Homework set 3

Forcing in Set Theory, Fall 2024 Dr. Gunter Fuchs

Submit by 10/08/24

Let M be countable and transitive, with ZFC^M .

Problem 1 (5 points):

Let $I, J \in M$, $\mathbb{P} = \operatorname{Fn}(I, J)$. Let G be an (M, \mathbb{P}) -generic filter, and let $f = \bigcup G$. Show that if N is any transitive ZFC model with $f \in N$, then $G \in N$. Conclude that M[G] is the minimal model of ZFC containing M as a subset and f as an element. In this sense, M[G] = M[f].

Problem 2 (10 points):

Let $\mathbb{P}, \mathbb{Q} \in M$ be partial orders, and let $i : \mathbb{P} \longrightarrow \mathbb{Q}$ be a dense embedding (see HW set 1, Problem 3, part 8 for the meaning of this), $i \in M$. Show that if G is (M, \mathbb{P}) -generic and $H = i[G]^{\geq \mathbb{Q}}$ is the upward closure of i[G], then H is (M, \mathbb{Q}) -generic. Vice versa, if H is (M, \mathbb{Q}) -generic, then $i^{-1}[H]$ is (M, \mathbb{P}) -generic. Conclude that if G is (M, \mathbb{P}) -generic, then $M[G] = M[i[G]^{\geq \mathbb{Q}}]$, and if H is (M, \mathbb{Q}) -generic, then $M[H] = M[i^{-1}[H]]$.

Problem 3 (5 points):

Let $\mathbb{P}, \mathbb{Q} \in M$ be partial orders, and let $i : \mathbb{P} \longrightarrow \mathbb{Q}$ be such that $i \in M$ and

- 1. $p_0 \leq_{\mathbb{P}} p_1 \implies i(p_0) \leq_{\mathbb{Q}} i(p_1).$
- 2. whenever $p \in \mathbb{P}$ and $q \leq_{\mathbb{Q}} i(p)$, there is a $p' \leq p$ such that $i(p') \leq q$.

Show that then, forcing with \mathbb{P} also adds a \mathbb{Q} -generic filter. That is, if G is (M, \mathbb{P}) -generic, then there is an $H \in M[G]$ that is (M, \mathbb{Q}) -generic.

Problem 4 (5 points):

Let κ be a cardinal in M, and let $\mathbb{P} = \operatorname{Fn}(\kappa \times \omega, 2)$. Suppose G is (M, \mathbb{P}) -generic. Prove the following statements that were sketched in class:

- 1. $\bigcup G:\kappa\times\omega\longrightarrow 2$ is a total function.
- 2. For $\alpha < \kappa$, let $g_{\alpha} : \omega \longrightarrow 2$ be defined by $g_{\alpha}(n) = (\bigcup G)(\alpha, n)$. Then $g_{\alpha} \notin M$.
- 3. Further, for $\alpha < \beta < \kappa$, $g_{\alpha} \neq g_{\beta}$.

Total score:

(25 P.)