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Summary. We describe the problem of weak shock reflection off a wedge and dis-
cuss the triple point paradox that arises. When the shock is sufficiently weak and the
wedge is thin, Mach reflection appears to be observed but is impossible according to
what von Neumann originally showed in 1943. We summarize some recent numerical
results for weak shock reflection problems for the unsteady transonic small distur-
bance equations, the nonlinear wave system, and the Euler equations. Rather than
finding a standard but mathematically inadmissible Mach reflection with a shock
triple point, the solutions contain a complex structure: there is a sequence of triple
points and supersonic patches in a tiny region behind the leading triple point, with
an expansion fan originating at each triple point. The sequence of patches may be
infinite, and we refer to this structure as Guderley Mach reflection. The presence
of the expansion fans at the triple points resolves the paradox. We describe some
recent experimental evidence which is consistent with these numerical findings.

Key words: self-similar solutions, two-dimensional Riemann problems, triple
point paradox

1 Introduction

Consider a planar normal shock in an inviscid compressible and calorically
perfect gas which impinges on a fixed wedge with apex half angle θw, see
Figure 1. Given an upstream state with density ρ = ρr, velocity u = v = 0
and pressure p = pr, one calculates that downstream of a fast (i.e., u + c)
shock
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Fig. 1. A planar shock moving from left to right impinges on a wedge. After contact,
I indicates the incident shock and R indicates the reflected shock. On the right, the
dotted line S indicates a slip line and M is the Mach stem. Regular reflection is
depicted on the left. Irregular reflection is depicted on the right.
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Fig. 2. A blow-up of the incident and reflected shock intersection. Regular reflection
is on the left and irregular on the right. The constant states upstream and down-
stream of the incident shock are denoted by Ur and Ul. Whether or not constant
states indicated by the question marks exist depends on the strength of I.

pl

pr
=

2γ
γ + 1

M2 − γ − 1
γ + 1

,
ul

cr
=

2
γ + 1

(
M − 1

M

)
,

ρl

ρr
=

(γ + 1)M2

2 + (γ − 1)M2
,

(1)

where γ denotes the ratio of specific heats, and M > 1 denotes the shock
Mach number defined as the Rankine–Hugoniot shock speed divided by the
upstream speed of sound cr =

√
γpr/ρr. Following interaction, a number of

self-similar (with respect to the wedge apex) reflection patterns are possible,
depending on the values of M and θw.

This wedge reflection problem has a rich history, experimentally, analyt-
ically, and numerically. Probably the earliest and most significant analytical
result was found by von Neumann [Neu43]. In this work were first formulated
the equations which describe two and three planar shocks meeting at a point
separated by constant states, see Figure 2. The two shock theory leads to
what is known as regular reflection. The three shock theory leads to Mach
reflection. For supersonic regular reflection, state U immediately behind the
reflected shock R is supersonic and becomes subsonic across a sonic line down-
stream (toward the wedge’s apex). When the incident shock angle is increased
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to π/2 − θ∗(M) with respect to the wall, where θw = θ∗(M) is the critical
wedge half angle, state U becomes sonic. Therefore, at θw = θ∗(M), acoustic
signals generated downstream (e.g., from the wedge apex) will overtake the
R-I reflection point, conceivably causing transition from regular reflection,
depicted in the left figure, to irregular reflection, depicted in the right figure.
This is one of several criteria which have been suggested to explain transition
from regular to irregular reflection; see Henderson [Hen87] for a thorough and
detailed discussion.

Loosely speaking, a weak incident shock has M slightly larger than 1,
whereas a strong incident shock hasM substantially larger than one. Theoreti-
cal analysis indicates that transition to Mach reflection is impossible when the
incident shock is sufficiently weak. In fact, triple point solutions, as depicted in
Figure 2(b), do not exist for sufficiently weak shocks. However, experiments in
which weak shock waves are reflected off a wedge with θw � θ∗(M) appear to
show a standard Mach reflection pattern. This apparent disagreement between
theory and experiment was discussed by von Neumann and has since become
known as the von Neumann triple point paradox [Neu63, Hen87, SA05].

