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Abstract

A highly rigid Souslin tree T is constructed such that forcing with T
turns T into a Kurepa tree. Club versions of previously known degrees of
rigidity are introduced, as follows: for a rigidity property P , a tree T is
said to have property P on clubs if for every club set C (containing 0), the
restriction of T to levels in C has property P . The relationships between
these rigidity properties for Souslin trees are investigated, and some open
questions are stated.

1 Introduction

A wide range of set-theoretic research has been undertaken concerning automor-
phisms and isomorphisms of trees. [GS64] analyzes the number of isomorphism
types of trees, depending on their cardinality, while [Jec72] focuses on the pos-
sible size of the automorphism group of a normal ω1-tree, and it turns out that
if such a tree has no Souslin subtree, then the size of its automorphism group
is either finite, 2ℵ0 or 2ℵ1 , while there is much more flexibility for the number
of automorphisms of a Souslin tree. In [Jen69], Jensen announced some results
concerning the existence of rigid as well as homogeneous Souslin trees; see also
[DJ74]. Answering a question of Jech, Todorcevic showed in [Tod80] that it is
provable in ZFC that there is a rigid Aronszajn tree (this was also shown by
Abraham in [Abr79], independently). Hamkins and the author analyzed rigidity
properties of a Souslin tree, having to do with what happens after forcing with
the tree, in [FH09]. Motivated by [Jec74] and [AS85], I am here comparing these
notions of rigidity to their corresponding “club degrees”. For example, a tree
T is rigid on clubs if for every club subset of ω1, the restriction of the tree to
levels in the club is rigid. Any notion of rigidity can be strengthened in this
way, and I analyze the relationships between them, and between the club and
the non-club degrees. This is done in Section 3.
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Before that analysis, I develop a notion of forcing that adds a Souslin tree T
with a peculiar property: T is rigid (and even absolutely totally rigid, a notion
to be defined later), yet forcing with T turns T into a Kurepa tree, i.e., a normal
ω1-tree with at least ℵ2 branches. Hamkins and the author had previously tried
to tackle the question whether such a tree can exist, unsuccessfully. Such a
tree basically shows that there is a huge gap between absolute total rigidity and
the unique branch property (saying that forcing with the tree adds precisely one
branch). It was shown in [FH09] that the unique branch property (UBP) implies
total rigidity, but that this implication cannot be reversed, and that absolute
total rigidity does not imply the UBP. The present construction shows that an
absolutely totally rigid Souslin tree can fail to have the UBP very badly. Howe-
ver, the tree is not rigid on clubs, and it is an interesting open question whether
there can be such a tree that is. I would like to mention two somewhat related
results. Firstly, Jensen had constructed a Souslin tree with ω2 automorphisms
(see [DJ74]), which is easily seen to have the property that forcing with it turns
it into a Kurepa tree – the point of the present construction is that the tree
is highly rigid. In a different direction, Jin and Shelah ([JS97]) constructed a
model in which there is no Kurepa tree, yet there is an ω-distributive Aronszajn
tree such that forcing with that tree adds a Kurepa tree.

Let’s fix some notation and terminology. A tree T is a well-founded partial
order on a set of nodes with precisely one minimal element, called the root, and
such that the predecessors of any given node are linearly ordered by the tree
order. Two nodes p and q are compatible if they are comparable, i.e., p ≤T q or
q ≤T p, otherwise they are incompatible. The height of a node p, denoted by |p|,
is the order-type of the set of its predecessors. The height of a tree is the least
strict upper bound of the heights of its nodes. If α is an ordinal less than the
height of a tree T , then the α-th level of T , denoted by T (α), is the collection
of nodes of T which have height α. If T is a tree and X is a set of ordinals,
then T |X is the ordered structure resulting from restricting the ordering of T
to those nodes whose height belongs to X. This need not necessarily be a tree,
but it will be if 0 ∈ X. If p is a node in T , then Tp denotes the cone above p,
so it is the tree consisting of the nodes in T that are above p, and inheriting
the ordering from T . An ℵ1-tree is a tree of height ℵ1 each of whose levels is at
most countable. A tree T is normal if it satisfies the following three conditions:
Firstly, every node has to have successors with arbitrarily large heights below the
height of the tree (trees with that property are sometimes called well-pruned).
Secondly, T has unique limits: Nodes of limit height are determined by their
predecessors (i.e., if p and q are nodes of limit height and they have the same
predecessors, then p = q). Lastly, every node of T must have incompatible
immediate successors. An antichain in a tree is a set of pairwise incompatible
nodes. Most trees under consideration will be uniformly splitting, which means
that every node has the same number of immediate successors. A Souslin Tree
is a normal ℵ1-tree that has no uncountable antichain. A branch of a tree is
a set of nodes that is downward closed under and linearly ordered by the tree
relation. A branch of a tree is cofinal in the tree if its order type is equal to the
height of the tree (equivalently, if it intersects every level of the tree). A Kurepa
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Tree is a normal ℵ1-tree that has at least ℵ2 many cofinal branches. Note that
a Souslin Tree has no cofinal branch. When forcing with a tree, the order is
turned around, so that the stronger conditions are higher up in the tree. This
way, two nodes are compatible in the tree order iff they are compatible in the
forcing sense. So a Souslin tree will satisfy the countable chain condition as a
notion of forcing. It is also easy to see and well-known that it is σ-distributive.

A tree T is rigid if it has no non-trivial automorphism. It is totally rigid if
whenever p and q are distinct nodes of T , it follows that Tp and Tq are non-
isomorphic. By regarding a tree as a notion of forcing, one arrives at interesting
degrees of rigidity, as introduced in [FH09]: A normal tree T has the unique
branch property (UBP) if forcing with T adds precisely one new cofinal branch.
It is absolutely rigid if after forcing with T , T is still rigid (i.e., if T forces that
it is rigid). It is absolutely totally rigid if T forces that T is totally rigid, and it
has the absolute UBP if T forces that T has the UBP.

It was shown in [FH09] that the following diagram exhibits all the ZFC-
provable implications between these notions of rigidity.

UBP � Absolutely
UBP

Totally
rigid

?
� Absolutely

totally rigid

?

Rigid

?
� Absolutely

rigid

?

