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Abstract An asymptotic analysis of the regular and Mach reflection of weak
shocks leads to shock reflection problems for the unsteady transonic
small disturbance equation. Numerical solutions of this equation re-
solve the von Neumann triple point paradox for weak shock Mach re-
flection. Related equations describe steady transonic shock reflections,
weak shock focusing, and nonlinear hyperbolic waves at caustics.

Keywords: Shock reflection, von Neumann triple point paradox, nonlinear mixed-
type PDEs, hyperbolic conservation laws

1. Introduction

Shock reflection is one of the simplest multi-dimensional processes
involving shock waves. Nevertheless, despite long and intensive study,
many features of shock reflection remain poorly understood. This fact is
one indication of the difficulties posed by an analysis of multi-dimensional
hyperbolic systems of conservation laws, such as the compressible Eu-
ler equations that model the flow of an inviscid compressible fluid [11].
Thus, shock reflection is important not only for its physical significance,
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but because it provides one point of entry into these long-standing math-
ematical problems.

In this paper, we will describe some studies of weak shock reflection
that are based on asymptotic analysis. We discuss the construction of
an asymptotic solution for regular reflection, the resolution of the von
Neumann triple point paradox for Mach reflection, and steady Mach
reflection. We also briefly review some related phenomena in shock fo-
cusing and nonlinear caustics.

We consider the basic two-dimensional shock reflection problem of a
plane shock incident on a straight-sided wedge in an inviscid fluid. This
problem is self-similar. The full reflection pattern forms the instant the
shock hits the wedge, then expands linearly in time.

To be definite, we suppose that the shock is incident symmetrically
on the wedge. Then, given the equation of state of the fluid and the
state of the undisturbed fluid ahead of the incident shock, there are
two parameters in this problem: the half-angle α of the wedge and the
strength ε of the incident shock. For example, we may use as a measure
of the shock strength ε = M 2 − 1, where M is the Mach number of the
incident shock.

At lower shock strengths or larger wedge angles, one observes a regular
reflection (RR) similar to a linear wave reflection, except that the angles
of incidence and reflection are not equal. At higher shock strengths or
smaller wedge angles one observes a Mach reflection (MR) in which three
shocks — the incident, reflected, and Mach shocks — meet at a point,
called the triple point. A contact discontinuity, separating the higher
entropy fluid that passes through the stronger Mach shock from the
lower entropy fluid that passes through the incident and reflected shocks,
also originates at the triple point. Various types of Mach reflection (e.g.
simple, double, complex) have been observed and classified [2, 13]. A
schematic diagram of the main regions is shown in Figure 6.1.

One principal difficulty in the analysis of shock reflection is the pres-
ence of a nonuniform diffracted wave behind the incident shock. An
asymptotic analysis is possible when the diffracted wave is weak. Three
different limits in which this happens are shown in Figure 6.1:

(a) the weak shock limit, ε → 0 with α > 0 fixed, when regular reflec-
tion occurs;

(b) the thin wedge limit, α → 0 with ε > 0 fixed, when Mach reflection
occurs;

(c) the transitional thin wedge/weak shock limit, ε → 0, α → 0, with
α = O(ε1/2), when regular or Mach reflection occurs.
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Figure 6.1. Schematic diagram of shock reflection patterns: RR = regular reflection;
SMR = single Mach reflection; DMR = double Mach reflection; CMR = complex
Mach reflection; GMR = Guderley Mach reflection.

The weak shock limit (a) was studied by Keller and Blank [31], Hunter
and Keller [27], and others, and is discussed in §2. The thin wedge limit
(b) was studied by Lighthill [32] and Ting and Ludloff [43], but in this
paper we restrict our attention to weak shocks and will not discuss this
work. The transitional limit (c) was studied by Hunter [23, 24], Hunter
and Brio [25], and Morawetz [34], and leads to a shock reflection problem
for the unsteady transonic small disturbance equation, discussed further
in §3. In §4, we discuss steady shock reflections, and in §5, we discuss
shock focusing.