Guderley [Gud47, Gud62] as far back as 1947 proposed that there is an
expansion fan and a supersonic region directly behind the triple point in a
steady weak shock Mach reflection. He demonstrated that one could con-
struct local solutions consisting of three plane shocks, an expansion fan, and
a contact discontinuity or slip line meeting at a point. However, despite inten-
sive experimental [BT49, STS92, Ste59] and numerical [CH90, BH92, TR94]
studies, no evidence of an expansion fan or supersonic patch was observed.
The first evidence supporting Guderley’s proposed resolution was contained
in numerical solutions of shock reflection problems for the unsteady transonic
small disturbance equations in [HB00] and the compressible Euler equations
in [VK99]. There were presented solutions that contain a tiny supersonic re-
gion embedded in the subsonic flow directly behind the triple point in a weak
shock Mach reflection. Subsequently, Zakharian et al. [ZBHW00] found a su-
personic region in a numerical solution of a shock reflection problem for the
Euler equations, for a set of parameter values corresponding to those used in
the unsteady transonic small disturbance solution in [HB00]. The supersonic
region in the solutions in [VK99, HB00, ZBHW00] is extremely small, which
explains why it had not been observed earlier.

This paper is organized as follows. In Section 2 the unsteady transonic
small disturbance asymptotic model for a weak shock impinging on a thin
wedge is recalled. Numerical evidence is offered to suggest an interesting reso-
lution of the von Neumann paradox. Experimental evidence to support what
was found numerically is displayed at the end of this section. In Section 3
a simple 3 × 3 hyperbolic system is given which exhibits irregular reflection
but does not admit Mach reflection. It is solved numerically, displaying very
similar structure to what was found in Section 2. Finally, the full compress-
ible Euler equations are solved in Section 4 for a very weak incident shock
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impinging on a thin wedge. The numerical solution appears to be in agreement
with what is found for the model problems from the previous sections.

2 The Weak Shock Thin Wedge Limit

The compressible Euler equations are given by

∂ρ

∂t
+∇ · ρu = 0,

∂ρu
∂t

+∇ · ρu⊗ u +∇p = 0,

∂ρe

∂t
+∇ · (ρe+ p)u = 0,

(2)

where ρ is the fluid density, u = (u, v) is the x-y velocity vector, p is the
pressure and e is the total energy per unit mass. The internal energy per unit
mass ε = e− 1/2|u|2, and we take p = (γ − 1)ρε for a calorically perfect gas
with the constant ratio of specific heats γ > 1.

Consider an incident planar shock with Mach number M = 1+ ε2 striking
a thin wedge with half angle θw = aε, where ε > 0 is destined to vanish. Take
the undisturbed upstream state Ur as ρ = ρr, u = v = 0 and p = pr, yielding
an upstream speed of sound cr =

√
γpr/ρr. From (1), calculate that Ul is

pl

pr
=
(

1 +
4γ
γ + 1

ε2
)

+O(ε4),
ul

cr
=

4
γ + 1

ε2 +O(ε4),

ρl

ρr
=
(

1 +
4

γ + 1
ε2
)

+O(ε4),
vl

cr
=

−4
γ + 1

aε3 +O(ε5).
(3)

Hunter and Brio [HB00] observed the scales shown in (3) and proposed an
asymptotic model based on

p = pr(1 + ε2p̂), u = crε
2û,

ρ = ρr(1 + ε2ρ̂), v = crε
3v̂,

and the stretched independent variables

x̂ =
x− p(t)
ε2

, ŷ =
y

ε
,

where p(t) is the location where the incident shock would (neglecting possible
interactions) strike the wedge wall at time t,

p(t) = cr cos(θw)(1 + ε2) t = cr cos(aε)(1 + ε2) t ≈ cr(1− (1− a2/2)ε2) t,
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Fig. 3. A weak shock over a thin wedge. Ur and Ul are the states to the right and
left of the incident shock I. θw = aε � 1 and the incident shock has Mach number
M = 1 + ε2. x = p(t) is the location where I would intersect the wall at time t,
neglecting interaction.

see Figure 3. Inserting these into (2), equating like powers of ε, and making
an additional order one change of variable (denoted by ǔ, etc.), they find that
ǔ and v̌ asymptotically satisfy

ǔt +
(
1/2 ǔ2

)
x̌

+ v̌y̌ = 0,

ǔy̌ − v̌x̌ = 0.
(4)

This is, of course, the celebrated unsteady transonic small disturbance equation
(UTSDE). The UTSDE is solved on the upper half plane with a no-flow
boundary condition v̌(x̌, 0, t) = 0 along y̌ = 0 and initial data

(ǔ(x̌, y̌, 0), v̌(x̌, y̌, 0)) =

{
(0, 0) if x̌ > ǎy̌
(1,−ǎ) if x̌ < ǎy̌,

where
ǎ =

a

2
=

1
2

aε√
1 + ε2 − 1

∼ 1
2

θw√
M − 1

.