Figure 1: Implication Diagram

When proving the nonimplications in the diagram, we focused on uniformly
splitting Souslin trees, mostly in order to exclude trivialities. For example,
it is known that it is provable in ZFC that there is a rigid Aronszajn tree,
and it is consistent that every Aronszajn tree is special. When forcing with a
special, rigid Aronszajn tree, ω1 is collapsed, and hence such a tree will become
countable. Of course, countable trees have continuum many branches, and so
this would be an example of a rigid ω1-tree that is not UBP. By requiring
the tree to be Souslin, though, it is insured that forcing with it will preserve
ω1. Similarly, the requirement that the trees be uniformly splitting is there
to exclude trivial counterexamples. For example, it would be easy to build an
ω1-tree with the property that for every countable ordinal α and every natural
number n ≥ 2, there is exactly one node p at level α of the tree that has exactly
n immediate successors. Such a tree will be rigid, but for a trivial reason.
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So, in order to show that the implication from UBP to rigidity cannot be
reversed, we constructed a 2-splitting Souslin tree that’s rigid but doesn’t have
the unique branch property. The first part of the present paper addresses the
question just how badly a rigid Souslin tree can fail to have the unique branch
property. Continuing the idea of looking at the properties a tree may have in
forcing extensions obtained by forcing with the tree itself, let’s define that a
tree is almost Kurepa if after forcing with T , T is a Kurepa tree (i.e., T “Ť
is a Kurepa tree”). What is shown in the next part of the paper is that it is
consistent that there is an absolutely totally rigid Souslin tree that’s almost
Kurepa. So this shows that a rigid Souslin tree may fail the unique branch
property in the strongest imaginable way.

The Souslin almost Kurepa tree constructed in Section 2 has the property
that when restricting it to its limit levels, it has ℵ2 many automorphisms. This
leads quite naturally to the club degrees of rigidity, defined by saying that for
any rigidity property P , a Souslin tree T has property P on clubs if for every
club subset C of ω1, the restriction T |C of T to the levels in C has property P .
The question arises whether there can be a Souslin almost Kurepa tree that’s
rigid on clubs. Rigidity on clubs is a very natural notion, in view of the fact
that automorphisms of the Boolean algebra of a Souslin tree give rise to club
automorphisms of the Souslin tree. So club rigidity of a Souslin tree implies the
rigidity of its Boolean algebra, which is a very natural property when viewing
Souslin trees as notions of forcing. So Section 3 is devoted to an analysis of the
club degrees of rigidity and how they relate to the previously introduced rigidity
degrees.

I would like to thank the referee for very helpful comments and remarks,
and to Joel Hamkins for being continually inspiring.

2 A rigid Souslin almost Kurepa tree

The goal of this section is to produce an (absolutely totally) rigid Souslin almost
Kurepa tree by forcing.

Definition 2.1. An ordinal is appropriate if it is a limit of limit ordinals or the
successor of a limit ordinal.

Suppose t is a normal tree of appropriate height α. Let C be a subset of
α which is unbounded in supα. A function σ : t|C −→ t|C is totally far from
extending to an automorphism of t if for every non maximal p ∈ t and every
isomorphism π : tp −→ tq (where |p| = |q| and p 6= q), there is a node p′ ≥ p s.t.
σ(p′) 6= π(p′).

Using the terminology introduced above, I am now going to define the forcing
notion S, designed to add an absolutely rigid Souslin tree that’s almost Kurepa,
over a model of CH. Conditions u are of the form 〈t, 〈πα | α ∈ I〉〉, where we
write t = tu, I = Iu and 〈πα | α ∈ I〉 = ~πu. We demand:
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1. t is a normal, ω-splitting1 tree of countable height η, where η is appropri-
ate. The set of nodes of t is a countable ordinal. Let’s call trees of this
form standard.

2. I is a countable subset of ω2.

3. Every πα (α ∈ I) is an automorphism of t|Lim, where Lim is the set of
limit ordinals (less than ω1).

4. Letting Γ be the group of automorphisms of t|Lim generated by ~πu, every
σ ∈ Γ is totally far from extending to an automorphism of t.

Condition 4 is there to insure that automorphisms can be sealed. The ordering
is the obvious one: 〈s, ~σ〉 ≤ 〈t, ~π〉 iff s end-extends t, dom(~σ) ⊇ dom(~π) and for
all α ∈ dom(~π), σα�t = πα.

Of course, imposing the apparently strong requirement of being totally far
from extending to an automorphism on our forcing conditions necessitates ad-
ditional arguments when constructing extensions of a given condition.

2.1 Closure

Lemma 2.2. Suppose that t is a standard tree of height α, which is a limit
of limits, I ∈ [ω2]≤ω and ~π = 〈πi | i ∈ I〉 is a sequence of functions such that
the domain of every πi is t|Lim, and such that for unboundedly many β <
α, 〈t|β, 〈πi�(t|β) | i ∈ I〉〉 is a forcing condition in S. Then 〈t, ~π〉 is a forcing
condition.

Proof. It is clear that 〈t, ~π〉 satisfies requirements 1.-3. of the definition of the
forcing conditions. It remains to be shown that every non-identity automor-
phism σ in the group of automorphisms Γ of t|Lim generated by ~π is totally
far from extending to an automorphism of t. So let p, q ∈ t be distinct nodes
at the same level β of t. Let π : tp −→ tq be an isomorphism. Let β′ > β,
β′ < α be appropriate such that 〈t|β′, 〈πi�(t|β′) | i ∈ I〉〉 is a forcing condition.
Then σ�β′ belongs to the group of automorphisms of (t|β′)|Lim generated by
〈πi�(t|β′) | i ∈ I〉, and π�(t|β′) : (t|β′)p −→ (t|β′)q is an isomorphism. So, since
σ�β′ is totally far from extending to an automorphism of t|β′, there is a p′ ≥ p
such that σ(p′) 6= π(p′). This shows that σ is totally far from extending to an
automorphism of t.

Lemma 2.3. S is countably closed.

Proof. Let 〈un | n < ω〉 be a strictly decreasing sequence of conditions in S,
un = 〈tn, ~πn〉. Define u = 〈t, ~π〉 in the natural way by setting t =

⋃
n<ω tn,

Iu =
⋃
n<ω dom(~πn), and for α ∈ Iu, let πα =

⋃
α∈dom(~πn) π

n
α.

Obviously, t is a normal tree of countable height. The height of t will be
a limit of limit ordinals, unless the heights of the tns are eventually constant

1The tree should be uniformly splitting, but it is not important for the construction whether
it is ω-splitting or n-splitting, for some n.
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and are the successor of a limit ordinal, in which case this will be the height
of t. In any case, the height of t will be appropriate. The domain of ~π is
clearly a countable subset of ω2, and it is easily seen that ~π is a sequence of
automorphisms of t|Lim. Let’s check that every σ in the group of automorphisms
of t|Lim generated by ~π is totally far from extending to an automorphism of
t. Let p and q be distinct non-maximal nodes in t on the same level of t. Let
τ : tp −→ tq be an isomorphism. Let σ = (πi0)j0 ◦ . . . ◦ (πim−1)jm−1 , where each
jk = ±1. Find n large enough so that for all k < m, ik ∈ dom(~πn), and so
that |p| is less than the height of tn. Now, clearly, τ�(tn)p : (tn)p −→ (tn)q is
an isomorphism, and σ�tn = (πni0)j0 ◦ . . . ◦ (πnim−1

)jm−1 belongs to the group of
automorphisms of tn generated by ~πn, so since un is a condition, σ�tn is totally
far from extending to an automorphism, which means that there is a p′ ≥ p,
p′ ∈ tn, such that τ(p′) 6= σ(p′). This finishes the proof.