2. Regular reflection

A first approximate solution for the regular reflection of a weak shock
off a wedge may be obtained by linearization. The linearized solution
is not, however, a uniformly valid leading order approximation through-
out the flow-field. As indicated in Figure 6.2, it breaks down near the
diffracted wavefront, where its radial derivative becomes infinite, and
near the singular ray, where both its radial and tangential derivatives
become infinite. To obtain a complete asymptotic solution, one needs to
construct weakly nonlinear inner solutions in these regions and match
them with the linearized outer solution. We outline the main ideas of
this construction in the next three subsections.
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Figure 6.2. Regions for regular reflection: 1. linearized solution; 2. diffracted wave-
front; 3. singular ray.

2.1 The linearized solution

To leading order in the shock strength, the flow in a weak shock re-
flection is irrotational and isentropic. The linearized compressible Euler
equations therefore reduce to the acoustical wave equation for the pres-
sure fluctuations pl,

pl
tt = c2

0

(

pl
xx + pl

yy

)

. (6.1)

Here, c0 is the sound speed in the fluid ahead of the incident shock, t is
the time variable and (x, y) are Cartesian space variables.

In self-similar coordinates

ξ =
x

c0t
, η =

y

c0t
,

the wave equation reduces to a mixed type PDE

(

ξ2 − 1
)

pl
ξξ + 2ξηpl

ξη +
(

η2 − 1
)

pl
ηη + 2ξpl

ξ + 2ηpl
η = 0. (6.2)

We denote the self-similar radial coordinate by ρ =
(

ξ2 + η2
)1/2

. Then
(6.2) is hyperbolic in ρ > 1 and elliptic in ρ < 1. The shock reflec-
tion solution in the hyperbolic region is piecewise constant, and can be
written down immediately. One then has to solve a degenerate elliptic
boundary value problem in ρ < 1 subject to Neumann boundary condi-
tions on the wedge and Dirichlet boundary conditions on the sonic circle
ρ = 1, obtained from the solution in the hyperbolic region. This was
done by Keller and Blank [31] using Busemann’s conical flow method
(Albert Blank was Joe’s first PhD student). Busemann [4] had observed



Weak Shock Reflection 97

that the change of radial coordinates

ρ̃ =
1 −

(

1 − ρ2
)1/2

ρ

reduces (6.2) to Laplace’s equation in ρ < 1, which may be solved by
standard methods.

2.2 The diffracted wavefront

We denote by (r, θ) polar coordinates in the spatial (x, y)-plane. The
linearized solution pl described in §2.1 has a square-root singularity near
the diffracted wavefront r = c0t. One finds that

pl

ρ0c
2
0

∼ εk(θ)

(

1 − r

c0t

)1/2

as r → c0t
−, (6.3)

where ρ0 is the density ahead of the incident shock, and k(θ) is an
explicitly computable dimensionless function.

Following the ideas of weakly nonlinear geometrical acoustics [8, 26,
38], Hunter and Keller [27] obtained a weakly nonlinear inner solution
pd for the pressure fluctuations near the diffracted wavefront r = c0t of
the form1

pd

ρ0c2
0

∼ δa

(

r, θ,
r − c0t

δ

)

,

where δ is a small parameter. Here, the function a(r, θ, τ) satisfies a
cylindrical inviscid Burgers equation

ar +

(

γ + 1

4
a2

)

τ
+

1

2r
a = 0, (6.4)

where, for simplicity, we assume that the fluid is an ideal gas with con-
stant ratio of specific heats γ. The polar angle θ occurs in this equation
as a parameter.

The solution of (6.4) must match as τ → −∞ with the inner expansion
of the outer linearized solution given in (6.3), and it must vanish ahead
of the diffracted wavefront as τ → +∞. In view of the self-similarity
of the problem, this matching condition is equivalent to an asymptotic
initial condition as r → 0+. Matching implies that δ = ε2 and

a(r, θ, τ) ∼
{

k(θ)
√

−τ/r if τ < 0,
0 if τ > 0,

as r → 0+. (6.5)

1In fact, one must also make a Galilean transformation into a reference frame moving with the
fluid flow behind the incident or reflected shock to account for the advection of the diffracted
wavefront by this flow. In order to explain the main ideas, we neglect this complication here.
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Solving (6.4) and (6.5), we find that when k(θ) > 0, corresponding to a
compressive diffracted wave, the diffracted wavefront is a shock (rather
than the square-root singularity that occurs in the linearized theory).
The pressure jump across the diffracted shock is given by

[

pd

ρ0c2
0

]

∼ 3(γ + 1)

4
ε2k2(θ) as ε → 0+.