The jump at x̌ = ǎy̌ corresponds to the incident shock I. The data is vorticity-
free but incompatible with the no-flow boundary condition behind. As time
advances, the reflected wave pattern R will emerge from the trailing boundary.

For ǎ in the range 0 < ǎ <
√

2, regular reflection for this initial-boundary
value problem is impossible [BH92]. Moreover, it is shown in [BH92] as well as
in [TR94] that (4) can never admit triple point solutions. Therefore, this as-
ymptotic model equation is very well designed to investigate the von Neumann
triple point paradox.

A numerical solution to (4) was obtained in [HB00] for the value ǎ = 0.5
(a value for which regular reflection does not occur). An irregular reflection
pattern globally resembling single Mach reflection was observed. When the
region containing the apparent triple point was greatly refined, however, a
small supersonic patch located in the subsonic zone directly below the reflected
shock and behind the Mach stem was detected, see [HB00, page 242]. This,
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along with the contemporaneous work in [VK99], was the first indication that
Guderley’s resolution of the triple point paradox might be essentially correct.
Using a new numerical scheme, a subsequent study by Tesdall and Hunter
[TH02], we further investigated the structure of irregular reflection found in
the UTSDE asymptotic model.

The supersonic patch detected in [VK99, HB00] appeared to confirm
Guderley’s four-wave solution. The patch indicates that it is plausible for
an expansion wave to be a (unobserved) part of the observed three shock con-
fluence. We briefly summarize the numerical techniques employed by Tesdall
and Hunter. First, they used a parabolic grid aligned with the weak reflected
shock. They then solved the UTSDE in self-similar variables x̌→ x̌/t, y̌ → y̌/t.
The advantage of using self-similar coordinates is that the problem remains
fixed on the computational grid, and a steady self-similar solution is obtained
by letting a pseudo-time t → ∞. Following the classical Cole–Murman ap-
proach, (ǔ, v̌) is written as gradφ. The nonlinearities in the resulting scalar
equation are discretized by a min-mod limited Engquist–Osher numerical flux.
A steady state solution is obtained by lagged implicit time marching and grid
continuation.

We present results obtained by the method of Tesdall and Hunter in
Figure 4. The full simulation is carried out on a spatial grid that fits in
[−3, 2]× [0, 2.5], with the inverse slope parameter ǎ = 0.5. The total number
of grid points employed is approximately 2.7×106, where, by local grid refine-
ment, the region depicted in Figure 4(a) spans 768× 608 ≈ 4.7× 105 points.
This yielded a grid size near the triple point of approximately 1.5× 10−5.

Clear evidence of an expansion fan is seen at the triple point depicted in
Figure 4. What is equally remarkable is what appears to be a sequence of pro-
gressively smaller and weaker shock/expansion pairs running a short distance
(less than 2%) down the length of the Mach stem. The expansion from wave i
appears to terminate through its interaction with the shock from wave i+ 1.
The supersonic region behind the leading triple point is extremely small, which
explains why it had not been observed earlier. The results in [TH02] suggest
that the sequence of triple points and expansion waves/shocks in a weak shock
irregular reflection may be infinite. Whether this sequence is infinite or not is
certainly impossible for any numerical simulation to determine. In fact, one
could argue that the structure indicated in Figure 4 may be numerical flux
dependent (upwind/non-upwind) or that the asymptotic model may predict
something that is not physically realized. We address these concerns here and
in the following sections.