2.2 Extending conditions

The following lemma says basically that the set of conditions 〈t, ~π〉 such that the
~πs are locally different (in the sense that given i, j ∈ dom(~π) and a nonmaximal
node p, there is a q ∈ t above p such that πi(q) 6= πj(q)) is dense in S. This is
crucial, and will serve to show that images of a branch added by forcing with
the tree we are forcing (under the automorphisms of the restriction of the tree
to limit levels) are going to turn it into a Kurepa tree. It also shows that S is
nonempty and nonatomic. The following definition is needed in the proof.

Definition 2.4. For nodes p, q of a normal tree T , p∧ q is the unique maximal
node which is below both p and q in the ordering of T . Call p∧ q the meet of p
and q.

Note that the meet always exists in a normal tree by the uniqueness of limits.

Lemma 2.5. Let t̄ and t be standard trees of countable height such that t end-
extends t̄, t̄ has height α, which is the successor of a limit ordinal, and t has
height α+ω+ 1. Let I be a countable subset of ω2 and 〈π̄i | i ∈ I〉 be a sequence
of automorphisms of t̄|Lim. Then there is a sequence ~π = 〈πi | i ∈ I〉 such that

1. 〈t, ~π〉 ∈ S.

2. For all i ∈ I, π̄i ⊆ πi.

3. If {i, j} ∈ [I]2, and p is a non-maximal node in t, then there is a node q
in t above p (at the top level of t) such that πi(q) 6= πj(q).

Proof. The proof uses a pseudo forcing argument: Let Q be the poset consisting
of conditions of the form 〈σi | i ∈ I〉, such that

1. For every i ∈ I, σi is an injective partial function from t|Lim to t|Lim
that’s order-preserving and that extends π̄i.
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2. The set
⋃
i∈I{i} × (dom(σi) \ dom(π̄i)) is finite.2

The ordering is reverse inclusion on each component.
I will specify a certain countable collection of dense subsets of Q such that

a filter H which is Q-generic with respect to this collection will determine a set
~π of automorphisms of t|Lim with the desired properties. More precisely, given
a filter H in Q, let, for i ∈ I,

πi =
⋃
{σi | ~σ ∈ H}.

The strategy is to specify the countably many dense subsets of Q in such a way
that any filter that’s generic with respect to that collection of dense sets will
give rise to a sequence ~π with all the properties mentioned in the statement of
the lemma.

Let Ī∗ be the set of pairs of finite sequences 〈~α,~j〉 s.t. |~α| = |~j|, ~α ∈ |~α|I
and ~j ∈ |~j|{−1, 1}. The elements of Ī∗ can be thought of as names for members
of the group generated by ~π, the set of automorphisms of t|Lim that’s going to
be determined by the Q-pseudo-generic filter under construction. Namely, if ~σ
is a condition in Q, and 〈~α,~j〉 ∈ Ī∗ is of length n, set:

~σ〈~α,~j〉 = σjn−1
αn−1

◦ · · · ◦ σj0α0
.

Let’s let ~σ∅ = id be the identity automorphism. Say that a sequence 〈~α,~j〉 ∈ Ī∗
is canceled if there is no k+1 < |~j| such that αk = αk+1 and jk = −jk+1. Let I∗

be the collection of elements of Ī∗ that are canceled and that are not the empty
sequence. So these are the names for potentially nontrivial automorphisms.

For each name 〈~α,~j〉 ∈ I∗ and each non-maximal node p of t, we want H to
intersect the set

D〈~α,~j〉,p = {~σ ∈ Q | ∃q1, q2 > p (|q1 ∧ q2| 6= |~σ〈~α,~j〉(q1) ∧ ~σ〈~α,~j〉(q2)|)}.

To clarify, the meets are taken in t here, not in t|Lim.
If we succeed in finding a filter H intersecting all of these sets (and all that’s

needed in order to guarantee this is a verification that these sets are dense),
then clearly, the group Γ generated by the sequence of automorphisms ~π which
is determined by H will have the property that for every nontrivial σ ∈ Γ and
every non-maximal node p ∈ t, there are nodes q1 and q2 above p (q1 and q2 can
be chosen to be maximal in t) such that |q1∧q2| 6= |σ(q1)∧σ(q2)|. This of course
implies that every such σ is totally far from extending to an automorphism of
t: Suppose π is an isomorphism between tp and tq, where p, q ∈ t are distinct
nonmaximal nodes located at the same level of t. So π(p) = q. If σ(p) 6= q,
then there is nothing to show, so suppose σ(p) = q. Let q1, q2 ≥ p be nodes in t
such that |q1 ∧ q2| 6= |σ(q1)∧ σ(q2)|. Since q1, q2 ≥ p, it follows that q1 ∧ q2 ≥ p,
and moreover, π(q1) ∧ π(q2) = π(q1 ∧ q2), so |q1 ∧ q2| = |π(q1) ∧ π(q2)|. So

2Note that
⋃

i∈I{i} × (dom(σi) \ dom(π̄i)) =
⋃

i∈I{i} × (dom(σi) \ t̄). So the additional
nodes in the domain of σi, if there are any, are located at the top level of t.
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σ(q1) 6= π(q1) or σ(q2) 6= π(q2). So meeting these sets will insure that condition
1 of the lemma is satisfied.

Before proving the required density, I need a simple, yet technical observa-
tion:

Observation 2.6. Let u = ~τ ∈ Q and let 〈〈αk, jk〉 | k < 2〉 ∈ I∗. Let q1 6= q2

be nodes at the top level of t which don’t belong to the domain of (τα0
)j0 . Then

there are r1 6= r2, also at the top level of t, such that if we let v = 〈τ ′i | i ∈ I〉 be
defined by

τ ′i =

 τi if i 6= α0

τi ∪ {〈q1, r1〉, 〈q2, r2〉} if i = α0 and j0 = 1
τi ∪ {〈r1, q1〉, 〈r2, q2〉} if i = α0 and j0 = −1

then v ∈ Q and r1, r2 are not in the domain of (τ ′α1
)j1 . But to clarify, q1 and

q2 are in the domain of (τ ′α0
)j0 and rl = (τ ′α0

)j0(ql), for l = 1, 2.

Proof of Observation. By symmetry, we may assume that j0 = 1.
Let xl be the predecessor of ql in t which is located at the top level of t̄

(l ∈ {1, 2}), and let yl = τα0
(xl).

If α1 6= α0, then we can just pick distinct nodes r1, r2 at the top level of
t which are above y1, y2, respectively, which are not in the domain of (τα1)j1 ,
and which are not in the range of τα0

. Note that every node at the top level
of t̄ has infinitely many successors at the top level of t, by normality. Yet only
finitely many nodes at the top level of t belong to the domain or the range of
τi, for any i ∈ I. Defining ~τ ′ as in the claim, τ ′α1

= τα1 , and so, r1 and r2 are
not in the domain of (τ ′α1

)j1 .
So assume now that α1 = α0 = α. Since 〈〈αk, jk〉 | k < 2〉 is canceled, it

follows that j1 = j0, so by assumption, j1 = j0 = 1. In that case, pick nodes
r1 6= r2 at the top level of t which are above y1, y2, respectively, which are
neither in the domain nor in the range of τα, and which are different from
q1 and q2. Since after defining v as in the claim, the domain of τ ′α will be
dom(τα) ∪ {q1, q2}, we have that r1, r2 /∈ dom(τ ′α) = dom((τ ′α1

)j1), as wished.
In both cases, r1 and r2 had to be chosen outside of the range of τα0

, so that
τ ′α0

will be injective. 2Obs.

