Homework set 1

Forcing in Set Theory, Fall 2024 Dr. Gunter Fuchs

Fix a countable transitive model M of $\mathsf{ZFC}.$

Problem 1 (5 points):

Let $\mathbb{P} \in M$ be a partial order. Show that the following properties are equivalent for a set $D \subseteq \mathbb{P}$ and a condition $p \in \mathbb{P}$:

- 1. D is predense below p (i.e., for every $q \leq p$, there is an $r \in D$ such that r||q.)
- 2. Whenever G is \mathbb{P} -generic over M and $p \in G$, then $G \cap D \neq \emptyset$.

Problem 2 (10 points): Let $\mathbb{P} \in M$, and set

$$\operatorname{gen} = \{ G \mid G \text{ is } (M, \mathbb{P}) - \operatorname{generic} \},\$$

and for $p \in \mathbb{P}$ let

$$\operatorname{gen}_p = \{ G \mid p \in G \in \operatorname{gen} \}.$$

1. Say that an *antichain* in \mathbb{P} is a set of pairwise incompatible conditions. Note that any antichain can be extended to a maximal one, and show that if $A \subseteq \mathbb{P}$ is a maximal antichain, then

$$\operatorname{gen} = \bigcup_{p \in A} \operatorname{gen}_p$$

(the disjoint union).

- 2. Show that $p \leq q \implies \operatorname{gen}_p \subseteq \operatorname{gen}_q$. (2 P.)
- 3. Show that

- $p \parallel q \iff \operatorname{gen}_p \cap \operatorname{gen}_q \neq \emptyset.$
- 4. Say that \mathbb{P} is *separative* iff for all $p, q \in \mathbb{P}$:

$$p \not\leq q \implies \exists r \leq p \quad r \perp q.$$

Show that \mathbb{P} is separative iff the reverse implication of 2 holds.

Problem 3 (10 points):

Let \mathbb{P} be a partial order. For $A \subseteq \mathbb{P}$ and $p \in \mathbb{P}$, write $p \perp A$ to express that $p \perp a$, for every $a \in A$. Set:

$$\perp A = \{ p \mid p \perp A \}.$$

Show for $X \subseteq \mathbb{P}$:

1. $\perp X$ is downward closed, i.e., if $p \leq q \in \perp X$, then $p \in \perp X$.	(1 P.)
2. $X \cap \bot X = \emptyset$.	(1 P.)
3. $X \subseteq \bot \bot X$.	(1 P.)
4. $X \subseteq Y \subseteq \mathbb{P} \implies \bot Y \subseteq \bot X.$	(1 P.)
5. $\perp X = \perp \perp \perp X$.	(1 P.)
6. The map $C: \mathcal{P}(\mathbb{P}) \longrightarrow \mathcal{P}(\mathbb{P})$ defined by	
$C(X) = \bot \bot X$	

is a hull operator, i.e., $X \subseteq C(X), X \subseteq Y \implies C(X) \subseteq C(Y)$, and C(C(X)) = C(X). (1 P.)

7. Let \mathbb{B} be the partial order consisting of all $X \subseteq \mathbb{P}$ with C(X) = X, ordered by inclusion, and let \mathbb{B}^+ be the restriction of \mathbb{B} to $\{X \in \mathbb{B} \mid X \neq \emptyset\}$. Check: if $X, Y \in \mathbb{B}$, then $X \cap Y \in \mathbb{B}$. In particular, if $X, Y \in \mathbb{B}^+$, then $X \perp^{\mathbb{B}^+} Y \iff X \cap Y = \emptyset$. (1 P.)

(2 P.)

(2 P.)

(4 P.)

8. Let $i: \mathbb{P} \longrightarrow \mathbb{B}^+$ be defined by

$$i(p) = C(\{p\}).$$

Show that i is a dense embedding, that is:

(a)
$$p \le q \implies i(p) \subseteq i(q),$$
 (1 P.)

(b)
$$p \perp q \implies i(p) \perp^{\mathbb{B}^+} i(q),$$
 (1 P.)

(c) the range of i is dense in \mathbb{B}^+ . (1 P.)

Total score:

(25 P.)