 = κ for regular κ > ω1, this lemma shows that
SCFA implies the failure of �κ,ω for every such κ. But in fact, Jensen showed a
stronger version of Friedman’s property to be a consequence of SCFA. I will write
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cof(ω) for the class of all ordinals of countable cofinality. In the following theorem,
a function is normal if it is strictly increasing and continuous.

Theorem 2.7 ([17, §3, p. 13, Lemma 9]). Assume SCFA. Let τ > ω1 be a regu-
lar cardinal. Then the following principle holds, let’s call it the Strong Friedman
Poperty at τ (SFPτ ):

Let 〈Ai | i < ω1〉 be a sequence of stationary subsets of τ ∩ cof(ω). Let 〈Di |
i < ω1〉 be a partition of ω1 into stationary sets. Then there is a normal function
f : ω1 −→ τ such that for every i < ω1, f�Di : Di −→ Ai.

Observation 2.8. Let τ > ω1 be a regular cardinal. Then SFPτ implies the follo-
wing version of simultaneous stationary reflection: if 〈Ai | i < ω1〉 is a sequence of
stationary subsets of τ ∩ cof(ω), then the set of α < τ such that cf(α) = ω1 and for
all i < ω1, Ai ∩ α is stationary in α, is stationary in τ .

Proof. Let τ and ~A be as stated. Let C ⊆ τ be club. By renumbering the ~A
sequence and adding an additional stationary subset at the beginning, one may
assume that A0 = C ∩ cof(ω). Let 〈Di | i < ω1〉 be a partition of ω1 into stationary
sets. By Theorem 2.7, let f : ω1 −→ τ be a normal function such that for all i < ω1,
f�Di : Di −→ Ai. Let α = sup f“ω1. Then cf(α) = ω1, and for each i < ω1, Ai
reflects to α: if D ⊆ α is club, then D̄ = f−1“D is club in ω1, hence there is a
δ ∈ Di ∩ D̄, which means that f(δ) ∈ Ai ∩ D. In particular, for i = 0, it follows
that α is a limit point of A0, and hence of C, so α ∈ C. So the set of points of

cofinality ω1 to which ~A reflects simultaneously is stationary in τ . �

It turns out that simultaneous stationary reflection has strong consequences in
terms of the failure of weak square principles, and the arguments used draw on
PCF theory. Fortunately, many results from [7], stated there in the context of MM,
are general enough to carry over to the context of SCFA.

Lemma 2.9 ([7], Lemma 2.1). If κ is singular and �κ,µ holds for some µ < κ,
then every stationary subset of κ+ has a collection of cf(κ) many stationary subsets
which do no reflect simultaneously at any point of uncountable cofinality.

This lemma, together with Observation 2.8 and Theorem 2.7, shows that if SCFA
holds and κ is singular with cf(κ) ≤ ω1, then �κ,µ fails for every µ < κ.

Lemma 2.10 ([7], Lemma 2.2). If κ is an uncountable cardinal and �κ,µ holds for
some µ < cf(κ), then every stationary subset of κ+ has a stationary subset which
does reflect at any point of uncountable cofinality.

This lemma shows that SCFA implies that for every uncountable cardinal κ and
every µ < cf(κ), �κ,µ fails. Note that under CH, �∗ω1

holds, because CH implies
the existence of a special ω2-Aronszajn tree, and the existence of a special κ+-
Aronszajn tree is equivalent to �∗κ (to my knowledge, these facts are due to Jensen;
proofs can be found in [23, Thm. 3.1, 3.2]). So, to summarize, we have the following
information about the extent of � principles under SCFA.

Theorem 2.11. Assume SCFA, and let λ be an uncountable cardinal.

(1) If cf(λ) ≤ ω1, then �λ,µ fails, for every µ < λ.
(2) If cf(λ) ≥ ω2, then �λ,µ fails for every µ < cf(λ).
(3) If CH holds, then �∗ω1

holds.
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So [7, Theorem 1.2] draws a stronger conclusion about the failure of weak square
in the ω-cofinal case from MM, namely, MM implies the failure of �∗κ for all cardinals
κ of countable cofinality, while we so far only know that SCFA implies the failure of
�κ,λ for all λ < κ in this situation. Another difference to the MM situation is that
MM implies that �∗ω1

fails. This is because MM, and even PFA, implies that there
are no ω2-Aronszajn trees (this was shown by Baumgartner, see [29, Thm. 7.7]).

The forcing construction of [7] shows that SCFA + CH has no stronger conse-
quences in terms of the failure of weak square principles at cardinals of uncountable
cofinality. Starting in a model with a supercompact cardinal κ, one first forces to
make it indestructible, using Laver’s forcing. Then, one does the preparatory for-
cing described in section 3 of that paper, to maximize the extent of partial square,
resulting in a model where κ is still supercompact, GCH holds at and above κ, and
for singular λ > κ, if cf(λ) ≥ κ, then �λ,cf(λ) holds, and if cf(λ) < κ, then there
is a partial square on points of cofinality at least κ. If one forces over this model
in the natural way to obtain SCFA, the resulting model will satisfy CH, and even
♦, and κ = ω2. So this model will satisfy �∗ω1

, and in general, for cardinals λ with
cf(λ) ≥ ω1, �∗λ will hold. For singular λ with cf(λ) ≥ ω2, �λ,cf(λ) will hold. So
the consequences of SCFA on the failure of weak square listed in Theorem 2.11 are
optimal, except for the case cf(λ) = ω, in which it is unclear whether �∗λ has to
fail or may hold.

Question 2.12. Suppose λ is a cardinal of cofinality ω, and that SCFA holds. Does
it follow that �∗λ fails?

Recall the “+” versions of MA(Γ).

Definition 2.13. Let Γ be a class of forcings. Then the axiom MA+(Γ) says that
for any forcing P in Γ, any collection A of ω1 many maximal antichains in P, and any
P-name Ṡ such that 
P “Ṡ is a stationary subset of ω1”, there is a filter F in P that
intersects each member of A and such that ṠF = {α < ω1 | ∃p ∈ F p 
 α̌ ∈ Ṡ} is
stationary in ω1. If Γ is the class of all subcomplete forcings, then I write SCFA+

for MA+(Γ). If Γ is the class of countably closed, semiproper, proper, or stationary
set preserving forcings, then MA+(Γ) is known as MA+(σ-closed), SPFA+, PFA+

and MM+, respectively.
The principle MA++(Γ) is defined similarly, but allowing ω1 many names for

stationary subsets of ω1.

While MA(σ-closed) is a theorem of ZFC, the axiom MA+(σ-closed) has conside-
rable consistency strength. It is also consistent with CH, as it holds in VCol(ω1,<κ),
where κ is supercompact ([8]), and it implies some reflection phenomena that have
many consequences.

Definition 2.14 ([6],[8]). For an uncountable transitive set X, a stationary set

S ⊆ [X]ω reflects to a set Y if Y ⊆ Y and S ∩ [Y ]ω is stationary in [Y ]ω.
The principle Refl∗(S) holds if every stationary T ⊆ S reflects to an uncountable

Y such that cf(otp(Y ∩On)) = ω1.
For a regular cardinal λ, RP(λ) says that for every stationary set S ⊆ [λ]ω and

every X ⊆ λ of cardinality ω1, there is a Y ⊆ λ of cardinality ω1 such that X ⊆ Y
and S reflects to Y .

The reflection principle RP says that RP(λ) holds for every regular λ > ω1.
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In [6], the fact that after collapsing a supercompact cardinal κ to be ω2 (by
forcing with Col(ω1, <κ)), then in the generic extension, Refl∗([λ]ω) holds for every
regular cardinal λ greater than ω1, is attributed to the paper [8]. It is shown in
that paper that the generic extension satisfies MA+(σ-closed), and that this forcing
axiom, in turn, implies that RP(λ) holds, for every regular cardinal λ > ω1, but
nothing is said about the cofinality of the set to which the stationary set reflects.
The proof given there can be modified fairly easily, in order to yield Refl∗(λ).
Alternatively, one may use the following concept, taken from [15, Ex. 37.23], where
it is given no name.

Definition 2.15. Let λ > ω1 be a regular cardinal. Then the principle Refl+(λ)
says: if S ⊆ [Hλ]ω is stationary, then there is an elementary chain 〈Mα | α < ω1〉
(i.e., an increasing, continuous sequence with Mα ∈ Mα+1 for all α < ω1) of
submodels of Hλ such that {α < ω1 |Mα ∈ S} is stationary in ω1.

It is shown in [15] that MA+(σ-closed) implies that Refl+(λ) holds, for every
regular λ > ω1, and it is an easy observation that Refl+(λ) implies Refl∗(λ).

Observation 2.16. Refl+(λ) implies Refl∗([λ]ω).

Proof. Let T ⊆ [λ]ω be stationary. Then

S = {N ≺ 〈Hλ,∈, <〉 | N = ω ∧N ∩ λ ∈ T}

is stationary in [Hλ]ω. Let 〈Mα | α < ω1〉 be as in Refl+(λ) for S. This is a continu-
ous sequence of elementary submodels of Hλ such that Mα ∈Mα+1, and it follows
inductively that α ⊆ Mα, for all α < ω1. Let Y =

⋃
α<ω1

Mα. Then ω1 ⊆ Y , and

it is clear that cf(otp(Y ∩On)) = ω1.
To see that T ∩ [Y ]ω is stationary, let g : Y <ω −→ Y . Then clearly, the set of

α < ω1 such that Mα is closed under g is club in ω1. So there is such an α with
the property that Mα ∈ S. This means that a = Mα ∩ λ ∈ T . Clearly, a is closed
under g. �

It was shown in [6] that if cf(λ) = ω and Refl∗([λ+]ω) holds, then �∗λ fails.

Corollary 2.17 (Cummings, Foreman, Magidor). MA+(σ-closed) implies the fai-
lure of �∗λ for cf(λ) = ω, and it implies that there is no very good scale for λ.

This connection answers [30, Question 4.12], which asks whether the principle
URσ-closed (which says that for any cardinal κ and any σ-closed forcing extension
V[G], there is a further forcing extension by a σ-closed forcing, V[G][H], such

that there is in V[G][H] an elementary embedding j : 〈Hκ,∈〉 ≺ 〈Hλ,∈〉V[G][H]
)

implies the failure of �∗λ for all cardinals of cofinality ω (it was shown in that paper
that it fails for all strong limits λ of cofinality ω). The answer to the question is
yes, because by [30, Cor. 2.6], URσ-closed implies MA+(σ-closed), which implies the
desired failure of weak square, by the previous corollary.

On another note, it was shown in [9] that if one collapses an indestructibly
weakly compact cardinal to be ω2, the extension also satisfies MA+(σ-closed). So
we get the following fact (which is usually stated with “supercompact” in place of
“indestructibly weakly compact”).