Now let’s show that D〈~α,~j〉,p is dense in Q. Let |〈~α,~j〉| = n+ 1.

Let u = ~τ ∈ Q be given. Pick distinct nodes q1 and q2 above p on the top
level of t, so that q1, q2 are not in the domain of τ j0α0

. In addition, they may be
chosen so that the meet of q1 and q2 (in t) is at least at the maximal level of
t̄. By applying the previous observation n times, find an extension v = ~τ ′ of u
such that, letting σ := v〈~α�n,~j�n〉, q

′
l = σ(ql) is defined but not in the domain of

ρ := τ ′
jn
αn

.
Since the meet of q1 and q2 (in t) is at least at the maximal level of t̄, so

is the meet of q′1 and q′2, because σ is order preserving on t|Lim. Let p′ be the
t-predecessor of q′1 and q′2 at the top level of t̄. So p′ and p are comparable in t,
and it follows that q′1, q

′
2 ≥ σ(p′).
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Now q′1 and q′2 are not in the domain of ρ. So we can pick extensions z1 6= z2

of ρ(σ(p′)) at the top level of t which are not in the range of ρ (only finitely
many are), such that the meet of z1 and z2 is at a level of t different from the
level of the meet of q1 and q2. Define the desired condition to behave just like
v, but in addition, specify that its αthn function (eventually inverted, depending
on jn) maps q′1 to z1 and q′2 to z2. This condition extends the one we started
with and is in the set which we wanted to prove dense.

Insuring requirement 3 of the lemma corresponds to meeting the following
dense subsets of Q:

Di,j,p = {~σ ∈ Q | ∃q ≥ p σi(q) 6= σj(q)},

for {i, j} ∈ [I]2 and any nonmaximal node p of t. That each of these sets is dense
is obvious. The point is again that every nonmaximal node of t has infinitely
many maximal nodes above it, while only finitely many maximal nodes of t are
in the domain of σi or σj .

To insure that our pseudo-generic filter H will generate total functions, let,
for each maximal node p ∈ t and each i ∈ I,

Di,p = {~σ ∈ Q | p ∈ dom(σi)}.

It is again trivial that Di,p is dense.
Finally, to insure that H will give rise to surjective functions, define

D′i,p = {~σ ∈ Q | p ∈ ran(σi)},

for maximal nodes p ∈ t and i ∈ I. Clearly, D′i,p is dense.
To conclude the proof, let H be a filter in Q which intersects all the dense

sets of the form D〈~α,~j〉,p, Di,j,p, Di,p and D′i,p. Obviously, this is a countable
collection of dense subsets of Q, so such an H exists. The dense sets have
been chosen so as to guarantee that the sequence 〈πi | i ∈ I〉 defined as in the
beginning of the proof with respect to H has the desired properties.

2.3 S preserves cardinals

Lemma 2.7. Assuming CH, S is <ℵ2-c.c.

Proof. Towards a contradiction, assume that 〈uα | α < ω2〉 is an enumeration of
an antichain in S of size ℵ2. Let uα = 〈tα, ~πα〉. Let tα = 〈oα, <α〉. By definition
of S, oα < ω1 is a countable ordinal, so by restricting to a subcollection of
conditions in the antichain, we may assume that oα is the same ordinal θ, for all
α < ω2. Each <α is then a subset of θ × θ. There are 2θ ≤ ℵ1 such subsets by
CH, so we may assume that <α is the same for all α < ω2. So for all α < ω2, tα
is the same tree t. Let Iα = dom(~πα). Each Iα is a countable subset of ω2, and
there are ℵ2 many. By CH, ω<ω1

1 = ω1, so that the ∆-Lemma applies, giving
a ∆-system D = {Iα | α ∈ X}, where X has size ℵ2. Let r be the root of the
system. For every α ∈ X, ~πα�r belongs to r(t|Limt|Lim). Since r is countable,
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and so is t|Lim, it again follows from CH that there is a subset Y of X of size
ℵ2 such that for all α, β ∈ Y , ~πα�r = ~πβ�r.

Now pick two conditions uα and uβ with α, β ∈ Y , α 6= β. Let ~̄π = ~πα ∪ ~πβ ,
and set u = 〈t, ~̄π〉. u need not be a condition in S, since the requirement on
the group of automorphisms of t|Lim generated by ~̄π will not necessarily be
satisfied. But I claim that nevertheless, uα and uβ are compatible. To see this,
note that the tree t can be assumed to have a maximal level (by extending
it and its automorphism sequence by one level if necessary), and then, t′ may
be defined to be some arbitrary normal, ω-splitting tree whose nodes form an
ordinal, end-extending t, and having height |t|+ω+ 1. Now Lemma 2.5 can be
invoked to produce a condition v with first coordinate t′ whose automorphism
sequence will extend ~̄π, and thus will extend both uα and uβ . This contradicts
the assumption that {uγ | γ < ω2} is an antichain.

Corollary 2.8. Assuming CH, S preserves cardinals.

Proof. We have already seen that S is countably closed, so putting this together
with the previous lemma, it follows that S preserves cardinals.

2.4 Properties of the generic tree

From now on, assume CH, let G be S-generic, and let

T = TG =
⋃
{t | ∃~π 〈t, ~π〉 ∈ G}

be the tree added by S. The focus will now be on the tree T as a forcing notion
rather than on the properties of S. The aim is to see that T is a Souslin tree in
V[G] (so that it is ccc and countably distributive), rigid (as a tree) and finally,
almost Kurepa.

Lemma 2.9. T is a Souslin tree in V[G].

Proof. Let u = 〈t, ~π〉 ∈ S force that Ȧ is a maximal antichain in the generic tree
added by S. Let ḟ be a name for the function that maps each countable ordinal α
(which is also a node of T ) to the smallest ordinal in ȦG that is compatible with
α. More precisely, let u force that ḟ satisfies that definition. Now, we bootstrap
as follows: Construct a decreasing sequence of conditions 〈un | n < ω〉 in S. Let
u0 = u. Given un = 〈tn, ~πn〉, find a condition un+1 = 〈tn+1, ~π

n+1〉 ≤ un whose
tree is higher than the tree part of un, such that un+1 decides ḟ on tn (i.e.,
such that there is a function fn : tn −→ ω1 such that un+1  ḟ�ťn = f̌n), and
such that ran(fn) ⊆ tn+1. Let uω = 〈tω, ~πω〉, where tω =

⋃
n<ω tn, dom(~πω) =⋃

n<ω dom(~πn), and for i ∈ dom(~πω), πωi =
⋃
i∈dom(~πn) π

n
i . Lemma 2.3 shows

that uω is a condition in S extending un, for every n. Let f =
⋃
n<ω fn and set

a = ran(f). It is obvious from the construction that uω forces that ǎ = Ȧ ∩ ťω
is a maximal antichain in ťω.