Experimental confirmation poses a most challenging problem simply be-
cause the computed Guderley Mach reflection structure is so small and weak.
Nevertheless, some experimental evidence has recently been obtained. Fol-
lowing the announcement of the Guderley Mach reflection solution found in
[TH02], Skews and Ashworth [SA05] modified an existing shock tube experi-
mental apparatus in order to obtain Mach stem lengths more than an order
of magnitude larger than those possible from conventional shock tubes. All
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Fig. 4. Closeups of an apparent triple point for the UTSDE using the approach
of Tesdall and Hunter. In (a) and (b) the incident shock leaves to the upper right,
the reflected shock towards the top, and the Mach stem exits at the bottom. The
plot in (a) depicts contour lines of u and shows a sequence of expansions/shocks
running down the Mach stem. The plot in (b) shows a detail of v; 1 denotes state
v = 0, 2 state v = −ǎ and 3 points to the expansion wave emanating from what
appears macroscopically to be a triple point. The dotted line in (b) delineates the
supersonic patches within the subsonic zone behind the Mach stem. The Guderley
Mach reflection structure can be seen better in the surface plot (c) where the viewer
is upstream looking back at the triple point.

experiments were carried out on a 15◦ ramp with incident shock Mach numbers
ranging from 1.05 to 1.1. They present images that “clearly show the existence
of an expansion wave immediately behind the reflected wave as proposed by
Guderley”, and they found “a distinct sharp contrasting line immediately
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Fig. 5. On the left, a schlieren image of an experimental weak shock reflection.
The incident shock (vertical) exits at the top and is moving from left to right. The
reflected wave exits to the upper left, and an expansion wave is visible immediately
behind it. A highly contrasted image is on the right, showing evidence of a second
shocklet behind the first.

after the expansion wave, indicating the existence of a terminating shock”. In
addition, they obtained evidence in some of their images of a second termi-
nating shocklet behind the first, as predicted by the simulations in [TH02].
Professor Beric Skews graciously supplied us with the images which we give
here in Figure 5. Further experimental refinements and data acquisition are
currently underway.

3 The Nonlinear Wave System

Here we consider a problem for the nonlinear wave system which is analogous
to the reflection of weak shocks discussed in the previous section. The shock
reflection problem consists of the nonlinear wave system

∂ρ

∂t
+∇ · ρu = 0,

∂ρu
∂t

+ grad p = 0,

in the half space x > 0 with piecewise constant Riemann data consisting of
two states separated by a discontinuity located at x = κy. Again, ρ should be
thought of as density, u = (u, v) as velocity having x- and y-components, and
p = p(ρ) as pressure. For convenience, we assume p(ρ) = Cργ where C is a
constant and γ = 2. See [TSK06].

The nonlinear wave system is a simplification of the isentropic Euler
equations obtained by dropping the momentum transport terms from the
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momentum equations. Compared to the UTSDE, the nonlinear wave sys-
tem is closer in structure to the Euler equations: it is linearly well-posed
in space and time, it has a characteristic structure similar to the Euler equa-
tions with nonlinear acoustic waves coupled (weakly) to linearly degenerate
waves, and it respects the spatial Euclidean symmetries of gas dynamics (ex-
cluding space-time Galilean symmetry, of course). In fact (see [KF94]), it may
be the simplest system one can construct with these symmetries. It has also
served as a prototypical model for the theoretical study of shock wave reflec-
tion [ČK98, ČKK05, ČKK01]. However, the greatest attribute of (3) for our
purposes is the sheer simplicity of its wave structure. Moreover, the fluxes
are quadratic (when γ = 2), and so its flux Jacobians are linear in conserved
variables. The Jacobian’s eigenvalues are 0 and ±c, where c = √

pρ, and it
has extremely simple eigenvectors. It is very well suited for efficient finite
differencing.

Let U = (ρ,m, n) denote the vector of conserved variables, where m = ρu
and n = ρv, and consider the following two-dimensional Riemann data:

U(x, y, 0) =

{
U1 ≡ (ρ1, 0, 0) if x < κy,
U0 ≡ (ρ0, 0, n0) if x > κy.

(5)

We choose ρ0 > ρ1 to obtain an upward moving shock in the far field, and
determine n0 so that the one-dimensional wave between U0 and U1 at inverse
slope κ consists of a shock and a contact discontinuity with a constant middle
state between them. The following expression for n0 is readily determined:

n0 =
1
κ

√
(1 + κ2)(p(ρ0)− p(ρ1))(ρ0 − ρ1). (6)

There is no physical wall in the Mach reflection simulation below. Rather,
reflection occurs because the vertical axis is a line of left-right symmetry,
see Figure 6(a). Here, for κ sufficiently large (κ = 1 will do), regular reflec-
tion is impossible. Moreover, as with the UTSDE, (3) can never admit triple
point solutions, see [TSK06]. So we now investigate the structure of irregular
reflection, this time, however, for a hyperbolic system – one which resembles
the Euler equations but is not obtained from them via a limit.