Thus, the diffracted shock strength is second order in the incident shock
strength and the linearized solution breaks down in a region of width
O(ε2) around the diffracted shock. When k(θ) < 0, corresponding to
an expansive diffracted wave, the diffracted wavefront is an accelera-
tion wave across which the pressure is continuous and the derivative
has a jump discontinuity (but remains bounded, unlike the linearized
solution).

2.3 The singular ray

The diffracted wavefront expansion breaks down near the singular ray
because k(θ) in (6.3) becomes infinite at the corresponding value of θ.
Asymptotic expansions valid near the singular ray were constructed by
Harabetian [17], Hunter [22], and Zahalak and Myers [46].

The method of matched asymptotic expansions shows that the break-
down occurs in a region of width of the order ε in the radial direction
and ε1/2 in the tangential direction about the singular ray. In this case,
a two-scale weakly nonlinear expansion of the compressible Euler equa-
tions is required to describe the solution, leading to a two dimensional
version of the inviscid Burgers equation called the unsteady transonic
small disturbance (UTSD) equation [22]. The normalized form of the
UTSD equation is

ut +

(

1

2
u2

)

x
+ vy = 0, uy − vx = 0. (6.6)

Here, x and y are scaled Cartesian spatial coordinates near the singular
ray, respectively normal and tangential to the wavefront, and t is a ‘slow’
time or radial variable analogous to r in (6.4). The dependent variables
u, v are scaled x, y velocity fluctuations, and the pressure fluctuations
are proportional to u, which is analogous to a in (6.4).

In self-similar coordinates

ξ =
x

t
, η =

y

t
,
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equation (6.6) reduces to

(

1

2
u2 − ξu

)

ξ
+ (v − ηu)η + 2u = 0, uη − vξ = 0,

which changes type across the sonic line

u = ξ + η2/4. (6.7)

We refer to a point where the equations are hyperbolic (u < ξ+η2/4) as
supersonic, and a point where the equations are elliptic (u > ξ + η2/4)
as subsonic.

The inner weakly nonlinear solution must match with the outer lin-
earized solution. As before, because of self-similarity, the far-field match-
ing condition as x, y → ∞ is equivalent to an initial condition as t → 0+.
Matching2 implies that

u(x, y, 0) =

{

1 if x < 0 and y < 0,
0 otherwise.

(6.8)

The flow perturbations ahead of the incident and diffracted shocks are
zero, so we also have

v(x, y, t) → 0 as x → +∞. (6.9)

A numerical solution of this two-dimensional Riemann problem for
the UTSD equation is shown in Figure 6.3. In it, one can see the curved
diffracted shock merge with the planar reflected shock, and the appear-
ance of an expansive parabolic wave front along the sonic line ξ+η2/4 = 1
behind the reflected shock. Numerical solutions of this singular ray prob-
lem were obtained by Tabak and Rosales [41], and further analysis of
this problem is given in Ting and Keller [44].

3. Mach reflection

For weak shocks, the transition from regular to Mach reflection oc-
curs when the wedge is thin, specifically when α = O(ε1/2) � 1. In this

2Unlike the case of (6.5), where the matching data is unbounded as r → 0+, the matching data
for the singular ray problem has a finite, well-defined limit as t → 0+, so it may be imposed
at t = 0. A more refined asymptotic initial condition is the requirement that the solution of
the nonlinear problem matches as t → 0+ with the solution of the linearized problem. These
initial conditions give the same numerical solutions, which explains why it is legitimate to
impose the initial data (6.8) on the UTSD equation even though the discontinuity in y violates
the scaling assumption (that y variations are slower than x variations) used to derive it.
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Figure 6.3. A numerical solution of the IBVP (6.6), (6.8)–(6.9) for a shock at a
singular ray. The u-contour spacing is 0.025, and the sonic line (6.7) is dashed.

transitional limit, the singular ray lies inside the reflection region, and
the method of matched asymptotic expansions gives an initial-boundary
value problem for the UTSD equation that provides an asymptotic de-
scription of the transition from regular to Mach reflection for weak
shocks. Numerical solutions of this problem answer a long-standing
puzzle about weak shock Mach reflection called the von Neumann triple
point paradox.