The next step is the paradigmatic sealing argument. To seal a, we construct
a stronger condition in such a way that every new node in the tree part of
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the condition will be above a condition in a. Note that by construction, the
height of tω is a limit of limits. Let Γ be the group of automorphisms of tω|Lim
generated by ~πω. Let a′ be the maximal antichain in tω|Lim consisting of nodes
p (of limit height) such that

∃q ∈ a q ≤ p ∧ [|q|, |p|) ∩ Lim = ∅.

Now Γ is a countable group acting on tω|Lim. We would like to construct a set
of cofinal branches B of tω|Lim such that

1. B respects Γ: For each σ ∈ Γ and each b ∈ B, σ“b ∈ B.

2. B seals a′: For each b ∈ B, b ∩ a′ 6= ∅.

3. B covers tω: For each p ∈ tω, there is a b ∈ B such that p ∈ b.

It is again convenient to construct B using pseudo forcing. Let Γ = {σn | n <
ω}. Let Q be the partial order (tω|Lim)ω, with finite support and the canonical
ordering. The aim is to write down a countable collection of dense subsets
of Q such that any filter H that’s generic with respect to this collection will
give rise to a “generating” set of branches B̄ through tω|Lim, so that the set of
images of branches in B̄ under automorphisms in Γ will satisfy the requirements
listed above. Note that since Γ is closed under compositions, requirement 1 will
automatically be satisfied. To meet requirement 2, our filter H should meet the
following sets, for every m,n < ω:

Dm,n = {〈pi | i < ω〉 ∈ Q | ∃r ∈ a′ σm(pn) ≥ r}.

Dm,n is dense, since given 〈pi | i < ω〉, σm(pn) (which can be taken to be the
root of tω if undefined) can be extended to a node q ∈ tω|Lim that lies above
a node in a′, as a′ is a maximal antichain in tω. Let q̄ = σ−1

m (q). Then the
condition 〈qi | i < ω〉 defined by qi = pi for i 6= n and qn = q̄ extends ~p and
belongs to Dm,n.

For requirement 3, it suffices to meet the following sets, for p ∈ tω:

Dp = {〈pi | i < ω〉 ∈ Q | ∃n p ≤ pn}.

As usual, a tiny bit more is needed in order to insure H will add cofinal branches.
For every ordinal α < ht(tω) and every n < ω, let

Dα
n = {〈pi | i < ω〉 ∈ Q | |pn| > α}.

Here, |pn| is the height of pn in tω, not in tω|Lim.
The sets listed above are dense and open, and there are countably many, so

there is a filter H in Q intersecting all of them. For n < ω, let

cn = {p ∈ tω|Lim | ∃〈pi | i < ω〉 ∈ Q p ≤ pn}.

Let B = {σm“cn | m,n < ω}. By construction, B satisfies the requirements
listed above. Now, define u′ = 〈t′, ~π′〉 ∈ S as follows: t′ end-extends tω by adding
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one new level (a limit level). To define this new level, pick the next ω many new
ordinals. For each of these ordinals, we have to specify the predecessors they
should have. Of course, for each of these ordinals α, we’ll pick one branch b ∈ B
and say that the set of predecessors of α in t′ should be the closure of b under
<tω . This defines t′. To define ~π′, let dom(~π′) = dom(~πω). For i ∈ dom(~π′)
and p ∈ t′|Lim, define π′i(p) as follows: If p ∈ tω, then π′i(p) = πωi (p). If
not, then let b = {q ∈ (tω|Lim) | q <t′ p} ∈ B. Since B is closed under Γ,
c := (πωi )“b ∈ B. So c has a unique successor at the top level of t′, say p′ (i.e.,
c = {q ∈ (tω|Lim) | q <t′ p′}). Set π′i(p) = p′. It is clear that u′ ∈ S. Moreover,
u′ forces that Ȧ = ǎ, since u′ forces that every node of the generic tree that’s
not in tω is above a node at the top level of t′ which, in turn, is above a node
in a. In particular, u′ forces that Ȧ is countable.

So what we have shown is that every condition that forces Ȧ is a maximal
antichain in the generic tree has an extension that forces that Ȧ is countable. So
actually, u forces that Ȧ is countable, which shows that T is a Souslin tree.

Lemma 2.10. T is rigid in V[G].

Proof. This is where the property “totally far from extending to an automor-
phism of t” comes into play. Assume T [G] was not rigid. Let u ∈ S force that ḟ
is a nontrivial automorphism of the generic tree. Bootstrap as in the previous
proof to find a stronger condition 〈t, ~π〉 which decides ḟ on t (to be nontrivial).
Let f be the function ḟ is decided by 〈t, ~π〉 to be, when restricted to t.

Again, assume the height of t to be a limit of limit ordinals. Let p0 ∈ t
be such that f(p0) 6= p0, and let Γ be the group of automorphisms of t|Lim
generated by ~π. Now we do a pseudo forcing argument to cover t and seal f :

Consider the notion of forcing P = tp0 × tω, with finite support. View
elements of P as functions c : ω −→ t, where c(0) ∈ tp0 and for all but finitely
many i < ω, c(i) is the root of t.

The goal is that if we pickH to be P-generic with respect to a carefully chosen
countable collection of dense subsets of P, and let b(i) = {q | ∃g ∈ H q ≤ g(i)},
then b(i) is a cofinal branch through t, the closure of the set B = {b(i) | i < ω}
under Γ covers t, and, most importantly, we want that the closure of B seals f ,
in the sense that

f“b(0) /∈ Γ(B),

where Γ(B) stands for the closure of the branches in B under the automorphisms
in Γ. Ensuring the latter corresponds to intersecting the following dense subsets
of P: Given σ ∈ Γ and i < ω, set

Dσ,i := {c ∈ P | σ(c(i)) ⊥ f(c(0))}.

It needs to be checked that Dσ,i is dense. This is obvious in case i 6= 0. For
then, given a condition c, find an extension c′ ∈ Dσ,i as follows: First extend its
0th coordinate arbitrarily so as to determine f(c′(0)) up to a limit height above
that of σ(c(i)). Then extend the ith coordinate so that σ(c′(i)) is different from
f(c′(0)). This is easily achieved as σ is an automorphism of t|Lim.
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So assume now that i = 0. Let c ∈ P be given. We must find an extension
c′ which is in Dσ,0. Let p = c(0). We may assume that p has limit height. Note
that f�tp : tp −→ tf(p) is an isomorphism, and p 6= f(p) are at the same level
of t. So by the fact that σ is totally far from extending to an automorphism of
t, we can find an extension q of p s.t. f(q) 6= σ(q). Hence, f(q) ⊥ σ(q) and the
condition obtained from c by strengthening its 0th coordinate to q is in Dσ,0.

