Homework set 4

Forcing in Set Theory, Fall 2024 Dr. Gunter Fuchs

Submit by 10/29/24

Problem 1 (10 points):

A partial order \mathbb{P} has property (K) (the Knaster property) if:

(K) Every uncountable subset of \mathbb{P} has an uncountable subset consisting of pairwise compatible conditions. Show:

- 1. Property (K) implies the ccc.
- 2. Let I be any set, and let J be countable. Show that Fn(I, J) has Property (K).
- 3. If \mathbb{P} and \mathbb{Q} have property (K) then so has $\mathbb{P} \times \mathbb{Q}$.
- 4. More generally, if $\langle \mathbb{P}_i \mid i \in I \rangle$ is a sequence of partial orders with property (K), each of which has a maximal element, then the product $\prod_{i \in I} \mathbb{P}_i$ with finite support has property (K).

Note: Part 4 can be used to show part 2. The product $\prod_{i \in I} \mathbb{P}_i$ with finite support is defined as follows. Conditions are sequences $\langle p_i \mid i \in I \rangle$, so that for every $i \in I$, $p_i \in \mathbb{P}_i$, and such that the set $\{i \in I \mid p_i \neq \mathbb{1}_{\mathbb{P}_i}\}$ (the support) is finite. The ordering is defined as expected: $\vec{p} \leq \vec{q}$ iff for all $i \in I$, $p_i \leq_{\mathbb{P}_i} q_i$.

Problem 2 (5 points):

Let κ be a regular cardinal. Recall that a set $C \subseteq \kappa$ is club (closed and unbounded) in κ if it is unbounded in κ , that is, for every $\alpha < \kappa$ there is a $\beta \in C$ with $\alpha < \beta$, and if it is closed in κ , that is, whenever $\alpha < \kappa$ is a limit point of C, then $\alpha \in C$. Here, α is a limit point of C if $C \cap \alpha$ is unbounded in α .

Now, if $f: \kappa \longrightarrow \kappa$, then let's say that $\alpha < \kappa$ is a closure point of f if for all $\beta < \alpha$, $f(\beta) < \alpha$.

Show that if κ is an uncountable regular cardinal and $f:\kappa\longrightarrow\kappa$, then the set of closure points of f forms a club subset of κ .

Problem 3 (10 points):

Let M be a countable and transitive with ZFC^M , and let $\mathbb{P} \in M$ be a partial order satisfying the κ -c.c. in M, where κ is an uncountable regular cardinal in M. Let G be (M,\mathbb{P}) -generic, and let $C \in M[G]$ be club in κ . Show that there is a $\overline{C} \in M$, club in κ , so that $\overline{C} \subseteq C$.

Calling a set $S \subseteq \kappa$ stationary iff it intersects every club subset of κ , conclude that \mathbb{P} preserves stationary subsets of κ , that is, if $S \subseteq \kappa$ is stationary in M, then it is stationary in M[G].