The essential feature of the numerical method employed is the capability
to locally refine the grid in the area of the apparent triple point. We again
use self-similar variables

x→ x/t ≡ ξ, y → y/t ≡ η

to cast the problem into one which remains fixed on the grid. Non-uniform,
logically rectangular, finite volume grids are constructed so that for a given κ
the incident shock is aligned with the grid in the far field. Specifically, each
problem with a given incident shock angle has a set of associated finite volume
C-grids, each grid in the set corresponds to a level of grid refinement, and we
use these to grid continue to a steady state.
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Fig. 6. A schematic diagram of the computational domain is on the left. AD is the
line of symmetry. On the right is a computed self-similar solution with κ = 1.

The basic finite volume schemes used are quite standard. Each grid cell,
Ω, is a quadrilateral and, using ν = (νξ, νη) to denote the normal vector to a
typical side of Ω, numerical fluxes are designed to be consistent with

F̃ (U) = (F (U)− ξU) νξ + (G(U)− ηU) νη =

⎛⎝νξm+ νηn− ξ̄ ρ
νξp− ξ̄ m
νηp− ξ̄ n

⎞⎠ ,
where ξ̄ = (ξ·ν) and ξ = (ξ, η). Since ξ varies in space, numerical flux formulae
are evaluated at ξ frozen at the midpoint of each cell side. Two distinctly
different numerical fluxes are utilized in the results presented below:

1. Lax–Friedrichs:

HLF =
1
2

(
F̃ (Ul) + F̃ (Ur)− Λ (Ur − Ul)

)
,

where Λ > 0 is a scalar constant chosen to be larger than the fastest wave
speed found on the computational domain.

2. Roe:
HRoe =

1
2

(
F̃ (Ul) + F̃ (Ur)−RΛL (Ur − Ul)

)
,

where Λ = diag(| − ξ̄ − c|, | − ξ̄|, | − ξ̄ + c|), and R and L are the matrices
of the right and left eigenvectors to the Jacobian of F̃ evaluated at the
midpoint URoe = 1

2 (Ul+Ur). Since we use the equation of state p = 1/2ρ2,
the midpoint yields an exact Roe average.

In order to investigate the structure of the solution near the triple point
in a manner that has as little numerical bias as possible, we opted to first
solve the problem using the classic first-order accurate Lax–Friedrichs finite
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(a) (b)
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Fig. 7. Density contour plots for the nonlinear wave system using the first order
accurate Lax–Friedrichs finite volume scheme in a neighborhood of the triple point.
The region shown includes the locally refined 760× 760 grid in (a), the 1280× 1024
grid in (b) and the 2048× 1320 grid in (c). The heavy line below the reflected shock
and to the right of the Mach stem delineates a supersonic patch found within the
subsonic zone. There is a slight indication of an expansion fan behind the leading
triple point in (c).

volume scheme. That is, the Lax–Friedrichs flux is used in conjunction with
piecewise constant cell-wise reconstruction. Figure 7 depicts a closeup of what
was found on three grids with increasing refinement. The largest grid (c)
contains approximately 11 million grid points. Approximately one quarter of
these are contained in a square of length 0.05 units centered on the triple point.
The solution in (c) clearly resolves a small patch of supersonic flow behind the
triple point. This patch is quite small with width of approximately 0.03 and
height of approximately 0.01. Note the fattening of the incident and Mach
shocks as they leave the region of extreme grid refinement. The much weaker
reflected shock is well resolved since it is aligned with the grid, and the grid in
the direction normal to the reflected shock is very fine near the triple point.
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Fig. 8. Density contours (a) and x-momentum contours (b) for the nonlinear wave
system using a high-order Roe scheme. These were obtained on the same grid de-
picted in Figure 7(c). There is now clear evidence of the sequence of interacting
shocks and expansions seen earlier for the UTSDE. The heavy line is the sonic line
and again delineates the supersonic patch.

The width of the supersonic patch is approximately 5% of the length of the
Mach stem. There is a slight indication of an expansion fan at the triple point,
but at this level of grid refinement there is no evidence yet of the sequence of
shocks and expansions seen in Figure 4.