3.1 The von Neumann paradoxes

During the second world war, von Neumann carried out an extensive
study of the jump conditions at the junction of shocks and contact dis-
continuities [36]. He suggested a number of criteria for the transition
from regular to Mach reflection, and compared his theoretical results
with observations. There was generally excellent agreement for strong
shocks, but for weak shocks serious discrepancies were found, which be-
came known as the ‘von Neumann paradoxes’.

One discrepancy was that regular reflection is observed experimentally
to persist into parameter regions where it is theoretically impossible.
This persistance appears to be the result of a displacement effect of
the viscous boundary layer on the wedge, which is not accounted for
in von Neumann’s theory. A second, more puzzling, discrepancy was
that a pattern closely resembling simple Mach reflection is observed for
weak shocks, but no standard triple point configuration is compatible
with the jump relations across shocks and contact discontinuities. This
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discrepancy was called the ‘triple point paradox’ by Birkhoff, who states
in §I.11 of [3] that “the predicted limits for triple shocks seem to differ
grossly from those observed.”

The resolution of the triple point paradox is that a remarkable type
of Mach reflection occurs for weak shocks — we call it a Guderley Mach
reflection (GMR).

Using numerical solutions of the UTSD equation, we show in [42]
that there is a sequence of supersonic patches, shocks, expansion fans,
and triple points in a tiny region behind the leading triple point (see
§3.2). We conjecture that this sequence is infinite for an inviscid weak
shock Mach reflection. At each triple point, there is an additional ex-
pansion fan, thus resolving the apparent conflict with von Neumann’s
theoretical arguments.3 Furthermore, an infinite sequence of shrinking
supersonic patches resolves theoretical difficulties connected with the
transition from supersonic to subsonic flow at the rear of the supersonic
region.

The existence of a supersonic patch and an expansion fan at the triple
point of a weak shock Mach reflection was first proposed by Guderley
[15, 16], although he did not give any evidence that this is what actually
occurs, nor did he suggest that there is, in fact, a sequence of supersonic
patches and triple points.4

Numerical solutions of weak shock Mach reflections with a supersonic
region and an expansion fan behind the triple point were obtained by
Hunter and Brio [25] for the unsteady transonic small disturbance equa-
tion, and by Vasil’ev and Kraiko [45] and Zakarian et. al. [47] for
the full Euler equations. These solutions, however, were not sufficiently
well-resolved to show the true nature of the solution.

3.2 The asymptotic shock reflection problem

In the transitional thin wedge/weak shock limit (c) in Figure 6.1,
a similar expansion and matching procedure to the one described in
§2.3 for singular rays leads to the following asymptotic shock reflection

3Von Neumann himself in Paragraph 10 of [37] states that additional waves must exist at
the triple point and that an expansion fan is the most reasonable candidate. He concludes,
however, that “The situation is far from clear mathematically. Possibly the nature of the
neccessary singularity at [the triple point] is of a different kind.”
4Guderley comments in §VI.9 of [16] only that: “Careful analysis (cf. Guderley [15]) indicates,
however, that a singularity results at the [rear sonic point] or that also in this case a solution
in Tricomi’s sense is not possible. From the practical point of view the details of the structure
of the flow field are greatly complicated by this singularity. In general the form of the flow
developed above is correct.” Unfortunately, we have been unable to obtain a copy of the
Technical Report [15].
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problem for the UTSD equation in y > 0 (see [24, 25, 34] and the review
in [48]):

ut +

(

1

2
u2

)

x
+ vy = 0, uy − vx = 0,

u(x, y, 0) =

{

1 if x < ay,
0 if x > ay,

(6.10)

v(x, 0, t) = 0,

v(x, y, t) → 0 as x → +∞.