Corollary 2.18. If κ is indestructibly weakly compact and G is generic for Col(ω1, <κ),
then in V[G], �∗λ fails whenever cf(λ) = ω.
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Putting together Corollary 2.17, Theorem 2.11 and the obvious fact that SCFA+

implies MA+(σ-closed) results in the following.

Corollary 2.19. Assume SCFA+. Let λ be a cardinal.

(1) If cf(λ) = ω, then �∗λ fails.
(2) If cf(λ) = ω1, then �λ,µ fails, for every µ < λ.
(3) If cf(λ) ≥ ω2, then �λ,µ fails, for every µ < cf(λ).

And if CH holds, then �∗ω1
holds.

The question is whether SCFA alone implies this. In particular, does it imply the
principle Refl∗([λ+]ω), when cf(λ) = ω? MM implies the strong reflection principle
SRP (see [15, Def. 37.20]), which, in turn, implies Refl∗([λ+]ω). SRP also implies
that the nonstationary ideal on ω1 is ω2-saturated, which makes the following simple
observation relevant.

Observation 2.20. Neither SCFA nor MA+(σ-closed) imply that the nonstationary
ideal on ω1 is 2ω1-saturated.

Proof. This is because both SCFA and MA+(σ-closed) are compatible with ♦. But
of course, if 〈Sα | α < ω1〉 is a ♦-sequence, then for every set A ⊆ ω1, the set
SA = {α < ω1 | A∩α = Sα} is stationary, and so, the sequence 〈SA | A ⊆ ω1〉 is an
almost disjoint sequence of stationary subsets of ω1 (almost disjoint meaning that
for A 6= B, SA ∩ SB is bounded in ω1). �

The situation is interesting now: MA+(σ-closed) implies Refl∗([λ]ω) for every
regular λ > ω1, and MM implies this principle too, it even implies MA+(σ-closed),
but all known proofs of this (even just of the regular reflection principle RP) filter
through the fact that MM implies that the nonstationary ideal on ω1 is ω2-saturated.
These kinds of arguments cannot work when starting from the assumption that
SCFA holds.

Question 2.21. Does SCFA imply that Refl∗([λ]ω) holds, for every regular λ > ω1?
Or even just RP(λ)? Does it imply MA+(σ-closed)?

In general, the extent of stationary reflection under SCFA seems crucial in the
context of square principles. Let’s consider the stationary reflection principle OSRω2

from [21].

Definition 2.22. The principle OSRω2
says that whenever 〈Tα | α < ω2〉 is a se-

quence of stationary subsets of ω2, each consisting of ordinals of cofinality ω, then
there is a γ < ω2 with cf(γ) = ω1 such that for all α < γ, Tα ∩ γ is stationary in γ.

If OSRω2
holds, then it follows as in the proof of Observation 2.8 that the set of

γ as in the definition is stationary in ω2. I aim to show that SCFA implies OSRω2 .
To this end, I will show that the forcing used by Larson in the context of MM is
not only stationary set preserving, but subcomplete. The forcing in question is the
following. It is an explicit rendering of the one used by Larson in [21].

Definition 2.23. Let κ be regular, and let ~S = 〈Sα | α < ω1〉 be a partition of ω1

into stationary sets, and let ~T = 〈Tα | α < κ〉 be a sequence of stationary subsets
of κ, each Tα consisting of ordinals of cofinality ω. The forcing P~S,~T consists of the

pairs 〈p, q〉 such that

(1) p is a function with dom(p) ⊆ ω1, ran(p) ⊆ κ and p < ω1,
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(2) q : γ + 1 −→ ω1 is normal, for some γ < ω1,
(3) sup(ran(q)) ⊆ dom(p),
(4) for all ξ ∈ dom(q), if α is such that q(ξ) ∈ Sα, then α ∈ dom(p) and

sup p“q(ξ) ∈ Tp(α).

The ordering is by reverse inclusion in each component.

Lemma 2.24. The forcing P = P~S,~T is subcomplete.

Proof. Clearly, δ(P) ≥ κ, where δ(P) is the smallest size a dense subset of P can
have, or else P would be κ-c.c., but P collapses κ to ω1. Let θ be sufficiently large,
N = LAτ a ZFC− model with τ > θ and P ∈ Hθ ⊆ N . Let σ : N̄ ≺ N be an

elementary embedding with θ,P, ~S, ~T ∈ ran(σ), N̄ transitive, countable and full.

Let s ∈ ran(σ) be fixed. Let σ(s̄, θ̄, κ̄, P̄, ~̄S, ~̄T ) = s, θ, κ,P, ~S, ~T . Let Ḡ be P̄-generic

over N̄ . Let Ω = ωN̄1 = crit(σ).
Let P̄ be the union of the first coordinates occurring in Ḡ, and Q̄ the union of

the second coordinates. So

P̄ : Ω −→ κ̄ is onto, and Q̄ : Ω −→ Ω is a normal cofinal function.

Let
D = {τ < κ | τ = κ ∩HullN (τ ∪ ran(σ))}

Then D is club in κ, and the proof of [19, Lemma 6.3] shows that for every κ′ ∈ D
with cf(κ′) = ω, there is a σ′ (in V) such that

(1) σ′ : N̄ ≺ N ,

(2) σ′(s̄, θ̄, κ̄, P̄, ~̄S, ~̄T ) = s, θ, κ,P, ~S, ~T ,

(3) HullN (κ ∪ ran(σ)) = HullN (κ ∪ ran(σ′)),
(4) supσ′“κ̄ = κ′.

Note that this works for any specified s̄, s. In other words, there is such a σ′ that
agrees with σ on any finite number of specified points.

Let α0 be such that Ω ∈ Sα0
. I will find an embedding σ′ as above and a master

condition 〈P,Q〉 ∈ P, in the sense that 〈P,Q〉 extends every condition in σ′“Ḡ.
Clearly, if G is P-generic over V with 〈P,Q〉 ∈ G, then σ′“Ḡ ⊆ G. This will show
that P is subcomplete. I will consider two cases separately, but in both cases, I will
define Q : Ω + 1 −→ ω1 by setting Q�Ω = Q̄ and Q(Ω) = Ω.
Case 1: α0 < Ω.

Let
δ̄ = P̄ (α0), δ = σ(δ̄)

Let κ′ ∈ D ∩ Tδ, and let σ′ be as above, with σ′(δ̄) = δ and supσ′“κ̄ = κ′ ∈ Tδ.
Define P : Ω −→ κ by

P (ξ) = σ′(P (ξ))

for ξ < Ω.
Then 〈P,Q〉 ∈ P~S,~T . Let’s go through the requirements of Definition 2.23:

1.,2. are clear. 3. is true because sup ran(Q) = Ω = dom(P ). For 4., let ξ ∈
dom(Q) = Ω + 1. If ξ < Ω, then let Q(ξ) ∈ Sα. Then Q̄(ξ) ∈ S̄α. So α ∈ dom(P̄ )
and sup P̄“(Q̄(ξ)) ∈ T̄P̄ (α). Let γ = (Q̄(ξ) + 1) ∪ (α + 1), and set p̄ = P̄ �γ. Then

p̄ ∈ N̄ , and in N̄ , it is the case that sup p̄“Q̄(ξ) ∈ T̄p̄(α). So by elementarity of

σ′, supσ′(p̄)“Q(ξ) ∈ Tσ′(p̄)(α), because Q̄(ξ) = Q(ξ) < Ω and P (ζ) = σ′(P̄ )(ζ)
for ζ < Ω. But σ′(p̄) = P �γ, and so, supP“Q(ξ) ∈ TP (α). If ξ = Ω, then
we have that Q(ξ) ∈ Sα0

and, by assumption, α0 < Ω, so α0 ∈ dom(P ), and
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supP“Q(ξ) = supP“Ω = supσ′“P̄“Ω = supσ′“κ̄ = κ′ ∈ Tδ = Tσ′(P̄ (α0)) by con-

struction, and σ′(P̄ (α0)) = P (α0), as wished. It is then clear that 〈P,Q〉 is a master
condition for σ′“Ḡ, because if 〈p̄, q̄〉 ∈ Ḡ, then σ′(p̄) ⊆ P and σ′(q̄) ⊆ Q.
Case 2: α0 ≥ Ω.

In this case, pick κ′ ∈ D ∩ T0 and find a σ′ as above with supσ′“κ̄ = κ′ ∈ T0.
Define Q : Ω + 1 −→ Ω + 1 as above, and define P : α0 + 1 −→ κ by

P (ξ) =

{
σ′(P̄ (ξ)) if ξ < Ω,
0 if Ω ≤ ξ ≤ α0

for ξ ≤ α0. It is then easily checked that 〈P,Q〉 is in P: points 1.-3. of Definition 2.23
are satisfied as in Case 1, and for condition 4., let ξ ∈ dom(Q) = Ω+1. If ξ < Ω, the
situation is as in Case 1, and if ξ = Ω, then Q(ξ) = Q(Ω) = Ω ∈ Sα0

. By definition
of P , α0 ∈ dom(P ) and supP“(Q(ξ)) = supP“Ω = σ′“κ̄ = κ′ ∈ T0 = TP (α0). So

〈P,Q〉 ∈ P, and clearly, 〈P,Q〉 extends every member of σ′“Ḡ. �

To draw the desired conclusion, I will use the characterization of SCFA given by
Fact 3.8.

Theorem 2.25. SCFA implies OSRω2
. In fact, SCFA(≤ω2) suffices - see Def. 3.1

and Fact 3.8.

Proof. Let ~T = 〈Tα | α < ω2〉 be a sequence of stationary subsets of ω2, each con-

sisting of ordinals of cofinality ω. Let ~S = 〈Sα | α < ω1〉 be a partition on ω1 into
disjoint stationary sets, and let P = P~S,~T . Let G be generic for P. Let M ≺ Hω3

with ω2 ⊆ M , so that M has size ω2, with ~S, ~T ∈ M . Let M also be equipped
with constant symbols for the countable ordinals. Let P be the union of the first
components of conditions in G, and Q the union of the second components. Then
in V[G], the following Σ1-statement about M holds: “there is a club C ⊆ ωM1 and
a function g : ω1 −→ ωM2 such that g is onto, and such that for every ζ ∈ C, if
α is such that ζ ∈ Sα, then sup g“ζ ∈ Tg(α).” This is witnessed by g = P and
C = ran(Q).