There comes a time when the results from a first-order scheme are, at
best, inadequate, because of hardware limitations. The large grid results just
displayed used a grid whose smallest grid size was on the order of one millionth
of the extent of the computational domain. Moreover, these problems are
steady and, therefore, require hundreds of thousands of pseudo-time iterations.
At this stage we, therefore, employed a (perhaps) somewhat less unbiased
numerical approach – a high-order scheme based on the Roe numerical flux.
High-order accuracy is achieved by using a piecewise quadratic reconstruction
limited in characteristic variables. We give the finest grid results from this
approach in Figure 8. Three shock/expansion pairs are now clearly evident.
The primary wave is at the triple point and two others can be seen along the
Mach stem, a pattern very similar to that found for the UTSDE.

4 Weak Shock Irregular Reflection for the Euler
Equations

We compute numerical solutions for the Euler equations (2) with γ = 5/3. A
weak M = 1.04 vertically aligned incident shock impinges on a θw = 11.5◦

ramp. These data correspond to parameter ǎ ≈ 1/2 in the UTSDE model from
Section 2. The grid is defined by a conformal map of the form z = wα, and so
it is orthogonal with a singularity at the ramp apex x = y = 0. The upstream
speed of sound cr = 1, and boundary data on the left, right and top is given
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Fig. 9. The geometry of the M = 1.04/11.5◦ Euler example. The insert indicates
the region where extreme local grid refinement is performed.

to exactly agree with this shock located at x = 1.04. The lower boundary
condition mimics symmetry about the x-axis for x < 0 and symmetry with
respect to the ramp for x > 0. The grid geometry can be seen in Figure 9.
This problem is well outside the range where regular reflection solutions are
possible. Refer again to the figure to see that its numerical solution (under
the insert) clearly resembles single Mach reflection. However, Mach reflection
(where three plane shocks meet at a point) is also not possible for a shock
this weak [Hen87]. This example demonstrates a classic von Neumann triple
point paradox.

This problem is solved in self-similar coordinates by essentially the same
high order Roe method discussed in the previous section. However, we simplify
the Roe approach by again evaluating the Roe matrix at the midpoint, which
for the Euler equations is only an approximation to the Roe average. Also, to
avoid spurious expansion shocks, artificial dissipation on the order of O(|Ur−
Ul|) is appended to the diagonal part of the Roe dissipation matrix in a field
by field manner.

We locally refine a very small neighborhood around the apparent triple
point as done earlier. The full finest grid has eleven million grid points with
800 × 2000 = 1.6 × 106 (∆x ≈ 5 × 10−7) devoted to the local refinement.
We plot the sonic number M which is defined as follows. The eigenvalue
corresponding to a fast shock in unit direction n for the self-similar Euler flux
Jacobian is

λ = (u− ξ, v − η) · n + c

where ξ = x/t and η = y/t. Define r2 = ξ2 + η2 and set n = (ξ, η)/r,
un = (u, v) · n to find

λ = c

(
un − r
c

+ 1
)

= c(1−M) where M =
r − un

c
.
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Fig. 10. A closeup of the Euler triple point. The sonic number M on the left and
density ρ on the right. The dotted line on the left delineates the supersonic patch
within the subsonic zone behind the Mach stem.
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Fig. 11. Vertical cross sections of M taken bottom-up slightly to the left of the
Mach stem. On the left M = 1.04/11.5◦. The reflected shock is the large jump.
Note the crossings at M = 1. On the right, a second example problem with a
slightly stronger incident shock M = 1.075/15.0◦. The evidence of a sequence of
shock/expansion wave pairs is stronger for this second example.

When M < 1, the flow is called subsonic. When M > 1, the flow is called su-
personic. In this sense, when crossing through a self-similar stationary shock,
the fact that M crosses from subsonic to supersonic is nothing more than the
entropy condition λl > s > λr.

Figure 10 gives a sonic number contour plot (a) and density contours (b)
in the triple point neighborhood. Clearly the evidence for Guderley Mach
reflection in this example is not nearly as compelling as found for our earlier
examples. However, these shocks are extremely weak. In recent work for a
γ = 7/5 gas, we slightly strengthened the incident Mach number, M = 1.075,
and obtained far more conclusive results. See the sonic number cross sections
depicted in Figure 11.
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