Here, the parameter a is related to the wedge angle α and the incident
shock Mach number M by

a =
α

√

2(M2 − 1)
,

which is held fixed in the transitional limit.
Numerical solutions of (6.10) for two values of a are shown in shown

Figures 6.4–6.5. The left and right boundaries of the computational
domain are curved because of the use of parabolic coordinates (see [42]
for a discussion of the numerical scheme). We see a transition from
regular to Mach reflection as a decreases though a critical value close
to the detachment value a = ad below which regular reflection becomes
impossible. The detachment value for the UTSD equation is given by
[23]

ad =
√

2 ≈ 1.414.

One can verify that this value agrees quantitatively with the weak shock
limit of the detachment value for the full Euler equations given in [19].

A second value of a that is potentially significant for transition is the
sonic value

as =

√

1 +

√
5

2
≈ 1.455.

In the parameter range ad ≤ a ≤ as, the state behind the reflected shock
is subsonic. It is conceivable that the diffracted wave triggers a transition
from regular to Mach reflection somewhere in this range. However, the
sonic and detachment values are so close together that we have been
unable to tell from numerical solutions where the transition occurs.

For some rigorous work on the UTSD shock reflection problem (6.10)
in the regular reflection regime, see [5].

Figure 6.6, from [42], shows the sequence of supersonic patches, shocks,
expansion fans, and triple points in a tiny region immediately behind the
leading triple point in a Mach reflection. The change from supersonic to
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Figure 6.4. A supersonic regular reflection for a = 1.5. The u-contour spacing is
0.05. The reflection point is at x/t = 2.75, y/t = 0. The solution is piecewise
constant in the hyperbolic region, and non-constant in the elliptic region that lies
below the reflected shock and to the left of the parabolic sonic line (6.7) behind the
reflection point.
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Figure 6.5. A Mach reflection for a = 0.5. The u-contour spacing is 0.05. The triple
point is at x/t ≈ 1.008, y/t ≈ 0.514. The Mach shock curves down from the triple
point and hits the wall at x/t ≈ 0.9. The thickening of the incident shock as it moves
up from the triple point toward the right computational boundary is a numerical
effect caused by the use of a nonuniform grid that is stretched exponentially away
from the triple point.

subsonic flow at the rear of the region by means of a subsonic triple point
appears to be impossible because no expansion fan can then occur (see
also [12]), and a continuous change across a sonic line is unlikely because
it would result in an apparently overdetermined BVP for a mixed-type
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PDE.5 This argument suggests that the sequence of supersonic patches
is infinite. (See [42] for further discussion.)
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Figure 6.6. The sequence of shocks, fans, triple points, and supersonic patches im-
mediately behind the leading triple point for a = 0.5. The u-contour spacing is 0.005
on the left, and 0.0005 on the right. The dashed line on the left is the numerically
computed location of the sonic line (6.7).

These results show that a GMR occurs for very weak shocks and small
wedge angles. It is reasonable to expect that one also occurs through-
out the parameter region where both RR and SMR are impossible (see
Figure 6.1), although there is presently no direct evidence for this.

A sequence of supersonic patches is likely to be a generic feature of
solutions of mixed-type conservation laws and two-dimensional Riemann
problems for hyperbolic systems of conservation laws. In the next sec-
tion, we show that such sequences arise in steady weak shock Mach
reflections. They also arise in the reflection of shocks off contact discon-
tinuities in strong-shock Mach reflections (see Figure 22 in [20]).

4. Steady shock reflection and transonic flow

There is a close connection between the self-similar shock reflection
problems discussed above, and the problems of steady transonic flow
[9, 16]. The basic asymptotic equation that describes nearly sonic steady

5The hyperbolic region would be enclosed by a sonic line that lacks a ‘gap’.
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flows is the transonic small disturbance (TSD) equation
(

1

2
u2

)

x
+ vy = 0, uy − vx = 0, (6.11)

which is the steady form of (6.6). Here, (x, y) are spatial coordinates
along and transverse to the sonic flow, and (u, v) are the corresponding
velocity perturbations. Equation (6.11) is hyperbolic in u < 0, corre-
sponding to supersonic flow, and elliptic in u > 0, corresponding to
subsonic flow.

