Forcing in Set Theory, Fall 2024 Dr. Gunter Fuchs

Submit by 11/26/24

Let M be as usual.

Problem 1 (15 points):

In M, let S be a stationary subset of ω_1 , and let $\mathbb{P} = \mathbb{P}_S$ be the poset defined in M as follows.

Conditions are subsets of S which are closed. That is, $p \in \mathbb{P}$ if $p \subseteq S$ and whenever α is a limit point of p, then $\alpha \in p$. In particular, p must be bounded in ω_1 .

The ordering is by end extension. That is, $p \leq q$ if $q = p \cap \alpha$ for some α ($\alpha = \sup(\{\xi + 1 \mid \xi \in q\})$, the least ordinal greater than all elements of a, works). Show:

- (1) In M, $c.c.(\mathbb{P}) = (2^{\aleph_0})^+$.
- (2) If G is (M, \mathbb{P}) -generic, then $\bigcup G$ is a club subset of S.
- (3) \mathbb{P} is separative.
- (4) In M, \mathbb{P} is ω_1 -distributive. So forcing with \mathbb{P} adds no new ω -sequences of ordinals, and hence preserves $(\aleph_1)^M$.
- (5) Solovay has shown that S can be partitioned into ω_1 stationary subsets of ω_1 (in M). Use this to conclude that for an appropriate choice of a stationary subset T of ω_1 (in M), forcing with \mathbb{P}_T over M destroys the stationarity of some subset of ω_1 .

Hint for part (4): Let $\overline{D} = \langle D_n | n < \omega \rangle$ be a sequence of dense open subsets of \mathbb{P} , and let $q \in \mathbb{P}$ be a condition below which we want to find an element of the intersection of the D_n 's. Let $S, \mathbb{P}, \vec{D}, q \in V_\theta$, θ regular, so that V_θ is sufficiently correct in V. Find a countable X such that $\langle X, \epsilon \rangle \prec \langle V_\theta, \epsilon \rangle$ and $\alpha := X \cap \omega_1 \in S$. Let $\pi : H \longrightarrow X$ be the inverse of the Mostowski collapse, H transitive. Then $\pi \upharpoonright \alpha = id \upharpoonright \alpha$ and $\pi(\alpha) = \omega_1$. Let $\overline{S}, \overline{\mathbb{P}}, \overline{q}$ be the preimages of S, \mathbb{P}, q under π . Then $q = \overline{q}$ and $\overline{S} = S \cap \alpha$. Let G be $(H, \overline{\mathbb{P}})$ -generic with $q \in G$. Then $q' = (\bigcup G) \cup \{\alpha\}$ is as wished.

Problem 2 (10 points):

Let κ be an uncountable cardinal in M, let $\mathbb{P} \in M$, and let G be (M, \mathbb{P}) -generic, where \mathbb{P} has cardinality less than κ in M. Write A^* for $p[T]^{M[G]}$, for $A \in M$ which is κ -u.B., as witnessed by a κ -absolutely complementing pair of trees (T, U). Show the following points.

- (1) Let $A, B \in M$ be κ -u.B. in M. Then $A \subseteq B$ iff $A^* \subseteq B^*$.
- (2) Let A be Borel in M. Then A^* is Borel in M[G]. [You can prove this by induction on the Borel complexity of A.]