Homework set 6

Forcing in Set Theory, Fall 2024 Dr. Gunter Fuchs

Submit by 11/21/24

Let M be as usual.

Problem 1 (5 points):

In M, let $\mathbb P$ be a separative poset. Let G be $(M,\mathbb P)$ -generic. Show that G is M-directed in the sense that whenever $D\subseteq G$ and $D\in M$, then D has a lower bound in G, i.e., there is a $p\in G$ such that for all $q\in D$, $p\leq q$. Hint: You can use Problem 1 of Homework Set 2 here.

Problem 2 (10 points):

For a cardinal κ , a partial order \mathbb{P} is $<\kappa$ -distributive if the intersection of fewer than κ open dense subsets of \mathbb{P} is dense (and of course open) in \mathbb{P} .

Now let M be as usual, and in M, let κ be an infinite cardinal and \mathbb{P} a separative partial order. Show that the following are equivalent:

- (1) Whenever G is (M, \mathbb{P}) -generic, then $M[G] \cap ({}^{<\kappa}M) \subseteq M$.
- (2) $M \models \text{``P is } \kappa\text{-distributive''}.$

Note: Problem 1 comes in handy for the direction from (1) to (2). Separativity is not needed for the other direction.

Problem 3 (10 points):

Suppose that in M, κ is an uncountable regular cardinal, \mathbb{P} is κ -closed and $S \subseteq \kappa$ is stationary, meaning that S has nonempty intersection with every club subset of κ ; cf. Problem 3 of HW set 4.

Now let G be (M, \mathbb{P}) -generic. Show that S is stationary in M[G].

Remark: Problem 2 shows that κ -distributivity is a weak form of κ -closure. Problem 3 gives a consequence of κ -closure that does not follow from κ -distributivity. Maybe this will be a problem for the next homework set...