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Abstract
We describe a system that supports real-time interactive visualization of computational fluid dynamics (CFD)
simulations. The system allows a user to place and manipulate visualization primitives, such as isolines and
streamlines, during an ongoing simulation process. A user can interactively select and designate regions of the
computational mesh for refinement as the simulation progresses, perform remeshing, and see the effects of the
refinement on the simulation in real time. The system is being used for the study of two open problems in com-
pressible fluid dynamics. We can interactively explore solutions as they are computed, identify flow field regions
containing features of interest, and refine the grid in those regions in order to obtain a better result locally. The
ability to visualize “live” data, and to make changes to the computational setup in real time, has helped us to
understand the underlying fundamental CFD simulation issues of these problems in shorter times than would
otherwise have been possible.

1. Introduction

In computational fluid dynamics (CFD) analyses, the tasks
of simulation and visualization are usually done as indepen-
dent steps – visualization following numerical simulation. In
a typical procedure, the researcher first performs a calcula-
tion for some fixed amount of computational time, and then
views the solution in a separate post-processing step, using
a stand-alone visualization system. Based on the solution at
this intermediate stage, a decision may be made to change
simulation parameters, regrid, modify the modeled geome-
try, or simply continue the computation unchanged from that
point. This process is repeated until the solution of a steady
problem has converged, or until the solution of an unsteady
problem is evolved to a given point in time.

We believe that it is more efficient, and more enlightening,
to perform both steps – simulation and visualization – at the
same time. A special-purpose visualization system that can
be directly coupled with a running simulation, e. g, via a net-
work connection, and that allows us to visualize “live” data
as it is produced by the simulation, can be used to observe
the simulation progressing towards its final result, instead
of just visualizing that result. Such a system is not only a
valuable tool for debugging a simulation under development,
but it can also help in understanding the phenomenon be-
ing simulated, by showing how the simulation arrived at the

final result. Even when a simulation code is already well-
established, a specific simulation can still go awry, for ex-
ample if inappropriate simulation parameters are specified.
Instead of having to wait for a run to finish, and then finding
out that the result is not as expected, it is often possible to
detect that a simulation will yield suboptimal results early on
and interrupt it, or sometimes even to improve its solution by
changing parameters on-the-fly. In situations like this, a cou-
pled simulation–visualization system can reduce the overall
computation time significantly.

Our basic assumption is, that the simulation – be it steady
or unsteady – computes transient solutions which converge
towards the final solution over time, and that the time to com-
pute one of those solutions is much shorter than the over-
all simulation time. In the two computational problems de-
scribed in Section 4, computing a single solution takes on
the order of a second, whereas a complete simulation can
take days. Under this assumption, it is even possible to view
real-time animations of simulation data while the simulation
is still running. This does not mean, however, that a user has
to observe a simulation over its whole running-time. Typi-
cally, it is sufficient to observe the transient solutions only
until it is determined that the simulation parameters are set
appropriately, and then come back occasionally to check if
the simulation is still progressing as planned.
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Having such a coupled system also allows cooperation in
the other direction: It makes it possible to “steer” a simula-
tion by changing parameters on-the-fly using the visual in-
terface provided by the visualization system. How to steer
a simulation, i. e., which parameters to change, depends on
the specific problem; one example would be to change grid
structures during computation to improve resolution in areas
of interest.

An alternative approach to steering is based on using an
algorithm that modifies grids or geometry automatically, as
the solution progresses. Adaptive grid methods, for example,
cluster grid points in regions where they are most needed,
such as near shocks or in other areas where large gradients
occur. The adaptive mesh refinement (AMR) approach, de-
scribed in 1, 2, for example, uses a sequence of nested Carte-
sian grids that are refined in both space and time. Fine grids
are recursively embedded in coarser grids until the neces-
sary resolution is obtained. During a computation, refined
grids are created or removed automatically, in response to
estimated error, without user intervention. This approach has
been used to compute two and three-dimensional solutions
containing shocks (see, for example, 2). Adaptive grid meth-
ods have also been developed for overset and unstructured
grids, and are discussed in 10, 11, 14, 12.

Similarly, automatic methods can be used to dynamically
modify geometry in response to a computed solution. For
example, automatic CFD-based design methods have been
developed for the optimization of aerodynamic shapes, in-
cluding airfoils, wings, wing-bodies, and complete three-
dimensional aircraft configurations. The approach in 8, 9, 16

uses a control theory-based adjoint formulation, and sys-
tematically modifies a configuration through manipulation
of design variables that smoothly vary the shape of the aero-
dynamic surfaces. Examples of optimal three-dimensional
designs based on this approach include complete business
jet 15 and supersonic transport configurations. Reuther et al.
17 describe details and provide a concise summary of earlier
aerodynamic shape optimization methods.

Even when using automatic or adaptive methods, interac-
tive visualization of “live” simulation data is still beneficial;
additionally, for some CFD problems, the complexity and
expense of an automatic grid refinement scheme may not be
necessary or desirable, but one may still need to locally re-
fine the grid in order to resolve interesting features in the
solution. For these problems, an interactive system that sup-
ports visualization of the solution as it is being computed is
extremely useful. Such a system must allow a user to specify
the region(s) where refinement is needed. In this paper, we
apply the described system to the investigation of two open
problems in compressible fluid mechanics that are amenable
to interactive local grid refinement. The solutions contain in-
tersecting shock waves, and we are interested in obtaining
highly refined solutions in the neighborhood of the intersec-
tions. We interactively explore solutions as they develop, se-
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Figure 1: Layout of integrated simulation–visualization sys-
tem.

lect regions for grid refinement, and continue the computa-
tions after remeshing.