So, by SCFA, there is in V a model M̄ such that the same Σ1 statement is true
of M̄ , and there is an elementary embedding j : M̄ ≺ M . Let C̄, ḡ witness that

the statement holds for M̄ . Let ~̄S = j−1(~S), ~̄T = j−1(~T ). Let γ = ωM̄2 . Note

that ωM̄2 is the critical point of j and ωM̄1 = ω1, so that for α < ω1, S̄α = Sα,
and for α < γ, T̄α = Tα ∩ γ. Let e : ω1 −→ C̄ be the monotone enumeration of
C̄, and define h : ω1 −→ γ by h(ξ) = sup ḡ“e(ξ). Clearly, h witnesses that the
cofinality of γ is ω1. It follows now that for every α < γ, Tα ∩ γ is stationary in
γ. To see this, let d ⊆ γ be club, and let ḡ(ᾱ) = α. Let d̄ = h−1“d. Then d̄ is
club in ω1, so let ζ ∈ d̄ ∩ C̄ ∩ Sᾱ. By the properties of ḡ and C̄, it follows that
h(ζ) = sup ḡ“ζ ∈ T̄ḡ(α) = T̄α = Tα ∩ γ, and of course h(ζ) ∈ d since ζ ∈ d̄. �

3. A hierarchy of bounded subcomplete forcing axioms

In this section, I will consider bounded versions of SCFA and determine their
consistency strength. The study of bounded forcing axioms has proven fruitful
in many contexts. These axioms were introduced in [11] as follows. There is no
uniform terminology in the literature, and my notation, while a little verbose, is
hopefully hard to misunderstand.
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Definition 3.1. Let Γ be a class of forcings, and let κ, λ be cardinals. Then
BFA(Γ,≤κ,≤λ) is the statement that if P is a forcing in Γ, B is its complete Boolean
algebra, and A is a collection of at most κ many maximal antichains in B, each
of which has size at most λ, then there is a A-generic filter in B, that is, a filter
that intersects each antichain in A. If Γ is the class of proper, stationary set
preserving or subcomplete forcings, I write BPFA, BMM, BSCFA (respectively)
for BFA(Γ,≤ω1,≤ω1). In general, for a cardinal λ, I will write BFA(Γ,≤λ) for
BFA(Γ,≤ω1,≤λ). BSCFA(≤λ), BPFA(≤λ), etc., then have the obvious meaning.

What makes bounded forcing axioms so attractive is the fact that they can be
equivalently expressed as a statement about generic absoluteness.

Theorem 3.2 ([3, Thm. 5]). Let κ be a cardinal of uncountable cofinality, and let
P be a poset. Then BFA({P},≤κ,≤κ) is equivalent to Σ1(Hκ+)-absoluteness for P.
The latter means that whenever ϕ(x) is a Σ1-formula and a ∈ Hκ+ , then V |= ϕ(a)
iff for every P-generic g, V[g] |= ϕ(a).

3.1. Bounded subcomplete forcing axioms and reflecting cardinals. The
focus of [11] is of course the bounded forcing axiom for the class of proper forcings,
BPFA, and the main result of that paper is that BPFA is equiconsistent with the
existence of a reflecting cardinal, defined as follows.

Definition 3.3 ([11, Def. 2.2]). A regular cardinal κ is reflecting if for every a ∈ Hκ,
and every formula ϕ(x), the following holds: if there is a regular cardinal θ ≥ κ
such that Hθ |= ϕ(a), then there is a cardinal θ̄ < κ such that Hθ̄ |= ϕ(a).

It is pointed out in [11, Remark 2.3(2)] that “for all θ” in this definition can be
replaced by “for unboundedly many θ”. This means that if X is an unbounded class
of regular cardinals, then a regular cardinal κ is reflecting iff for every formula ϕ(x)
and every a ∈ Hκ, if there is a θ ∈ X such that Hθ |= ϕ(a), then there is a cardinal
θ̄ < κ such that Hθ̄ |= ϕ(a). This is not hard to see, because one can replace
ϕ(x) with the statement “there exists a regular cardinal µ such that ϕHµ(x)”. The
concept also doesn’t change if one drops the clause that θ be regular, and if it is
regular, one may request that θ̄ also be regular, etc., so it is very robust.

The idea of proof of the following lemma traces back to Todorčević, see [1,
Lemma 2.4], where Todorčević’s argument to show that BPFA implies that ω2 is
reflecting in L is given (originally, this was shown, by a different argument, in [11]).

Lemma 3.4. BSCFA implies that ω2 is reflecting in L.

Proof. We may assume that 0# does not exist, as otherwise, every Silver indis-
cernible is reflecting in L. Let κ = ω2, fix a ∈ Lκ = (Hκ)L, a formula ϕ(x), a
singular cardinal γ > κ, and let θ = γ+ = (γ+)L, by covering. By the remark after
Definition 3.3, it suffices to show that if Lθ |= ϕ(a), then there is an L-cardinal
θ̄ < κ such that Lθ̄ |= ϕ(a). I will show that there is θ̄ like this that’s regular in L.
So let’s assume that Lθ |= ϕ(a).

Let 〈Cξ | ξ is a singular ordinal in L〉 be the canonical global � sequence for L
([16]). It is Σ1-definable in L and has the properties that for every L-singular
ordinal ξ, the order type of Cξ is less than ξ, and if ζ is a limit point of Cξ, then ζ
is singular in L and Cζ = Cξ ∩ ζ.

Let B = {ξ < θ | κ < ξ < θ and cf(ξ) = ω}. Note that by covering, every ξ ∈ B
is singular in L, since a countable cofinal subset of ξ in V can be covered by a set
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in L of cardinality at most ω1, so that its order type will be less than κ, and hence
less than ξ. So Cξ is defined for every ξ ∈ B, and since the function ξ 7→ otp(Cξ) is
regressive, there is a stationary subset A of B on which this function is constant.

Since A consists of ordinals of cofinality ω and is stationary in a regular cardinal
greater than ω1, the forcing PA, which adds a normal function F : ω1 −→ A cofinal
in θ, is subcomplete – see [19, p. 134ff., Lemma 6.3]. Let G be generic for PA, and
let F : ω1 −→ A be the function corresponding to G.

In V[F ], the statement “there is an ordinal α and a set C such that Lα |= ϕ(a),
C is club in α, otp(C) = ω1, for every ξ ∈ C, Cξ is defined, and for all ξ, ζ ∈ C,
otp(Cξ) = otp(Cζ)” holds, as witnessed by α = θ and C = ran(F ). This is a Σ1

statement about the parameters ω1 and a. So by BSCFA (which is applicable as
PA is subcomplete), the same statement is true in V. Let θ̄, C̄ witness this. Since
ω1, a ∈ Hω2

, such witnesses for a Σ1 formula can be found in Hω2
, so we may take

θ̄ < ω2 = κ. The point is now that θ̄ must be regular in L. The reason is that
if θ̄ were singular in L, then Cθ̄ would be defined. Note that cf(θ̄) = ω1, since
otp(C̄) = ω1. So, letting C ′

θ̄
be the set of limit points of Cθ̄, C

′
θ̄
∩ C̄ is club in θ̄.

Now take ξ < ζ, both in C ′
θ̄
∩ C̄. Then, since ξ, ζ ∈ C̄, Cξ and Cζ have the same

order type, but since both are limit points of Cθ̄, Cξ = Cθ̄ ∩ ξ, which is a proper
initial segment of Cζ = Cθ̄ ∩ ζ.

So θ̄ is a regular cardinal in L, θ̄ < ω2, and HL
θ̄

= Lθ̄ |= ϕ(a), showing that ω2

is reflecting in L. �

Lemma 3.5. If κ is reflecting, then there is a subcomplete forcing that forces
BSCFA.

Proof. Instead of going through the usual proof, [2, Lemma 2.2] applies. It says
that if κ is a reflecting cardinal and Γ is a class of forcings such that

(1) Every P in Γ preserves ω1,

(2) If P ∈ Γ and 
P “Q̇ ∈ Γ”, then P ∗ Q̇ ∈ Γ,

(3) Whenever 〈〈Pα, Q̇α〉 | α < κ〉 is an iteration of posets in Vκ, with some
suitable support (RCS being a possibility), and Pκ is the corresponding
limit, the following hold:
(a) Pκ ∈ Γ,

(b) Pκ/Pα ∈ ΓVPα
, for all α < κ,

(c) if for all α < κ, Pα ∈ Vκ, then Pκ is the direct limit and satisfies the
κ-c.c.

(4) “P ∈ Γ” is expressible by a Σ2-formula,

then there is a poset P ∈ Γ that forces BFA(Γ).
When aiming to use this lemma with Γ being the class of subcomplete forcings,

the only point worth looking at closely here is that subcompleteness is a Σ2 property.
Recall that Definition 2.3 says that a forcing, let’s say here a complete Boolean
algebra B, is subcomplete if all sufficiently large θ verify its subcompleteness. Let’s
write ver(B, θ) to say that θ verifies the subcompleteness of B. Then, [19, Lemma

2.1] says that if θ′ > Hθ (and B ∈ Hθ), then the statement “ver(B, θ)” is absolute
in Hθ′ , and finally, [19, Lemma 2.4] says that if there is a θ with ver(B, θ), then
B is subcomplete. So “for all sufficiently large θ” in the original definition of
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subcompleteness can be replaced with “there is a θ”. Thus,

B is subcomplete

⇐⇒ ∃θ ver(B, θ)
⇐⇒ ∃θ′, θ,H,X (θ′ is a cardinal ∧H = Hθ′ ∧X = Hθ ∈ Hθ′ ∧ ver(B, θ)H)

Being a cardinal is Π1, and “H = Hθ′” is Σ2. For one just has to say that H is
transitive (which is Σ0), and that there is a Z such that for every x ∈ H, there is
a transitive y ∈ H with x ∈ y and a ξ < θ′ and an f ∈ Z such that f : ξ → y is
surjective, and for all ξ < θ′ and all functions g with domain ξ, if the range of g is
transitive, then it is in X. So, altogether, this last formula can be expressed in a
Σ2 way. �

So, putting Lemma 3.4 and 3.5 together results in:

Theorem 3.6. BSCFA is equiconsistent with the existence of a reflecting cardinal.

Note that as a result, BSCFA does not imply any failure of �, since the strength
of the failure of �ω1

is a Mahlo cardinal (Solovay showed that one can force to a
model where �ω1

fails from a model with a Mahlo cardinal, and Jensen showed
that if �ω1

fails, then ω2 is Mahlo in L), which is strictly stronger than a reflecting
cardinal (if κ is Mahlo, then there are stationarily many κ̄ < κ which are reflecting
in Vκ, see [2, Fact 2.1]).

Question 3.7. Does BSCFA have any combinatorial consequences? Does it imply
2ω ≤ ω2?

Note that even SCFA, being compatible with MM, doesn’t determine the size of
2ω, and it doesn’t determine whether ♦ holds or fails. There could be Souslin trees,
but it could also be that every Aronszajn tree is special.