We consider the following boundary value problem for (6.11) in the
region xL < x < xR, 0 < y < 1:

u(xR, y) = −1, v(xR, y) = 0 0 < y < 1,

v(x, 1) = 0 xL < x < xR, (6.12)

u(x, 0) = u0 xL < x < x0,

v(x, 0) = ã x0 < x < x1, v(x, 0) = 0 x1 < x < xR.

This BVP is the small disturbance approximation for the problem of a
slightly supersonic jet hitting a thin wedge in a channel and issuing into
a higher pressure region. For appropriately chosen parameter values, the
shock generated at the corner of the wedge undergoes a Mach reflection
off the top wall of the channel.

In Figures 6.7–6.8, we show a numerical solution of (6.11)–(6.12) with

xL = −2, x0 = −0.3, x1 = 0, xR = 0.1, ã = 0.67, u0 = −0.09. (6.13)

We again see the formation of a Guderley Mach reflection with a se-
quence of supersonic patches, shocks, expansion fans, and triple points.
It is remarkable that the solution of a boundary value problem for such
a simple-looking mixed-type system of conservation laws exhibits such
complex behavior.

In regions where the mapping (x, y) 7→ (u, v) is invertible, the hodo-
graph transformation — which exchanges the roles of the independent
and dependent variables (x, y) and (u, v) — reduces (6.11) to a linear
Tricomi equation for y(u, v):

yuu + uyvv = 0.

A numerical plot of the boundaries of the supersonic region in the (u, v)-
hodograph plane near the triple point, together with the corresponding
shock and rarefaction curves [42], is shown in Figure 6.9.

There are recent rigorous results on the existence of transonic shocks
for the TSD equation [5] and for the full potential equation [7]. An alter-
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Figure 6.7. A solution of (6.11)–(6.13), showing a steady Mach reflection. The u-
contour spacing is 0.1. The flow is from right to left. The incident shock is generated
at the corner of the wedge (x = 0, y = 0) and undergoes a Mach reflection off the
top wall of the channel (y = 1). The triple point is at x ≈ −0.343, y ≈ 0.464.
The Mach shock curves up from the triple point, hitting the top wall at x ≈ −0.5.
The reflected shock curves down from the triple point, hitting the bottom boundary
at x ≈ −0.38, where it is reflected as an expansion wave. The dashed line is the
numerically computed location of the sonic line u = 0. The Mach shock, the reflected
shock, and the sonic line enclose a large subsonic region behind the Mach reflection.
The flow accelerates back to supersonic to the left of the rear sonic line. In addition,
as shown in Figure 6.8, there is a tiny supersonic region immediately behind the
leading triple point.
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Figure 6.8. The local triple point structure for the steady Mach reflection shown in
Figure 6.7. The u-contour spacing is 0.01 on the left, and the dashed line is the sonic
line. The right picture shows the sonic line only. Five supersonic patches can be seen.

native approach is to adapt the theory of compensated compactness [11]
to treat mixed type conservation laws [35], but this appears to require
more a priori estimates for (6.11) than are presently available.
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Figure 6.9. A numerical plot of the local triple point structure in the hodograph
plane for the solution shown in Figure 6.8. The plots in (a)–(b) show the theoretical
shock and rarefaction curves through the numerically computed values of (u, v) at
the first and second triple points at the points labeled in Figure 6.8. The dots in (c)
are obtained directly from the numerical data for the first supersonic patch. They
consist of the values of (u, v) behind the Mach shock, the values on either side of the
reflected shock, and the values on the expansion fan originating at the triple point.
The resulting curves bound the supersonic patch in the hodograph plane, and are in
excellent agreement with the theoretical curves.