Since the sets Dσ,i are dense, there is a filter intersecting them all, and
additionally some more, to insure that the branches determined by the filter are
cofinal in t and cover t (see the proof of Lemma 2.9). The rest of the procedure
is as in the case of sealing a maximal antichain: We find a strengthening u′ of
〈t, ~π〉 by adding a top level to t in such a way that every branch in the closure
of B under Γ gets a successor, and the automorphisms ~π are extended in the
canonical way, as before. Since u′ is a strengthening, it should force that ḟ is
an automorphism of the generic tree, but from the way u′ was constructed, it’s
clear that f“b(0) is not extended, a contradiction.

Corollary 2.11. T is totally rigid in V[G].

Proof. Indeed, the formulation “totally far from extending to an automorphism”
allows us to seal any isomorphism σ : Tr −→ Ts, where r 6= s are nodes located
on the same level of the tree. But if we had any isomorphism σ : Tp −→ Tq, then
we could find p′ ≥ p such that |σ(p′)| = |p′| as follows: Let g : ω1\|p| −→ ω1\|q|
be defined by g(γ) = |σ(r)|, for any (and all) r ∈ Tp with |r| = γ. Clearly
then, g(|p| + α) = |q| + α, for all α < ω1. So as soon as α is greater than or
equal to an indecomposable ordinal above the maximum of |p| and |q|, we have
g(|p|+ α) = g(α) = |q|+ α = α. So if r ∈ Tp is such that |r| is indecomposable
and greater than both |p| and |q|, it follows that σ�Tr : Tr −→ Tσ(r) is an
isomorphism, and |r| = |σ(r)|. But such isomorphisms don’t exist, by the
argument establishing Lemma 2.10.

Lemma 2.12. T is absolutely rigid in V[G].

Proof. Note that Lemma 2.10 is a consequence of the present lemma. Instead
of proving the most complicated lemma first, I preferred to present the results
incrementally, at each step dealing with the new complications.

Suppose T was not absolutely rigid. Then in V[G], there would be a T -
name π̇ for a nontrivial automorphism of T . π̇ can be viewed as a function π
mapping nodes p ∈ T to partial automorphisms of T : π(p)(q) = r if r is the T -
maximal node such that p  π̇(q̌) = ř. Call such a function a potential nontrivial
automorphism of T . Now in V, there is an S-name τ for π, so that τG = π. Fix
an S-condition t0 that forces that τ is a potential nontrivial automorphism of
T .

Using the bootstrap construction, it is easy to see that there is an extension
〈t, ~π〉 of t0 whose height is a limit of limits, such that t decides τ on t, and
such that, writing π for what t decides τ to be, there are p0, q0 ∈ t such that
(π(p0))(q0) 6= q0, and such that for every p, q ∈ t, there are p′ ≥ p and q′ ≥ q
such that q′ ∈ dom(π(p′)), and for every p, q ∈ t, there are p′ ≥ p and q′ ≥ q
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such that q′ ∈ ran(π(p′)). For details on potential additional automorphisms,
see [FH09].

As before, let Γ be the group of automorphisms of t|Lim generated by ~π.
Using a pseudo forcing argument, I am going to find a set of branches covering t
and respecting Γ such that π is sealed, in the sense that it can’t be extended to
a potential additional automorphism of any tree t′ extending t where t′ results
from t by adding successor to precisely that set of branches. Similarly to previous
constructions, let P = tω, with finite support. For σ ∈ Γ and i < ω, let

Dσ,i = {c ∈ P | σ(c(i))⊥π(c(0))(c(1))}.

The idea is that if H is a filter meeting all of these (countably many) sets, and
in addition other dense sets ensuring that H will determine cofinal branches
that cover t, as before, then, letting bi be the branch determined by the i-th
coordinates of conditions in H, then π(b0)(b1) is incompatible with the branch
determined by σ(bi). Hence, π cannot be extended to a potential additional
automorphism of any tree extending t′, where the t′ results from t by adding
successors to the branches in Γ(B). So all that needs to be checked is that Dσ,i

is dense.
Case 1: i > 1.

This is the easiest case. I leave the details to the reader.
Case 2: i = 0.

Let c̄ ∈ P be given. Let p̄ = c̄(0), q̄ = c̄(1). Find p ≥ p̄, so that π(p) is
defined on at least two nodes of limit height that are above q̄. At least one of
these nodes, q, is such that σ(p)⊥π(p)(q). So define c ∈ P to be like c̄, except
that c(0) = p and c(1) = q. Then c is an extension of c̄ in Dσ,i.
Case 3: i = 1.

Again, let c̄ ∈ P be given, and let p̄ = c̄(0), q̄ = c̄(1). Note that since I am
forcing with P below p0 and q0, it follows that p̄ ≥ p0 and q̄ ≥ q0. Let b be
a cofinal branch of t that contains p̄, so that π′ :=

⋃
r∈b π(r) : t

∼←→ t is an

automorphism. Clearly, q̄′ := π′(q̄) 6= q̄, so that π′�tq̄ : tq̄
∼←→ tq̄′ . Now since

σ is totally far from extending to an automorphism of t, there is a q ≥ q̄ in t
so that σ(q) 6= π′(q). Now find p ∈ b, p ≥ p̄, such that π′(q) = (π(p))(q), and
define c ∈ P by letting c(i) = c̄(i) if i > 1, c(0) = p and c(1) = q. Then c is an
extension of c̄ in Dσ,i.

Corollary 2.13. T is absolutely totally rigid in V[G].

Proof. This can be shown by a minor variation of the proof establishing Lemma
2.12.

Lemma 2.14. T is almost Kurepa in V[G]: Forcing with T over V[G] turns T
into a Kurepa tree.

Proof. From G we not only get T , but also a sequence 〈πi | i < ω2〉 of automor-
phisms of T |Lim, where

πi =
⋃
{σi | ∃u = 〈t, ~σ〉 ∈ G i ∈ Iu}.
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Recall that S preserves cardinals, so ωV
2 = ω

V[G]
2 here.

The point is that in V[G], if {i, j} ∈ [ω2]2, the set

Di,j = {p ∈ T | πi(p) 6= πj(p)}

is dense in T . The reason is that given such i and j, and a node p ∈ T , we can
pick a condition u ∈ G such that p ∈ tu and i, j ∈ Iu. By (a weak version of)
Lemma 2.5, the set of conditions v ∈ S that extend u and are such that there is
a q ∈ tv above p such that πvi (q) 6= πvj (q) is dense below u, so there is such a v
in G.

So if we force with T over V[G], letting b be T -generic over V[G], then
letting bi = πi“b (i.e., the branch generated by this), for i < ω2, it follows that
the bi’s are distinct, because given distinct i, j < ω2, b intersects Di,j . Hence
this collection of branches witnesses that T is Kurepa in V[G][b] – recall that T
is Souslin in V[G], so forcing with T over V[G] preserves cardinals and again,

ω
V[G]
2 = ω

V[G][b]
2 .