3.2. Pushing the boundaries: BSCFA(≤ω2) and +1-reflecting cardinals. For
any class Γ of forcings, the principles BFA(≤κ) (see Definition 3.1) give closer and
closer approximations to MA(Γ), as κ increases; in fact, MA(Γ) is BFA(Γ,≤∞), or,
for all κ, BSCFA(≤κ). The following characterization of these axioms is easily seen
to be equivalent to the one given in [5, Thm. 1.3], see also [4].

Fact 3.8. BFA({Q},≤κ) is equivalent to the following statement: if M = 〈|M |,∈
, 〈Ri | i < ω1〉〉 is a transitive model for the language of set theory with ω1 many

predicate symbols 〈Ṙi | i < ω1〉, of size κ, and ϕ(x) is a Σ1-formula, such that 
Q
ϕ(M̌), then there is in V a transitive M̄ = 〈|M̄ |,∈, 〈R̄i | i < ω1〉〉 and an elementary
embedding j : M̄ ≺M such that ϕ(M̄) holds.

Miyamoto has analyzed the strength of these principles for proper forcing and
introduced the following large cardinal concept.

Definition 3.9 ([25, Def. 1.1]). Let κ be a regular cardinal, α an ordinal, and λ =
κ+α. Then κ is Hλ-reflecting, or I will say +α-reflecting, iff for every a ∈ Hλ and
any formula ϕ(x), the following holds: if there is a cardinal θ such that Hθ |= ϕ(a),
then the set of N ≺ Hλ such that

(1) N has size less than κ,
(2) a ∈ N ,
(3) if πN : N −→ H is the Mostowski-collapse of N , then there is a cardinal

θ̄ < κ such that Hθ̄ |= ϕ(πN (a))



14 GUNTER FUCHS

is stationary in Pκ(Hλ).

Clearly, being reflecting is the same as being +0-reflecting. The +1-reflecting
cardinals are also known as strongly unfoldable cardinals, introduced independently
in [31], and treated in [20]. In the context of bounded forcing axioms, it seems to
make the most sense to emphasize that they generalize reflecting cardinals, so I will
stick to calling them +1-reflecting.

It is shown in [25, Thm. 4.2] that BPFA(≤ω2) is equiconsistent with the exis-
tence of a +1-reflecting cardinal. The next goal is to show that the corresponding
statement is true of BSCFA(≤ω2) as well.

Lemma 3.10. The axiom BSCFA(≤ω2) implies that ω2 is +1-reflecting in L.

Proof. Let κ = ω2. As in the proof of [25, Thm. 4.2], we may assume that 0# does
not exist, since every Silver indiscernible is +1-reflecting, and it suffices to show
that if X ∈ L∩P(κ), ϕ(x) is a formula, γ is a singular cardinal, θ = (γ)+L (so that
θ = γ+V) and Lθ |= ϕ(X), then the set B of ordinals α < κ such that there is an
L-cardinal θ̄ < κ with Lθ̄ |= ϕ(X ∩ α) is stationary in κ.

So let C ⊆ κ be club in κ. While the proof of [25, Thm. 4.2] is a reworking of
the original argument from [11], I will argue along the lines of the proof of Lemma
3.4, and I will use some notation introduced in that proof.

Let 〈Cξ | ξ is a singular ordinal in L〉 be the canonical global � sequence for L.
As before, we can find a stationary set A ⊆ θ ∩ cof(ω) on which the function ξ 7→
otp(Cξ) is constant. Let F be a normal function added by the subcomplete forcing
PA, so that F : ω1 −→ A is cofinal in θ. Let M = 〈Hκ,∈, C,X, 0, 1, . . . , ξ, . . .〉ξ<ω1

.

Let g be generic over V[F ] for Col(ω1,M). In V[F ][g], the Σ1-statement Φ(M)
saying “there is an ordinal α > On ∩ M , a set D and a function h such that
Lα |= ϕ(ẊM ), D is club in α, otp(D) = ωM1 , h is a surjection from ωM1 onto the
universe of M , and for all ξ, ζ ∈ D, otp(Cξ) = otp(Cζ)” holds, as witnessed by
θ, ran(F ) and g. So according to the characterization of BSCFA(≤ω2) given by
Fact 3.8, there is in V a transitive M̄ = 〈|M̄ |,∈, C̄, X̄, 〈ξ | ξ < ω1〉〉 such that Φ(M̄)
holds, and an elementary embedding j : M̄ ≺M . Note that since M calculates ω1

correctly and thinks that it is the largest cardinal, it follows that ran(j) is transitive,

and hence that j is the identity. So letting κ̄ = OnM̄ , it follows that C̄ = C ∩ κ̄ and
X̄ = X ∩ κ̄. Let θ̄, D̄ and h̄ witness that Φ(M̄) holds. Then h̄ : ω1 −→ |M̄ | is onto,
so κ̄ < κ. So by elementarity, C̄ is unbounded in κ̄, and hence, κ̄ ∈ C. Moreover,
since M̄ ∈ Hω2 , θ̄ may be chosen to be less than ω2.

It follows as before that θ̄ is a regular cardinal in L. So, since by Φ(M̄), Lθ̄ |=
ϕ(X ∩ κ̄), it follows that κ̄ ∈ B ∩ C, showing that B is stationary. �

In [25, Thm. 3.1], it is shown that one can force BPFA(≤ω1+ξ) over a model
with a +ξ-reflecting cardinal κ such that (κ+ξ)κ = κ+ξ, with a countable support
iteration of proper forcings that is κ-c.c. and collapses κ to be ω2, assuming there
is a version of a Laver function suitable for +ξ-reflecting cardinals. This proof can
be made to work with subcomplete forcings instead of proper forcings, and with
revised countable support instead of countable support.

In [25, Thm. 1.5], Miyamoto shows that such a Laver function for a +ξ-reflecting
cardinal κ such that (κ+ξ)κ = κ+ξ can be added by a κ+-c.c. forcing that preserves
that κ is +ξ-reflecting, and that (κ+ξ)κ = κ+ξ, assuming there is no inaccessible
cardinal above κ. Rather than going through the details of these constructions
now, I will later show that +1-reflecting cardinals have a different characterization
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in terms of partial remarkability (see Lemma 4.9). Lemma 4.13 shows that one can
force an axiom called wBSCFA(≤ω2) over a model with a +1-reflecting cardinal, but
wBSCFA(≤ω2) is equivalent to BSCFA(≤ω2), see Observation 4.7. So, combining
this with Lemma 3.10, one arrives at the desired equiconsistency.

Theorem 3.11. BSCFA(≤ω2) is equiconsistent with the existence of a +1-reflecting
cardinal.

I do also want to state Miyamoto’s result in the context of subcomplete forcing:

Fact 3.12 (Miyamoto). Suppose that κ is +ξ-reflecting, with (κ+ξ)κ = κ+ξ, and
that there is no inaccessible cardinal above κ. Then there is a subcomplete forcing
extension in which BSCFA(ω1+ξ) holds.

Finally, I would like to say something about the effects of the bounded versions
of SCFA on the failure of weak square.

Theorem 3.13. Let τ > ω1 be regular. Then BSCFA(≤τ) implies SFPτ , introduced
in Theorem 2.7.

Proof. I use the characterization of BSCFA(≤τ) given in Fact 3.8. Let ~A and ~D be

given. Let M = 〈H,∈, ~A, ~D, ~ξ〉ξ<ω1
, where τ ⊆ H ≺ Hτ and H has size τ . Let P

be the forcing to add a normal, cofinal function f : ω1 −→ τ such that for every
i < ω1, f�Di : Di −→ Ai. Jensen showed that this forcing is subcomplete, see [17,
§3]. Let G be P-generic. Then in V[G], the statement that there is a normal function

f : ωM1 −→ OnM , cofinal in OnM , such that for every i < ω1, f�Di : Di −→ Ai
holds, and it is a Σ1-statement about M . Using the characterization given in Fact

3.8 of BSCFA(≤τ), let M̄ = 〈|M̄ |,∈, ~̄A, ~̄D, 〈ξ | ξ < ω1〉, τ̄〉, j ∈ V be such that
j : M̄ ≺ M is elementary, M̄ is transitive, and such that the same statement is

true in V of M̄ . Note that ωM̄1 = ω1. Let f̄ : ω1 −→ OnM̄ be normal and cofinal.
Clearly, j ◦ f̄ is continuous, because j is continuous at limits of M̄ -cofinality ω, and
the range of f̄ consists of ω-cofinal points (in M̄). And clearly, if ξ ∈ Di, then
ξ ∈ D̄i (since j�ω1 = id), which implies that f̄(ξ) ∈ Āi, so j(f̄(ξ)) ∈ Di. So j ◦ f̄ is
as wished. �

So, remembering Observation 2.8 and Lemmas 2.9 and 2.10, one arrives at the
following.

Corollary 3.14. Let τ be a cardinal. Then BSCFA(≤τ+) implies the failure of
�τ,µ, for all µ < cf(τ), and if τ is singular with cf(τ) ≤ ω1, then it implies the
failure of �τ,µ for all µ < τ .

4. Weak forcing axioms

The weak proper forcing axiom, wPFA, was introduced in [4]. I will add some
generality, by considering versions of this axiom for other classes of forcing, and by
introducing bounded versions. First, let’s deal with the unbounded forms of the
axiom.

4.1. The weak forcing axiom and remarkable cardinals. The idea is to turn
the characterization given in Fact 3.8 into a definition, saying that wPFA holds if it
holds for every proper forcing Q, except that the requirement that the cardinality
of M be κ is dropped, and the embedding j is only required to exist in some forcing
extension of V, not necessarily in V. This move from embeddings existing in V
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to ones that can be added by forcing is similar to the move from classical large
cardinals to virtual large cardinals (see [4]), but in the context of forcing axioms.
I want to add some generality here, and consider the version of the axiom for
arbitrary classes of forcings, instead of only proper forcings. Later, the class of
subcomplete forcings will become focal.

Definition 4.1. Let Γ be a class of forcings. The weak forcing axiom for Γ, wFA(Γ),
says that whenever M = 〈|M |,∈, R0, R1, . . . , Ri, . . .〉i<ω1

is a transitive model for a

language L with ω1 many predicates 〈Ṙi | i < ω1〉 and the binary relation symbol
∈̇, and if ϕ(x) is a Σ1-formula and P is a forcing in Γ such that P forces that ϕ(M̌)
holds, then there is (in V) a transitive model M̄ = 〈|M̄ |,∈, . . . , Ri, . . .〉i<ω1

for L
such that ϕ(M̄) holds (in V), and such that in VCol(ω,|M̄ |), there is an elementary
embedding j : M̄ ≺M .

If Γ is the class of subcomplete forcings, then wFA(Γ) is denoted wSCFA . Simi-
larly, the axiom for the class of proper forcings is abbreviated by wPFA.