5. Shock focusing and nonlinear caustics

Shock focusing is an unsteady, non-self-similar problem that is closely
related to shock reflection. The beautiful experiments of Sturtevant and
Kulkarny [40] on weak shock focusing show a transition from a ‘fish-tail’
wavefront pattern, typical of linear theory, to a nonlinear Mach-shock
pattern as the strength of the shock is increased. Nonlinear effects are
always important, however, in the immediate vicinity of the focal point,
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even for very weak shocks. This transition is analogous to the transition
from regular to Mach reflection.6

Cramer and Seebass [10] derived the UTSD equation as an asymptotic
description of nearly planar weak shock focusing. Numerical solutions
show that it captures the transition that is observed in experiments
[41]. Some typical solutions are shown in Figures 6.10. The initial data
corresponds to a shock of constant strength (as measured by the jump
in u) with a Gaussian shape:

u(x, y, 0) =

{

1
2u0 if x < s(y),
−1

2u0 if x > s(y),
s(y) = −1

4
e−y2/(0.4)2 . (6.14)
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Figure 6.10. Solutions of the UTSD equation (6.6) with initial data (6.14). The left
solution (with u0 = 0.05, t = 1, and a u-contour spacing of 0.0025) shows a linear
focusing pattern. The right solution (with u0 = 0.02, t = 0.65, and a u-contour
spacing of 0.01) shows a nonlinear focusing pattern with a triple point.

Although we have not been able so far to resolve the local structure
of the solution near the triple point numerically, presumably there is a
sequence of fans, shocks, and triple points similar to the sequence that
occurs in the self-similar and steady shock reflection patterns. It is not
clear, however, whether or not the sequence is infinite.

5.1 Nonlinear caustics

Weakly nonlinear hyperbolic waves at caustics were studied by Hunter
and Keller [28], who derived weakly nonlinear caustic expansions that
generalize the expansions of Ludwig [33] for linear hyperbolic waves. In

6The reflection problem is a special case of this focusing problem, corresponding to an initially
‘<-shaped’ shock.
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the simplest case of a smooth convex caustic, the result is a nonlinear
Tricomi equation derived by Guiraud [14] and Hayes [18] for the com-
pressible Euler equations, whose normalized form is

(

1

2
u2 + yu

)

x
+ vy = 0, uy − vx = 0. (6.15)

This equation is hyperbolic in u > y and elliptic in u < y.
One conclusion of the analysis in [28] is that the passage of a smooth

weakly nonlinear hyperbolic wave through a caustic may be treated to
leading order in the wave amplitude by the use of linear theory. One
must, however, use nonlinear theory in the neighborhood of a shock
front at a caustic since, according to linear theory, the strength of a jump
discontinuity becomes infinite (see also the discussion in [39]). Numerical
solutions of (6.15) for shocks at a smooth convex caustic, together with
experimental comparisons, are given in [1]. The strength of a shock
at a smooth convex caustic appears to remain bounded because the
shock accelerates as it grows stronger, preventing its focusing. Thus,
nonlinearity has a regularizing effect on the solution.

Beyond a caustic, there are multiple wave fields, and one has to un-
derstand how they interact. This application was one of Joe’s main
motivations for proposing a study of the interaction of weakly nonlinear
hyperbolic waves as a thesis problem to the first author of this paper
[21]. As the discussion above shows, the interaction of weak shocks can
be remarkably complex.

Further difficulties arise in analyzing the interaction of high-frequency,
oscillatory waves. Fourier analysis gives a precise correspondence be-
tween the propagation of singularities and high-frequency oscillations
for linear waves, but there are significant differences for nonlinear waves.
In particular, the interaction of weakly nonlinear oscillatory hyperbolic
waves beyond a caustic is not simple to describe. The waves are neces-
sarily ‘incoherent’ in the terminology of [29] and this can lead to sub-
tle phenomena, such as the ‘hidden focusing’ of formally lower-order
waves that are generated by the interaction of the leading order waves
[30]. Thus, many challenges remain in the development of a better un-
derstanding of the propagation, focusing, and interaction of nonlinear
hyperbolic waves.
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mann Problems, Birkhäuser, Boston, 2001.