3 Club Rigidity

The Souslin almost Kurepa tree T constructed in the previous section is rigid
and absolutely totally rigid, yet T |Lim has ℵ2 automorphisms. Obviously, an
almost Kurepa tree cannot have the unique branch property. It must have many
“potential additional branches”, i.e., functions derived from names for additional
branches, which are a certain type of homomorphism of the tree, see [FH09]. So
it is an obvious question whether there can be a Souslin almost Kurepa tree T
such that T |Lim is rigid. But of course, the construction of the previous section
can be modified to produce such a tree. In fact, for any given club C, an obvious
modification of the proof can produce a Souslin almost Kurepa tree T such that
T |C is totally rigid. Can this work simultaneously for every club subset of ω1?

Definition 3.1. An ℵ1-tree T is rigid on clubs if for every club C ⊆ ω1 such
that 0 ∈ C, T |C is rigid.

Of course, demanding that 0 ∈ C is not essential here, and this is only
required in order to ensure that the resulting tree will have a unique root.

Question 3.2. Can there be a Souslin almost Kurepa tree T that’s rigid on
clubs?

The concept of club rigidity is very appealing for many reasons. Firstly, T |C
is always a normal ℵ1-tree if T is (the critical condition here is uniqueness at
limits, which is maintained because C is closed). And if T is ω-branching, then so
is T |C. But the main reason why the concept of club rigidity seems important is
as follows. The motivation for many of the rigidity degrees introduced in [FH09]
was viewing the trees as notions of forcing. But if we are really interested in
the trees as notions of forcing, then what really matters should be the rigidity
properties of Boolean algebra associated to the tree. The connection here is the

15



known fact that if T is club rigid, then the Boolean algebra of T is rigid (see
[Jec03, p. 599, ex. 30.15]).

The idea of considering rigidity properties on clubs opens a whole new array
of rigidity degrees. In general, let’s say a tree T has a property on clubs if for
every club C, T |C has this property. So we can talk about trees being rigid
on clubs, totally rigid on clubs, UBP on clubs, et cetera. Recall that T has a
property absolutely if the T has the property after forcing with T . It is then
unclear, for example, what it should mean that T is absolutely rigid on clubs:
Should it mean that after forcing with T , T is rigid on clubs, or should it mean
that T |C is absolutely rigid, for any club C? The latter would mean that for
any club C, T |C is rigid after forcing with T |C. The following lemma shows
that the ambiguity is irrelevant, in the context of Souslin trees.

Lemma 3.3. Let P be a property of a tree such that provably in ZFC, if C ⊆ D
are club subsets of ω1, and T is a Souslin tree such that T |C satisfies P , then
T |D satisfies P (“P goes up”). Then the following are equivalent for a Souslin
tree T :

1. T forces that for every club C, T |C satisfies P .

2. For every club C, T |C forces that T |C satisfies P .

The implication 1. =⇒ 2. holds in general, for any property, and any tree T .

Proof. 1. =⇒ 2.: Fix a club C. Since T |C is dense in T , forcing with T |C is
equivalent to forcing with T . So by 1., after forcing with T |C, T |C satisfies P .

2. =⇒ 1.: Let b be T -generic. Let C be a club subset of ω1 in V[b]. Since T
satisfies the countable chain condition, there is a club C̄ ⊆ C such that C̄ ∈ V.
Since b|C̄ is T |C̄-generic, it follows by 2. that in V[b|C̄], T |C̄ satisfies P . But
then, since P goes up, and since V[b] = V[b|C̄], it follows that T |C satisfies P
in V[b].

Observation 3.4. The following properties go up: rigidity, total rigidity, the
unique branch property.

So there is no ambiguity in saying that a Souslin tree is absolutely rigid on
clubs, absolutely totally rigid on clubs and absolutely UBP on clubs.

Observation 3.5. A tree has each of the following properties iff it has the
property on clubs:

1. UBP

2. Souslin off the generic branch3

3. absolutely UBP

3A Souslin tree T is Souslin off the generic branch if for every V-generic branch b and
every node p ∈ T \ b, Tp is Souslin in V[b]. This is a strengthening of the unique branch
property, introduced in [FH09]. Note that, using this terminology, a Souslin tree is UBP iff it
is Aronszajn off the generic branch.
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4. absolutely Souslin off the generic branch

This robustness makes these rigidity degrees seem very natural. But observe
that all the club degrees have this robustness. For example, if a tree is rigid on
clubs, then it is rigid on clubs on clubs - just because the intersection of two
clubs is club.

Lemma 3.6. The following properties are equivalent, for a normal ω1-tree T :

1. T is rigid on clubs.

2. T is totally rigid on clubs.

Proof. 2. =⇒ 1. is trivial.
1. =⇒ 2.: Suppose T is rigid on clubs but not totally rigid on clubs. So let C
be club, and let p, q ∈ T |C be distinct nodes such that there is an isomorphism
π : (T |C)p

∼←→ (T |C)q. Let p ∈ T (α) and q ∈ T (β), and without limitation
of generality, let α ≤ β. It may also be assumed that p 6≤T q: Otherwise,
let p′ ∈ T (β) be incompatible with (i.e., different from) q, p ≤T p′. Then
q′ := π(p′) ≥T π(p) = q. Then p′ and q′ are incompatible, or else p′ ≤ q′ and
also q ≤ q′, so p′ and q would be compatible, a contradiction. So letting π′ =
π�(T |C)p′ : (T |C)p′

∼←→ (T |C)q′ the desired constellation has been reached,
where p′ and q′ are incompatible. So instead of passing to p′, q′ and π′, we may
assume p and q are already incompatible.

For r ∈ T , let |r| be the level at which r occurs in T , i.e., r ∈ T (|r|).
Let C ′ = C \ |p|, and let f : C ′ −→ C ′ be such that for every r ∈ (T |C)p,
|π(r)| = f(|r|). Now f is continuous, so there is a club C̄ ⊆ C ′ of fixed points of
f (in fact, C̄ can be chosen to be a tail of C ′, but that’s not important for the
argument). Now let p̄ ≥ p, p̄ ∈ T (ᾱ), where ᾱ = min(C̄). Let q̄ = π(p̄), and let
π̄ = π�(T |C̄)p̄. Then π̄ : (T |C̄)p̄

∼←→ (T |C̄)q̄, and p̄ 6= q̄ occur at the same level
of T . Now π̄ can be extended to an automorphism σ of T |(C̄ ∪ {0}) as follows:

σ(r) =

 π̄(r) if r ∈ (T |C̄)p̄
π̄−1(r) if r ∈ (T |C̄)q̄
r if r ∈ (T |(C̄ ∪ {0})) \ ((T |C̄)p̄ ∪ (T |C̄)q̄).