It is shown in [4] that wPFA is equiconsistent with the existence of a remar-
kable cardinal. Remarkable cardinals were introduced by Schindler in [27], and
an alternative characterization of remarkability was given in [28]. As in [4], this
characterization can be stated as follows.

Definition 4.2. A regular cardinal κ is remarkable if for every regular λ > κ,
there is a regular cardinal λ̄ < κ such that in VCol(ω,Hλ̄), there is an elementary
embedding j : HV

λ̄
≺ HV

λ with j(crit(j)) = κ.

The next goal is to show that wSCFA is also equiconsistent with a remarkable
cardinal. Here is one direction of this equiconsistency.

Lemma 4.3. wSCFA implies that ω2 is remarkable in L.

Proof. I again use the idea of proof of Lemmas 3.4 and 3.10, as well as the notation
introduced there. We may again assume that 0# does not exist because otherwise
all V-cardinals are remarkable in L and there is nothing to show.

Let κ = ωV
2 , let γ be a singular cardinal, and let θ = γ+ = (γ+)L. By [4,

Proposition 2.4.(4)], it suffices to show that there is a θ̄ < κ that is regular in L,

such that in LCol(ω,θ̄), there is a remarkable embedding j : Lθ̄ ≺ Lθ (i.e., such that
j(crit(j)) = κ).

Let B = {ξ < θ | κ < ξ and cf(ξ) = ω}. Then for all ξ ∈ B, ξ is singular in L (by

covering), and so, Cξ is defined and has order type less than ξ, where ~C is the global
� sequence of L. Let A ⊆ B be stationary such that the function ξ 7→ otp(Cξ) is
constant on A. Let PA be the subcomplete forcing to shoot a club of order type ω1

through A, and let F be a PA-generic normal, cofinal function, F : ω1 −→ A.
Let λ be some regular cardinal, greater than all the objects considered so far,

and let M = 〈Hλ,∈, θ, 0, 1, . . . , ξ, . . .〉ξ<ω1
. Let g be Col(ω1,M)-generic over V[F ].

In V[F ][g], the statement “there is a surjective function h : ωM1 −→ M and a club

C ⊆ θ̇M of order type ω1 such that for all ξ, ζ ∈ C, otp(Cξ) = otp(Cξ) (and both
are defined)” is true, and this is a Σ1-statement about M . So, by wSCFA, there
is in V a transitive model M̄ = 〈H̄,∈, θ̄, 0, 1, . . . , ξ, . . .〉ξ<θ, a surjective function

ḡ : ωM̄1 −→ M̄ , and a club C̄ ⊆ θ̄ of order type ω1 such that for all ξ, ζ ∈ C̄,

otp(Cξ) = otp(Cζ), and such that in VCol(ω,M̄), there is an elementary embedding

σ : M̄ ≺M . Clearly, ωM̄1 = ω1, and hence, M̄ ∈ Hω2
and θ̄ < ω2 = κ.
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Let j = σ�Lθ̄, so that j : Lθ̄ ≺ Lθ is elementary.
It follows that θ̄ is a regular cardinal in L for otherwise Cθ̄ would be defined,

and the usual argument shows that C ′
θ̄
∩ C̄ could have at most one element, while

it has to be club, as θ̄ has cofinality ω1.
The rest of the argument is now straightforward, but let’s go through the details.

We want to show that j is as wished (except that it exists in VCol(ω,|M̄ |), rather

than in LCol(ω,|M̄ |)). To see that j(crit(j)) = κ, first note that since constants for
the countable ordinals were included in M and M̄ , it follows that j�(ωV

1 ) is the

identity. So crit(j) = crit(σ) = ωM̄2 , because ωM̄1 = ωM1 = ω1, and so j(crit(j)) =

j(ωM̄2 ) = ωM2 = ω2 = κ.

So, in VCol(ω,θ̄), there is an embedding j : Lθ̄ ≺ Lθ with θ̄ ∈ CardL and
j(crit(j)) = κ. But then, there is such an embedding in LCol(ω,β) as well, by
absoluteness, since there is a tree searching for such an embedding in LCol(ω,β), and
it is ill-founded in VCol(ω,β), hence in LCol(ω,β). �

Lemma 4.4. Let κ be remarkable. Then wSCFA holds in a forcing extension by a
subcomplete forcing.

Proof. The proof of [4, Theorem 6.3] carries over verbatim. Instead of a countable
support iteration, one has to use a revised countable support iteration, and instead
of proper forcings, one uses subcomplete ones. There is one place where one has to
use the fact that subcompleteness is a local property. I leave it to the reader to go
through the steps of the argument. I will also give a detailed argument for a more
general equiconsistency result, see Lemma 4.13. �

Taken together, the previous two lemmas show the following.

Theorem 4.5. wSCFA is equiconsistent with the existence of a remarkable cardinal.

4.2. A hierarchy of weak bounded forcing axioms. Here, I will study bounded
versions of the weak forcing axiom, defined as follows.

Definition 4.6. Let Γ be a class of forcings, and let κ be an uncountable cardinal.
The weak κ-bounded forcing axiom for Γ, wBFA(Γ,≤κ), says that whenever M =
〈|M |,∈, . . . , Ri, . . .〉i<ω1

is a transitive model of size κ for a language L with ω1

many predicates 〈Ṙi | i < ω1〉 and the binary relation symbol ∈̇, and if ϕ(x) is a
Σ1-formula and P is a forcing in Γ that forces that ϕ(M̌) holds, then there is (in
V) a transitive model M̄ = 〈|M̄ |,∈, 〈R̄i | i < ω1〉〉 for L such that ϕ(M̄) holds (in

V), and such that in VCol(ω,|M̄ |), there is an elementary embedding j : M̄ ≺M .
wBFA(Γ) is wBFA(Γ,≤ω1). If Γ is the class of subcomplete forcings, then

wBSCFA is wBFA(Γ), and wBSCFA(≤κ) is wBFA(Γ,≤κ). Similarly, we abbrevi-
ate these axioms for the class of proper forcings by wBPFA and wBPFA(≤κ).

wBFA(Γ, <κ) says that wBFA(Γ,≤ κ̄) holds for every κ̄ < κ, and wBSCFA(<κ),
wBPFA(<κ) have the obvious meaning.

Let’s first observe some simple relationships between the bounded weak forcing
axioms and the bounded forcing axioms.

Observation 4.7. Let Γ be a class of forcings.

(1) For any cardinal κ, BFA(Γ,≤κ) implies wBFA(Γ,≤κ).
(2) wBFA(Γ) is equivalent to BFA(Γ).
(3) wBFA(Γ,≤ω2) is equivalent to BFA(Γ,≤ω2).
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Proof. For 1., this is obvious, since the characterization of BFA(Γ,≤κ) given in Fact
3.8 clearly implies wBFA(Γ,≤κ).

For 2, the direction from right to left follows from 1. For the converse, assume
wBFA(Γ). To prove BFA(Γ), I use the characterization of BFA(Γ) given in Theorem
3.2. So let ϕ(x) be a Σ1-formula, a ∈ Hω2

, P ∈ Γ, G generic for P over V, and
assume that in V[G], ϕ(a) holds. In V, let TC({a}) ∈ X ≺ Hω2

, ω1 ⊆ X, and

let the size of X be ω1. Let M = 〈X,∈, a, ~ξ〉ξ<ω1
. Then there is a Σ1 statement

ψ(x) such that ψ(M) expresses that ϕ(a) holds. So ψ(M) is true in V[G], and by

wBFA(Γ), there is a M̄ = 〈X̄,∈, ā, ~̄ξ〉 such that ψ(M̄) holds (which means that ϕ(ā)
holds), and there is an H generic over V for some forcing, such that in V[H], there

is an elementary j : M̄ ≺M . By choice of ~ξ, j�ω1 + 1 is the identity, hence ā = a.
So ϕ(a) holds, and we are done.

For 3, the direction from right to left again follows from 1. For the converse,
assume wBFA(Γ,≤ω2) holds. To prove BFA(Γ,≤ω2), I again use the characteriza-

tion given by Fact 3.8. So let M = 〈|M |,∈, ~R〉 be a transitive model of size at
most ω2, ϕ(x) a Σ1-formula, P ∈ Γ a forcing, and G generic for P over V, such
that ϕ(M) holds in V[G]. If M has size ω1, then we’re done by 2., so we may
assume that M has size ω2. Then, let E ⊆ ω2 × ω2 code M , in the sense that
〈ω2, E〉 is extensional and well-founded, and such that if πE is the collapsing iso-

morphism, then πE : 〈ω2, E〉 → 〈|M |,∈〉. Let ~R′ be the pullbacks of the ~R, so that

πE : M̃ = 〈ω2, E, ~R
′〉 −→M is an isomorphism.

Let X ≺ Hω3
have size ω2, with M̃ ∈ X and ω2 ⊆ X. Clearly, X is transitive.

Let M ′ = 〈X,∈, M̃ , ~ξ〉ξ<ω1
. Let ϕ′(x) be the canonical Σ1-formula such that ϕ′(M ′)

expresses that ϕ(M) holds. So ϕ′(x) says that x is a model in the language of M ′,

and that if N is the structure that arises by collapsing 〈|x|, Ėx〉 (where |x| is the

universe of x and Ėx is x’s interpretation of Ė) and moving the predicates ( ~̇R′)x,
then ϕ(N) holds.

So ϕ′(M ′) holds in V[G], and by wBFA(ω2), there is a transitive model M̄ ′ such
that ϕ′(M̄ ′) holds and such that in some V[H], there is an elementary j : M̄ ′ ≺M ′.
Let M̄ ′ = 〈X̄,∈, ˜̄M, ~ξ〉ξ<ω1

.

The constants ~ξ ensure that j�(ω1 + 1) is the identity, so that j�ωM̄
′

2 is the

identity. Let M̄ be the transitive structure isomorphic to ˜̄M , with the isomorphism

πĒ : ˜̄M −→ M̄ . Since ϕ′(M̄ ′) holds, it follows that ϕ(M̄) holds, and it is obvious
that πE ◦ π−1

Ē
: M̄ ≺M is an elementary embedding that exists in V. �

4.3. Weak bounded forcing axioms and remarkably reflecting cardinals.
I would like to establish a precise correspondence between wBSCFA(≤λ) and a
suitably weakened notion of remarkability.

