Homework set 5

Forcing in Set Theory, Fall 2024 Dr. Gunter Fuchs

Submit by 11/12/24

(4 P.)

Problem 1 (4 points):

Let \mathbb{P} be a partial order for which $cl(\mathbb{P})$, the least ordinal α such that there is a weakly decreasing sequence $\langle p_{\xi} | \xi < \alpha \rangle$ of conditions in \mathbb{P} that does not have a lower bound, exists. Observe that \mathbb{P} is $cl(\mathbb{P})$ -closed, that $cl(\mathbb{P})$ is the largest ordinal with this property, and that $cl(\mathbb{P})$ is a regular cardinal.

Problem 2 (16 points):

Let \mathbb{P} be a partial order. Let $c.c.(\mathbb{P})$ be the least cardinal κ such that \mathbb{P} satisfies the κ -c.c.

- 1. Let $D \subseteq \mathbb{P}$ be dense. Then $c.c.(\mathbb{P}) = c.c.(\mathbb{P}|D)$, where $\mathbb{P}|D$ is the restriction of the ordering of \mathbb{P} to D. (2 P.)
- 2. For $p \in \mathbb{P}$, let $\mathbb{P}_p = \langle |\mathbb{P}_p|, \leq_{\mathbb{P}} \cap |\mathbb{P}_p| \times |\mathbb{P}_p| \rangle$, where $|\mathbb{P}_p| = \{q \mid q \leq_{\mathbb{P}} p\}$. Say that p is *stable* (in \mathbb{P}), if for all $q \leq p$:

$$c.c.(\mathbb{P}_q) = c.c.(\mathbb{P}_p)$$

Show that the set S consisting of all conditions stable in \mathbb{P} is dense and open in \mathbb{P} , and that every $p \in S$ is stable in $\mathbb{P} \upharpoonright S$. (3 P.)

3. Let A and B be antichains in \mathbb{P} . Say that A refines B if the following hold:

- (a) for every $a \in A$ there is a $b \in B$ such that $a \leq b$.
- (b) for every $b \in B$ there is an $a \in A$ such that $a \leq b$.

Show that in this case, $\operatorname{card}(B) \leq \operatorname{card}(A)$.

Show further that if A and B are maximal antichains in \mathbb{P} , then they have a common refinement. (3 P.)

- 4. Show that c.c.(P) is either finite or uncountable. (4 P.) *Hint:* Assuming there are arbitrarily large finite antichains in P, you have to show that there is an infinite one. If the set of atoms of P is dense, then choose a maximal antichain A in P which consists of atoms. The cardinality of A is then ≥ the cardinality of any maximal antichain of P, by part 3. If the atoms of P are not dense in P, then pick a condition below which there is no atom, and construct directly an infinite antichain below it.
- 5. Show that, assuming $c.c.(\mathbb{P})$ is infinite, it is regular.

Hint: By part 4, $\lambda := c.c.(\mathbb{P})$ is uncountable, and by parts 1 and 2, one may assume that every condition in \mathbb{P} is stable. Assuming towards a contradiction that λ is singular with cofinality $\kappa < \lambda$, say, fix a maximal antichain A of cardinality $\geq \kappa$. Using part 3, show that $C = \{c.c.(\mathbb{P}_p) \mid p \in A\}$ is unbounded in λ (case 1) or that $\lambda \in C$ (case 2). In each case, you can construct an antichain of cardinality λ refining A.

Problem 3 (5 points):

Let κ be a cardinal, and let \mathbb{P} be a poset in which the set of atoms is not dense. Show that \mathbb{P} is not both κ -closed and κ -c.c.

Hint: Otherwise, working below a condition that has no atom below it, construct an antichain of size κ , using the κ -closure of \mathbb{P} to keep the construction going.