Corollary 3.7. The following properties are equivalent, for a Souslin tree T :

1. T is absolutely rigid on clubs.

2. T is absolutely totally rigid on clubs.

Proof. Fix a Souslin tree T . Then for any club C containing 0, T |C is Souslin,
and after forcing with T |C, T |C is a normal ω1-tree. So in the forcing extension,
T |C is rigid on clubs iff T |C is totally rigid on clubs, by Lemma 3.6. This holds
for any club C containing 0, and so, T is absolutely rigid on clubs iff T is
absolutely totally rigid on clubs.

In Observation 3.5, we have seen that the UBP is equivalent to the UBP on
clubs, and similarly for the property “Souslin off the generic branch”. In the
other cases, having the property on clubs is a proper strengthening.
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Lemma 3.8. Let T be a normal ω1-tree.

1. If T is rigid on clubs, then T is totally rigid.

2. If T is Souslin and absolutely rigid on clubs, then T is absolutely totally
rigid.

These implications cannot be reversed in ZFC. So it is consistent that there is
a normal ω1-tree that’s totally rigid but not club rigid, and it is consistent that
there is a Souslin tree T that’s absolutely totally rigid but not absolutely rigid
on clubs.

Proof. First, let’s prove the implications. For 1., if T is rigid on clubs, then
T is totally rigid on clubs and hence totally rigid. For 2., if T is Souslin and
absolutely rigid on clubs, then T is absolutely totally rigid on clubs and hence
absolutely totally rigid.

To see that these implications cannot be reversed, we may use the absolutely
totally rigid Souslin almost Kurepa tree constructed in the first part of the
present paper. That tree is not rigid on clubs, so it shows that neither of the
implications proved here can be reversed.

Taking into account that the distinctions between rigidity and total rigidity,
and between absolute rigidity and absolute total rigidity, vanish in the context
of club degrees of rigidity, the rigidity diagram is collapsed as follows:

UBP on clubs � Absolutely UBP on clubs

Rigid on clubs

?
� Absolutely rigid on clubs

?

Figure 2: Club Rigidity Implication Diagram

Recall that the UBP is equivalent to the UBP on clubs here.

Lemma 3.9. The rigidity diagram holds on clubs, for Souslin trees.

Proof. The diagram can be lifted to the context of club rigidity easily. For
example, to show that a Souslin tree T that’s absolutely UBP on clubs is also
UBP on clubs, it just needs to be shown that for any club C, T |C is UBP. But
for that club, T |C is absolutely UBP by assumption. So T |C is a Souslin tree
that’s absolutely UBP. By the original implication diagram, it follows that T |C
is UBP. All the other implications can be shown that way.

In order to arrive at the result that the club rigidity degree diagram is
complete, the following need to be shown:

1. It is consistent that there is a Souslin tree T that is UBP (on clubs) but
not absolutely rigid on clubs.
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2. It is consistent that there is a Souslin tree U such that U is absolutely
rigid on clubs but not UBP (on clubs).

The first of these tasks is easily achieved:

Lemma 3.10. It is consistent (it actually follows from ♦) that there is a Sous-
lin tree T that is UBP (on clubs) but not absolutely rigid on clubs (not even
absolutely rigid).

Proof. It was shown in [FH09, Theorem 3.13] that the ♦ principle implies the
existence of a Souslin tree T that’s UBP but not absolutely rigid (in fact, T is
absolutely nonrigid in the sense that after forcing with T , T is not rigid). Note
that by Observation 3.5, part 1, T is UBP on clubs. But it is not absolutely
rigid, and hence not absolutely rigid on clubs.

I don’t know whether the second task is achievable.

Question 3.11. Is it consistent that there is a Souslin tree that is absolutely
rigid on clubs but not UBP (on clubs)?

Let’s now put together the club degrees and the previous degrees of rigi-
dity into one diagram and assemble what we know about their relationships.
In the following diagram, arrows denote implications, double-headed arrows in-
dicate equivalence, and arrows labeled with an “s” stand for strict, that is,
non-reversible implications. The question marks label arrows where it is open
whether the implication can be reversed.

UBP on clubs �
s

Absolutely UBP on clubs

UBP �
s�

-

Absolutely UBP
�

-

Totally rigid on clubs

?
?

�s Abs. totally rigid on clubs

?
?

Totally rigid

s

?
�s�

s 6

Abs. totally rigid

s
?�

s

Rigid on clubs

?
� s

Abs. rigid on clubs

?

6

Rigid

s

?
� s�

s

Abs. rigid

s
?�

s

Figure 3: 3D implication diagram
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Theorem 3.12. The implications in the above diagram are ZFC-provable in the
context of Souslin trees, and the implications marked by an “s” are strict, so
not reversible.

Proof. It is clear that the implications hold. It remains to show that the ones
marked by an “s” are strict.

The seven implications between the non-club degrees are strict, as was shown
in [FH09].

Furthermore, there is no implication from any nonabsolute degree to an
absolute degree, because by Lemma 3.10, the UBP does not imply absolute
rigidity. So the strongest nonabsolute degree does not even imply the weakest
absolute degree. In particular, all the arrows pointing left are strict.

Concerning implications from non-club degrees to club degrees: the absolute
UBP implies any club degree, because it is equivalent to the absolute UBP on
clubs. Similarly, the UBP implies all nonabsolute club degrees. Other than
that, there are no implications from non-club degrees to club degrees: The
strongest non-club degree other than the UBP and the absolute UBP is absolute
total rigidity. And absolute total rigidity does not imply even the weakest club
degree, namely club rigidity. For the tree constructed in the first part of this
paper is a counterexample: it is absolutely totally rigid but not rigid on clubs.

Concerning implications from the rigid level to the totally rigid level: abso-
lute rigidity on clubs implies everything on the totally rigid level, and rigidity
on clubs implies the nonabsolute totally rigid degrees. Rigidity on clubs implies
no absolute degree on the totally rigid level, as there is no implication from any
nonabsolute degree to an absolute one. To see that there is no other implication
from a rigid degree to a totally rigid degree, it suffices to see that the strongest
rigid degree left (absolute rigidity) does not imply even the weakest totally rigid
degree, i.e., total rigidity. This was shown in [FH09].

So far, the only implications that hold result from following the arrows in
the diagram.

The only question left is which implications go from the totally rigid level
to the UBP level. Note that the UBP level really only consists of two degrees,
UBP and absolute UBP. It was shown in [FH09] that absolute total rigidity does
not imply the UBP. So there is no implication from absolute total rigidity or
total rigidity to any degree on the top UBP level. We know that total rigidity
on clubs does not imply the absolute UBP, since there is no implication from
a nonabsolute degree to an absolute degree. So the only possible implications
that don’t arise from following arrows in the diagram are from (total) rigidity
on clubs to UBP (on clubs), from absolute (total) rigidity on clubs to UBP
(on clubs), and from absolute (total) rigidity on clubs to absolute UBP (on
clubs).

So the question raised by the previous lemma is:

Question 3.13.

1. Does absolute rigidity on clubs imply UBP?
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2. Does absolute rigidity on clubs imply the absolute UBP?

3. Does rigidity on clubs imply the UBP?

All three could be answered in the negative by answering Question 3.11 in
the positive.
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