Definition 4.8. Let κ be an inaccessible cardinal and let λ ≥ κ be a cardinal. κ is
remarkably ≤λ-reflecting if the following holds: for any X ⊆ Hλ and any formula
ϕ(x), if there is a regular cardinal θ > λ such that 〈Hθ,∈〉 |= ϕ(X), then there are
cardinals κ̄ ≤ λ̄ < θ̄ < κ such that θ̄ is regular, and there is a set X̄ ⊆ Hλ̄ such
that 〈Hθ̄,∈〉 |= ϕ(X̄), and a generic embedding j : 〈Hλ̄,∈, X̄, κ̄〉 ≺ 〈Hλ,∈, X, κ〉
(meaning that j exists in VCol(ω,Hλ̄)) such that j�κ̄ = id.
κ is remarkably <λ-reflecting iff it is remarkably ≤λ̄-reflecting, for every cardinal

λ̄ < λ with κ ≤ λ̄.
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Note that in the notation of the definition, one may of course allow ϕ to have
more than one free variable, and one may use finitely many sets X0, . . . , Xn−1 ⊆ Hλ

as parameters. If λ is regular, one may insure that λ̄ is regular by using λ as a
parameter in ϕ, and adding the statement that λ is regular to ϕ(X). Note also that
if κ < λ, then it follows that κ̄ = crit(j) and j(κ̄) = κ, and if κ = λ, then κ̄ = λ̄,
and hence j = id. So in the case that κ = λ, we have that 〈Hκ̄,∈, X̄〉 ≺ 〈Hκ,∈, X〉,
and hence X̄ = X ∩Hκ̄. The following lemma is not used in the rest of the paper,
and is included here to establish some context.

Lemma 4.9. Let κ be an inaccessible cardinal. The following are equivalent:

(1) κ is +1-reflecting,
(2) κ is remarkably ≤κ-reflecting.

Proof. 1 =⇒ 2: Let X ⊆ Hκ. Let θ > κ be regular, and suppose that 〈Hθ,∈〉 |=
ϕ(X). Let θ′ > θ, X ′ = Hκ, θ′ large enough that Hθ ∈ Hθ′ . Then in 〈Hθ′ ,∈〉,
the following statement ψ(X,X ′) holds: “there are regular cardinals µ < ν such
that 〈Hν ,∈〉 |= ϕ(X) and X ′ = Hµ”. This is witnessed by µ = κ and ν = θ.
Since κ is +1-reflecting, we can let Y ≺ 〈Hκ+ ,∈, X,X ′〉 have size less than κ,
Y ∩ κ ∈ κ, π : Y −→ H be the Mostowski-collapse, and θ̄′ < κ be a cardinal such
that 〈Hθ̄′ ,∈〉 |= ψ(X̄, X̄ ′), where X̄, X̄ ′ = π(X,X ′). Let κ̄, θ̄ witness that ψ(X̄, X̄ ′)

holds in 〈Hθ̄′ ,∈〉. Then X̄ ′ = (Hκ̄)H
′
θ = Hκ̄ and 〈Hθ̄,∈〉 |= ϕ(X̄), where θ̄ is regular

in Hθ′ , and hence in V. Since Y ∩κ ∈ κ, it follows that π�Hκ̄ = id and X̄ = X∩Hκ̄.
So we get that 〈Hκ̄,∈, X̄〉 ≺ 〈Hκ,∈, X〉.

2 =⇒ 1: Let a ∈ Hκ+ , let ϕ(x) be a formula and let θ be a cardinal such that
〈Hθ,∈〉 |= ϕ(a). Let B ⊆ Hκ+ . We have to find a Y ≺ 〈Hκ+ ,∈, a, B〉 of size less
than κ such that Y ∩κ ∈ κ, and such that if π : Y −→ H is the Mostowski collapse
of Y , then there is a cardinal θ̄ < κ such that 〈Hθ̄,∈〉 |= ϕ(π(a)).

Let M = 〈Z,∈, a, B ∩ Z〉 ≺ 〈Hκ+ ,∈, a, B〉 such that Z has size κ and κ ⊆
Z. Note that Z is transitive. Let f : κ −→ Z be a bijection, and let E =
{〈α, β〉 | f(α) ∈ f(β)}, α0 = f−1(a), B′ = f−1“B, and f ′ = f ∩ (κ × κ). Let
N = 〈Hκ,∈, E,B′, α0, f

′〉.
Let θ′ > θ be a regular cardinal with Hθ ∈ Hθ′ . Let ϕ′(γ, e, ξ) be the statement

saying: 〈γ, e〉 is extensional and well-founded, ξ ∈ γ, and there is a cardinal ν
such that if σ is the Mostowski collapse of 〈γ, e〉, then 〈Hν ,∈〉 |= ϕ(f(ξ)). Then
〈Hθ′ ,∈〉 |= ϕ′(κ,E, α0). Since κ is remarkably ≤κ-reflecting, there is a regular
θ̄′ < κ and a cardinal κ̄ < θ̄′ such that, letting Ē = E ∩ Hκ̄, B̄′ = B ∩ Hκ̄,
f̄ ′ = f ′ ∩ Hκ̄, we have that 〈Hθ̄′ ,∈〉 |= ϕ′(κ̄, E ∩ Hκ̄, α0) and such that N̄ =
〈Hκ̄,∈, Ē, B̄′, α0, f̄

′〉 ≺ N .
Let f̄ : 〈κ̄, Ē〉 −→ 〈Z̄,∈〉 be the Mostowski collapse, where Z̄ is transitive.

Let B̄ = f̄“B̄′, ā = f̄(α0), M̄ = 〈Z̄,∈, ā, B̄〉, and consider the map j = f ◦
f̄−1 : Z̄ −→ Z. It follows that j : M̄ ≺ M is elementary, because M̄ |= ψ(~a)
iff N̄ |=“〈κ̄, Ē, B̄′〉 |= ψ(f̄−1(~a))” iff N |=“〈κ,E,B′〉 |= ψ(f̄−1(~a))” iff M |=
ψ(f(f̄−1(~a))).

Let Y = ran(j) = f“κ̄ ≺ M ≺ 〈Hκ+ ,∈, a, B〉. Note that a = f(α0) ∈ Y , and
that Y ∩ κ = κ̄. This is because if γ ∈ Y ∩ κ, then, letting γ = f(δ), with δ < κ̄,
it follows that γ is definable from δ in N , since f ′ is available as a predicate. But
since N̄ ≺ N , γ is an ordinal in the domain of N̄ , hence less than κ̄. Vice versa,
if γ = f(δ) < κ̄, then δ is definable from γ in N , using the predicate f ′, hence the
same is true in N̄ , since γ is in the domain of N̄ , so δ < κ̄, so γ ∈ f“κ̄ = Y .
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Now let θ̄ witness that 〈Hθ̄′ ,∈〉 |= ϕ′(κ̄, E ∩Hκ̄, α0), i.e., let θ̄ be a cardinal less
than θ̄′ such that 〈Hθ̄,∈〉 |= ϕ(f̄(α0)). Note that f̄(α0) = j−1(a). We’re done,
since j−1 is the Mostowski-collapse of Y . �

It is possible to make sense of the concept of κ being remarkably ≤λ-reflecting
also for λ < κ, in which case one could let κ̄ = λ̄ = κ = λ and X̄ = X in the
definition. The result is that κ is reflecting iff κ is remarkably <κ-reflecting.

Lemma 4.10. Suppose α < κ and assume that κ has the following properties:

(1) κ is reflecting,
(2) for every A ⊆ κ, there is a cardinal λ̄ < κ, an Ā ⊆ Hλ̄, and a generic

embedding j : 〈Hλ̄,∈, Ā〉 ≺ 〈Hκ+α+1 ,∈, A〉 with j(crit(j)) = κ.

Note: The assumptions of the lemma are of course satisfied if κ is remarkably
≤κ+α+1-reflecting. Then the set of κ̄ < κ such that κ̄ is remarkably ≤κ̄+α-reflecting
is stationary in κ.

Proof. Let C ⊆ κ be club. Let λ = κ+α+1, λ̄ < κ, j : 〈Hλ̄,∈, C̄〉 ≺ 〈Hλ,∈, C〉 a
generic embedding with κ̄ = crit(j) and j(κ̄) = κ. It follows that κ̄ ∈ C. So we’re
done if we can show that κ̄ is remarkably κ̄+α-reflecting. Note that λ̄ = κ̄+α+1,
because in Hλ, α is definable as the order type of the cardinals greater than κ,
so α ∈ ran(j), and since α < κ, j−1(α) = α. Now let X ⊆ Hκ̄+α , let ϕ(x)
be a formula, and suppose there is a regular cardinal θ such that Hθ |= ϕ(X).
Since κ is reflecting, we may pick θ < κ. Note that X ∈ Hλ̄. Hence, the following
statement is true in Hλ: there is an X̄, a regular λ′ < j(κ̄) and a generic embedding
j′ : 〈Hλ′ ,∈, X̄〉 ≺ j(〈Hκ̄+α ,∈, X〉) with j′(crit(j′)) = j(κ̄) and a θ′ < j(κ̄) such
that 〈Hθ′ ,∈〉 |= ϕ(X̄). This is witnessed by X̄ = X, λ′ = κ̄+α, j′ = j�Hκ̄+α and
θ′ = θ. So, by elementarity, the corresponding statement is true in Hλ̄, with the
parameters moved by j−1: there is an X̄, a regular λ′ < κ̄ and a generic embedding
j′ : 〈Hλ′ ,∈, X̄〉 ≺ 〈Hκ̄+α ,∈, X〉 with j′(crit(j′)) = κ̄, and a regular θ′ < κ̄ such that
〈Hθ′ ,∈〉 |= ϕ(X̄). Thus, κ̄ is remarkably ≤κ̄+α-reflecting. �

The next goal is to establish that the consistency strengths of the levels of the
bounded weak subcomplete forcing axiom hierarchy are precisely the steps in the
hierarchy of the remarkably reflecting cardinals. Here is one direction of this cor-
respondence.

Lemma 4.11. Suppose that λ ≥ ω2 is a cardinal such that wBSCFA(≤λ) holds.
Then ω2 is remarkably ≤λ-reflecting in L.

Proof. As before, we may assume that 0# does not exist. Fix a formula ϕ(x),
a set X ⊆ Lλ and a regular cardinal θ > λ such that 〈Lθ,∈〉 |= ϕ(X) holds.

Let M ≺ 〈Hλ,∈, X, ~ξ〉ξ<ω1
have size λ, with λ ⊆ M . Note that since X ⊆ Lλ,

ẊM = X. Let A ⊆ θ be a stationary set consisting of ω-cofinal ordinals, on which

ξ 7→ otp(Cξ) is constant, where ~C is the global � sequence of L. Let F be generic

for PA over V. Let g be Col(ω1,M)V[F ]-generic over V[F ]. In V[F ][g], the following
statement Φ(M) holds: there are an ordinal θ′, a set C and a function g′ such

that θ′ > OnM , C is club in θ′, otp(C) = ωM1 , for every ξ ∈ C, Cξ is defined, for

all ξ, ξ′ ∈ C, otp(Cξ) = otp(Cξ′), Lθ′ |= ϕ(ẊM ), Lθ′ |=“OnM is a cardinal” and
g′ : ω1 −→M is a surjection. The truth of Φ(M) in V[F ][g] is witnessed by θ′ = θ,
C = ran(F ) and g′ = g.
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By wBSCFA(≤λ), let M̄ = 〈H,∈, X̄, ~ξ〉ξ<ω1
be transitive such that Φ(M̄) holds

and such that there is a generic elementary embedding j′ : M̄ ≺ M . As before,

ωM̄1 = ω1, and by Φ(M̄), M̄ ∈ Hω2
. Let λ̄ = OnM̄ < κ. Let θ̄, C̄, ḡ witness that

Φ(M̄) holds. It follows by familiar arguments that θ̄ is a regular cardinal in L, so
that in particular, Lθ̄ = HL

θ̄
. Moreover, by Φ(M̄), Lθ̄ |= ϕ(X̄), and λ̄ is a cardinal

in Lθ̄ and hence in L. Letting j = j′�Lλ̄, it follows that j : 〈Lλ̄,∈, X̄〉 ≺ 〈Lλ,∈, X〉
is elementary, and that j(crit(j)) = κ, since crit(j) = ωM̄2 . Such an embedding

must then exist in LCol(ω,θ̄), because a tree searching for such an embedding exists
in this model, as X̄ and X are in L. This tree is ill-founded, as witnessed by j. �

Working towards the converse, when forcing wBSCFA(≤λ) over a model with a
remarkably ≤λ-reflecting cardinal, I will want to use an appropriate version of a
Menas function, as defined in the following lemma.

Lemma 4.12. If κ is remarkably ≤ λ-reflecting (λ ≥ κ), then the fast function
forcing (due to Woodin, and exposited in [12]) is κ-c.c., preserves cardinals and
the continuum function, preserves that κ is remarkably ≤λ-reflecting, and adds
a “remarkably reflecting Menas function” f , meaning that f is a partial function

from κ to κ such that the following holds in V[f ]: for every X ⊆ H
V[f ]
λ and every

formula ϕ(x), if there is a regular θ > λ such that H
V[f ]
θ |= ϕ(X), then there are

κ̄ ≤ λ̄ < θ̄ < κ and an X̄ ⊆ HV[f ]

λ̄
such that

(∗) θ̄ is regular, H
V[f ]

θ̄
|= ϕ(X̄), f(κ̄) = θ̄, and there is a generic embedding

j : 〈HV[f ]

λ̄
,∈, X̄, κ̄〉 ≺ 〈HV[f ]

λ ,∈, X, κ〉 with j�κ̄ = id.

Note: All that is needed in the application is that f(κ̄) ≥ λ̄.

Proof. The fast function forcing at κ, Fκ, consists of partial functions p from a
subset of κ of size less than κ to κ such that each γ ∈ dom(p) is an inaccessible

cardinal, is closed under p, and is such that p�γ < γ. The ordering is reverse
inclusion. It is shown in [12] that Fκ is κ-c.c., preserves κ as an inaccessible cardinal

and doesn’t change the continuum function. To prove the conclusion, let ḟ be the
canonical Fκ-name for the generic fast function, i.e., the union of the conditions in
the generic filter. Suppose the conclusion fails. Then there is a condition p, an Ẋ,

a regular cardinal θ and a formula ϕ(x) such that p forces that Ẋ ⊆ HV[ḟ ]

λ̌
, that θ̌

is regular and that H
V[ḟ ]

θ̌
|= ϕ(Ẋ), but also that there are no κ̄ ≤ λ̄ < θ̄, X̄ ⊆ HV[f ]

λ̄

such that (∗) holds. Since Fκ ⊆ Hκ, Ẋ may be chosen so that Ẋ ⊆ Hλ. Then

the statement Φ(Fκ, p, Ẋ, κ) expressing that p forces with respect to Fκ that ϕ(Ẋ)
holds and that κ is inaccessible, is true in Hθ, and it involves only parameters
which are subsets of Hλ. Thus, by the fact that κ is remarkably ≤λ-reflecting,

there are κ̄ ≤ λ̄ < θ̄ < κ, F̄, p̄, ˙̄X and a generic j such that Hθ̄ |= Φ(F̄, p̄, ˙̄X, κ̄) and

j : 〈Hλ̄,∈, F̄, p̄, ˙̄X, κ̄〉 ≺ 〈Hλ,∈,Fκ, p, Ẋ, κ〉, where j�κ̄ = id. Let τ be a Col(ω,Hλ̄)-
name for j such that 1l forces that τ behaves this way.

Since τh�κ̄ = id in V[h], whenever h is Col(ω,Hλ̄)-generic, it follows that p̄ = p,
and clearly, F̄ = Fκ̄. Note that κ̄ is inaccessible, and hence, p∗ = p ∪ 〈κ̄, θ̄〉 ∈ Fκ
is a condition extending p. Now let G 3 p∗ be Fκ-generic over V, and let h be
Col(ω,Hλ̄)-generic over V[G]. Let f =

⋃
G, so f(κ̄) = θ̄. It follows that f�κ̄ is
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Fκ̄-generic, and clearly, j = τh lifts to

j′ : 〈Hλ̄[f�κ̄],∈, ˙̄Xf�κ̄, κ̄〉 ≺ 〈Hλ[f ],∈, ˙̄X,κ〉

and of course, j′�κ̄ = id. One might be worried here about the definability of the
forcing relation inside Hλ̄/Hλ if λ/λ̄ happen to be singular, but instead of pondering
this, one may just add the forcing relation for Hλ as a predicate Y , in addition to
X, and add to Φ the statement that Y is the forcing relation wrt. Fκ over Hλ. One
then gets, in addition, a Ȳ coding the forcing relation wrt. F̄ over Hλ̄, so j moves
the forcing relation correctly, and hence, it lifts to j′ as described.

Let θ̄∗ be the next inaccessible cardinal greater than θ̄. It follows then that
the part of Fκ below p∗ is isomorphic to Fκ̄ × Fθ̄∗,κ, where Fθ̄∗,κ consists of those

conditions in Fκ whose domain is contained in [θ̄∗, κ) (see [12]). The forcing Fθ̄∗,κ is

<θ̄∗-closed, thus, Hθ̄ = H
V[f�[κ̄,κ)]

θ̄
, and since Pκ̄ ∈ Hθ̄, Hθ̄[f�κ̄] = H

V[f ]

θ̄
. Similarly,

Hθ[f ] = H
V[f ]
θ , Hλ̄[f�κ̄] = H

V[f ]

λ̄
and Hλ[f ] = H

V[f ]
λ . So we have achieved exactly

the situation that p forced not to occur, a contradiction. �

As expected, here is the converse to Lemma 4.11. The proof is very different
from the argument that one can force over a model with a remarkable cardinal to
obtain wPFA given in [4]. The issue is that the forcings used to make Σ1 facts about
transitive models of size λ true may be very large, and hence, the remarkably ≤λ-
reflecting cardinal cannot be used to anticipate them. Only the transitive models
can be anticipated.

Lemma 4.13. Let κ be an inaccessible cardinal. There is a κ-c.c. forcing that is
subcomplete, and is such that for every λ ≥ κ, if κ is remarkably ≤λ-reflecting,
then wBSCFA(≤λ) holds in the extension.

Proof. The first step is to force to add a remarkably reflecting Menas function f ,
using the fast function forcing from Lemma 4.12, which is κ-c.c. Note that the
fast function forcing is much more than countably closed, and in particular, it is
subcomplete. Note also that it depends only on κ, not on λ.

Similarly, the second forcing will only depend on f , so it also will be independent
of λ, and will produce a model of wBSCFA(≤λ) whenever κ is remarkably ≤λ-
reflecting. As a result, if κ is fully remarkable, then the iteration I am about to
describe will force wSCFA.

We may work in a universe where κ is ≤λ-remarkably reflecting and f is a
remarkably reflecting Menas function. The forcing Pκ will be the result of a length
κ iteration, 〈〈Pα | α ≤ κ〉, 〈Q̇α | α < κ〉〉, with revised countable support, which is
defined by recursion. For α < κ, Pα will be in Vκ, and by standard facts on revised
countable support iterations, Pκ will be κ-c.c.

Assume that Pα has been defined. Then, for every Σ1-formula ϕ(x) and every

Pα-name Ṅ ′ ⊆ Hf(α), if, in VPα , Ṅ ′ codes a transitive model M for a language of
size ω1, extending the language of set theory, and if there is a subcomplete forcing
Ṙ in VPα

κ that forces ϕ(M), then let ρϕ,Ṅ ′ be the minimal ρ such that there is such a

forcing whose subcompleteness is verified by ρ.1 Let Q̇α be a Pα-name for the lottery

1See Definition 2.3 for the meaning of verifying subcompleteness. Recall also that if ρ verifies
the subcompleteness of R, then R ∈ Hρ.
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sum2 of all forcings Ṙ that are subcomplete and whose subcompleteness is verified by
an ordinal less than or equal to sup{ρϕ,Ṅ ′ | ϕ is a Σ1-formula, ρϕ < κ, Ṅ ′ ⊆ Hf(α)},
followed by the collapse Col(ω1,Pα). Otherwise, Q̇α is just a Pα-name for Col(ω1,Pα).

Letting G be Pκ-generic over V, I claim that wBSCFA(≤λ) holds in V[G]. To
see this, work in V[G], and let M ′ ⊆ λ be such that M ′ codes a transitive model
M of size at most λ for a language of size ω1 extending the language of set theory,
let ϕ(x) be a Σ1-formula and R be subcomplete, such that 
R ϕ(M).

In V, let Ṁ ′, Ṙ be Pκ-names for M ′, R, and let p ∈ G and ρ be such that the
following statement Φ(Pκ, p, Ṁ ′, Ṙ, ρ) is true in some Hθ, where θ is regular: “p

forces with respect to Pκ that Ṁ ′ codes a transitive model M , Ṙ is subcomplete, as
verified by the regular cardinal ρ, P(Hρ̌) exists, and Ṙ forces ϕ(M̌).” In particular,

in 〈Hθ,∈〉, the statement Φ′(Pκ, p, Ṁ ′), expressing that there is an Ṡ and a ρ′ such

that Φ(Pκ, p, Ṁ ′, Ṡ, ρ′) holds, is true.
Let’s apply the fact that κ is remarkably ≤λ-reflecting and that f is an appro-

priate Menas function to Hθ and the formula Φ′. Note that all the parameters
occurring in Φ′ are subsets of Hλ. So let α < λ̄ < θ̄ < κ be cardinals, θ̄ regular,

P̄, p̄, ˙̄M ′ ⊆ Hλ̄, j = τh a generic elementary embedding, where h is Col(ω,Hλ̄)-
generic, and

j : 〈Hλ̄,∈, P̄, p̄, ˙̄M ′, α〉 ≺ 〈Hλ,∈,Pκ, p, Ṁ ′, κ〉
with j�α = id and f(α) = θ̄ and such that 〈Hθ̄,∈〉 |= Φ′(P̄, p̄, ˙̄M ′). It follows that
p̄ = p and P̄ = Pα.

Since 〈Hθ̄,∈〉 |= Φ′(Pα, p, ˙̄M ′), there are Ṡ, ρ̄ ∈ Hθ̄ such that

〈Hθ̄,∈〉 |= Φ(Pα, p, ˙̄M ′, Ṡ, ρ̄)

Letting S = ṠG�α and M̄ ′ = ( ˙̄M ′)G�α, Hθ̄[G�α] thinks that the subcompleteness of S
is verified by ρ̄, 
S ϕ( ˇ̄M) (where M̄ is the model coded by M̄ ′), and P(Hρ̄)

V[G�α] ∈
Hθ̄[G�α]. As a result, S is really subcomplete in V[G�α], by [19, p. 115, Cor. 2.3].

Hence, Q̇α = Ṙ ∗ Col(ω1, γ), where γ is the size of Pα, and Ṙ is a lottery sum of
subcomplete forcings, at least one of which will make ϕ(M̄) true, since S ∈ Vκ[G�α]

and ˙̄M ′ ⊆ Hf(α). But once true, ϕ(M̄) will persist to further forcing extensions,

since ϕ is Σ1. So p can be extended to a condition p′ ∈ Pα+1 that will force ϕ(M̄)
to be true in VPκ . So the set of such conditions is dense below p, so by genericity of
G, let’s assume that p′ ∈ G. Let h be Col(ω,HV

λ )-generic over V[G]. Then j = τh

lifts to an embedding

j′ : 〈Hλ̄[G�α],∈, M̄ ′〉 ≺ 〈Hλ[G],∈,M ′〉

where M̄ ′ = ˙̄M ′
G�α

, and this embedding j′ induces an elementary embedding

k : M̄ ≺M
This shows that wBSCFA(≤λ) holds in V[G]. �

So, to summarize, we have the following theorem.

2The lottery sum of a set of partial orders is just the partial order obtained by taking the disjoint

union of the partial orders in the set, and adding a common weakening to all the conditions in

the union. Forcing with this lottery sum amounts to generically choosing one of the posets and
then forcing with it. The terminology comes from [12]. It was shown in [24] that a lottery sum of

subcomplete forcings is subcomplete.
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Theorem 4.14. Let λ be a cardinal.

(1) If λ ≥ ω2 and wBSCFA(≤λ) holds, then ω2 is remarkably ≤λ-reflecting in
L.

(2) If λ ≥ ω2 and wBSCFA(<λ) holds, then ω2 is remarkably <λ-reflecting in
L.

(3) If κ is remarkably ≤λ-reflecting in L, where κ ≤ λ, then wBSCFA(≤λ) holds
in a κ-c.c. subcomplete forcing extension of L.

(4) If κ is remarkably <λ-reflecting in L, where λ > κ, then wBSCFA(<λ) holds
in a κ-c.c. subcomplete forcing extension of L.

Proof. Items 1. and 3. are Lemmas 4.11 and 4.13. 2. follows immediately from
Lemma 4.11, and 4. follows by the remark in the beginning of the proof of Lemma
4.13. �

Note that if one defines that κ is remarkably <κ-reflecting in the way indicated
after Definition 4.8, so that it is equivalent to κ being reflecting, then 2. and 4. hold
for λ = κ as well. With the obvious meaning, these points also hold for λ =∞. So,
since wBSCFA(≤κ) is equivalent to BSCFA(≤κ) for κ ≤ ω2 (see Observation 4.7),
with hindsight, this theorem thus subsumes Theorems 3.6, 3.11 and 4.5.

Since it fits into this context, even though the focus of the present paper is
on forcing axioms that are compatible with CH, I would like to point out that in
the case of the bounded weak proper forcing axioms, there is a similar one-to-one
correspondence between the level of the bounded forcing axiom and the degree of
remarkability that ω2 enjoys in L.

Lemma 4.15. Let λ ≥ ω2 be a cardinal such that wBPFA(≤λ) holds. Then ω2 is
remarkably ≤λ-reflecting in L.

Proof. We may assume that 0# doesn’t exist, as otherwise, ω2 is remarkable in L,
and more. Fix a formula ϕ(x), a set X ⊆ Lλ and a regular cardinal θ > λ such

that 〈Lθ,∈〉 |= ϕ(X) holds. Let M ≺ 〈Hλ,∈, X, ~ξ〉ξ<ω1
have size λ, with λ ⊆ M .

Note that since X ⊆ Lλ, ẊM = X.
By the usual argument due to Todorčević, there is a proper forcing P such that

if V[g] is a forcing extension by P, then in V[g], M has size ω1 and there is a club

C ⊆ θ > OnM of order type ω1 and a function F : C −→ ω such that for all ξ ∈ C,
CLθ

ξ is defined, and such that if ξ < ζ are both in C and ξ is a limit point of CLθ

ζ ,

then F (ξ) 6= F (ζ), where ~C is the global � sequence of L. By wBPFA(≤λ), there

is in V a transitive model M̄ = 〈H,∈, X̄, ~ξ〉ξ<ω1
that has size ω1, and such that,

letting β = OnM̄ , there is an ordinal θ̄ > β such that in Lθ̄, β is a cardinal, and

there is a club C̄ ⊆ θ̄ of order type ω1, consisting of ordinals ξ for which C
Lθ̄

ξ is

defined, and there is a function F̄ : C̄ −→ ω as above, with θ̄ in place of θ and C̄ in
place of C. It follows then that θ̄ is regular in L, because if it were singular, then
Cθ̄ would be defined, and it would follow that if ξ < ζ both are limit points of Cθ̄
and members of C̄, then F̄ (ξ) 6= F̄ (ζ), since Cθ̄ ∩ ζ = Cζ = C

Lβ

ζ , and so, ξ is a

limit point of C
Lβ

ζ . But since cf(θ̄) = ω1, there are ω1 many members of C̄ that
are limit points of Cθ̄, a contradiction. The rest of the argument is as before. �

The proof of Lemma 4.13 goes through for proper forcing in place of subcomplete
forcing almost without changes, and so, Theorem 4.14 holds for proper forcing in
place of subcomplete forcing as well, and similarly for semiproper forcing.
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4.4. How the weak bounded hierarchy fits in the bounded hierarchy.
Keeping in mind Observation 4.7.3, which implies that wBSCFA(≤ω2) is equivalent
to BSCFA(≤ω2), it is an obvious question how wBSCFA relates to BSCFA(≤ω3).
Again, the situation is similar to the proper forcing case, see [4].

Lemma 4.16. (1) If wSCFA is consistent, then so is wSCFA + ∀κ ≥ ω2 �κ.
(2) wSCFA does not imply BSCFA(≤ω3).

Proof. To see 1, note that if one forces wSCFA over L, using a remarkable κ, so that
κ becomes ω2 in the extension, then for any L-cardinal λ ≥ κ, the �λ sequence of
L will be a �λ sequence in the extension. 2. follows from 1. together with Corollary
3.14, which shows that BSCFA(≤ω3) implies the failure of �ω2

. �

Since wSCFA does not imply BSCFA(≤ω3), the question arises how the consis-
tency strengths of these axioms relate.

Lemma 4.17. The consistency strength of BSCFA(≤ω3) is strictly higher than that
of wSCFA.

Proof. By Corollary 3.14, BSCFA(≤ω3) implies the failure of �ω2
. It was shown by

Jensen that this, in turn, implies that ω3 is Mahlo in L (see [16, p. 286]). By Ob-
servation 4.7, BSCFA(≤ω3) implies wBSCFA(≤ω3). By Lemma 4.11, wBSCFA(≤ω3)
implies that κ = ω2 is remarkably ≤ω3-reflecting in L. It follows that Lω3 is a model
of ZFC+ “κ is remarkable”, and by Theorem 4.5, that’s the consistency strength of
wSCFA. So BSCFA(≤ω3) is strictly stronger.

In fact, it is known that if τ ≥ ω2 is a regular cardinal such that for some
stationary S ⊆ τ , any two stationary subsets of S reflect simultaneously at some
γ < τ of uncountable cofinality, then �(τ) fails - a proof of this fact can be found
in [14]. In particular, SFPτ implies the failure of �(τ), and so BSCFA(≤ω3) implies
the failure of both �(ω2) and �(ω3), and in particular of �ω2 . It is also known
by [8] or [17, §3, Corollary 9.1] that SFPω2

implies that ωω1
2 = ω2, and hence that

2ω ≤ ω2. This constellation has very high consistency strength, and implies that
the axiom of determinacy holds in L(R) - see [26]. This is certainly much stronger
than the consistency strength of wPFA, a remarkable cardinal. �

The corresponding result holds for proper forcing.

Lemma 4.18. BPFA(≤ω3) has consistency strength strictly higher than wPFA.

Proof. BPFA(≤ω1,≤ω3) implies the failure of �(ω3) and of �(ω2). It also implies

that 2ω = ω2. Again, this implies ADL(R), and is thus much stronger than the
consistency strength of wPFA, a remarkable cardinal. �

So, combining Theorem 4.14, Lemma 4.10 and Observation 4.7.3 results in the
following.

Lemma 4.19. Writing < for “has lower consistency strength than”, the following
inequalities hold:

BSCFA<BSCFA(≤ω2)<wSCFA(≤ω3)<wSCFA(≤ω4)<. . .<wSCFA<BSCFA(≤ω3)

and

BPFA < BPFA(≤ω2) < wPFA(≤ω3) < wSCFA(≤ω4) < . . . < wPFA < BPFA(≤ω3).
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It would be interesting to explore consequences of the weak forcing axioms, as
well as strengthenings of these axioms and their corresponding remarkably reflecting
cardinals in which some restrictions are imposed on the forcings allowed to add the
requested generic elementary embeddings, such as having to preserve ω1, having to
preserve stationary subsets of ω1, or having to belong to the same class of forcings
used to define the particular forcing axioms, etc.
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[29] S. Todorčević. Handbook of set-theoretic topology, chapter Trees and linearly ordered sets,
pages 235–293. North Holland, 1984.

[30] K. Tsaprounis. On resurrection axioms. Journal of Symbolic Logic, 80(2):587–608, 2015.

[31] A. Villaveces. Chains of end elementary extensions of models of set theory. Journal of Sym-
bolic Logic, 63(3):1116–1136, 1998.

The College of Staten Island (CUNY), 2800 Victory Blvd., Staten Island, NY 10314

The Graduate Center (CUNY), 365 5th Avenue, New York, NY 10016
E-mail address: gunter.fuchs@csi.cuny.edu

URL: www.math.csi.cuny.edu/~fuchs