2. Related Work

Computational steering has been an active area of research
for over a decade; an excellent survey/taxonomy of existing
systems can be found in 21. The framework presented here
differs from existing steering systems in that it is based on
an interactive data exploration system, and as such focuses
on interactivity in both visualization and steering. It is also
aimed specifically towards time-varying simulations of two-
or three-dimensional phenomena.

3. Overview of the Steering Framework

A steering framework is characterized by the fact that it
closely couples simulation and visualization/interaction. To
use a visualization program for steering, it must “under-
stand,” and be able to manipulate, the internal data repre-
sentation used by the simulation. As simulations tend to
use problem-specific data representations, the visualization
component of a steering framework must be flexible enough
to deal with those, without having to write a problem-
specific visualization program. The impacts of this require-
ment are discussed in detail in Section 5.

From a system-architecture point of view, there are two
ways of building a steering framework: One can build a
monolithic program consisting of both parts, or one can con-
struct two independent programs linked by a communication
protocol. To support separate development of the two pro-
gram components, and to provide maximum flexibility, we
chose the latter approach. Building a distributed application
has other benefits: It is possible to run the simulation and
visualization programs on different machines connected via
the Internet, and it is possible to connect to/disconnect from
the ongoing simulation. In theory, even multiple visualiza-
tion programs could be connected to the same simulation,
allowing collaboration between users at multiple sites. The
distributed system structure is shown in Fig. 1.

From a computational scientist’s point of view, it is rela-
tively simple to modify/extend a simulation program to sup-
port visualization and steering. The complexity of maintain-
ing a remote connection to a visualization program and send-
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ing simulation data across that connection can be encapsu-
lated in a single C++ class (VisSocket, see Fig. 1). We
have found that adjustment and extension of a simulation
code written in C/C++ can be done in a few hours. The vi-
sualization program has to accomodate the simulation pro-
gram; the data exchanged between simulation and visualiza-
tion programs are always in the format used by the simula-
tion. In developing the steering framework, it was a goal to
minimize the number of data conversions, and to perform all
of them in the visualization program. This approach makes
the visualization program more complex: Even when only
considering grid-based simulations, a multitude of possible
data representations exists, ranging from simple Cartesian to
hierarchical AMR grids. Using the system architecture de-
scribed in Section 5, it is possible to modularize the visual-
ization program to accomodate all these representations.

The guiding principle behind developing the described
visualization system was interactivity. Our previous re-
search 23 shows that being able to interact with a visual-
ization, as opposed to looking at a fixed image, aids in un-
derstanding the visualized phenomenon. Furthermore, since
our system is coupled with a running simulation, changes in
simulation data must be reflected in the visualization when-
ever they occur. In an interactive visualization system, a user
can place visualization primitives (contour lines, streamlines
etc.) anywhere inside the data domain. When a primitive is
placed, it will follow all movements of the pointing device
until it is released in its final position. The resulting anima-
tion of primitives provides an intuitive understanding of the
visualized data’s structure. When the visualization system is
connected to a running simulation, the visualized data can
be updated anytime – either on user request, or automati-
cally whenever the simulation has completed a new transient
solution. On a data update, all previously placed visualiza-
tion primitives will reflect the change, resulting in a real-
time animation of simulation data. A primitive can also be
dragged while data is updated automatically; if the simula-
tion can calculate transient solutions fast enough, a user can
explore the data in both space and time. The visualization
system’s internal architecture and the provided visualization
primitives are described in more detail in Section 5.

4. The Computational Problem

With the integrated simulation–visualization system, we
have studied two problems in compressible fluid mechan-
ics that involve flow at or near the speed of sound (transonic
flow). These problems involve the reflection and focusing
of weak shock waves, and are poorly understood theoret-
ically due to the difficulty in analyzing multi-dimensional
shock wave propagation. In particular, the weak shock re-
flection problem is a physically important example of a two-
dimensional Riemann problem, which arise in the study of
hyperbolic systems of conservation laws, including the Euler
equations of gasdynamics. Other examples of transonic flow

problems occur in aerodynamic applications, for example,
in the flow around wings of commercial subsonic transport
aircraft at cruise Mach number. Transonic flow is character-
ized by the occurrence of shock waves that are difficult to
resolve numerically due to their weakness, and by the fact
that the flow fields contain regions of both supersonic and
subsonic flow. In the following, we briefly summarize the
computational problems; see the references for detailed ex-
planations.

In the first problem, we study the transition between Mach
and regular reflection for weak shock waves reflecting off
thin wedges (see Figs. 7 and 8 for examples of Mach and reg-
ular reflection, respectively). An analysis of the Euler equa-
tions of gas dynamics shows that regular reflection of a plane
shock is impossible when the wedge angle θ < θd , where θd
is the detachment angle, which is a function of the shock
strength. One possible condition for transition from regular
to Mach reflection, therefore, is that transition occurs at the
detachment point, where θ = θd . A second plausible con-
dition for transition is the sonic point, at which the point
where reflection occurs is exactly sonic with respect to the
flow behind the reflected shock. These two criteria are so
close together that they cannot be distinguished from each
other in experiments. Numerical studies to date have also
been unsuccessful in resolving this problem, and the correct
criterion for transition is unknown. See 3 for a detailed dis-
cussion of transition in shock reflection, and 4, 5 for further
explanation.

An asymptotic problem that describes the reflection of
weak shocks off thin wedges was formulated in 6, and is fur-
ther discussed in 7, 13, 18. The detachment and sonic points
correspond to different values of a parameter a (see 7) in the
asymptotic problem that are very close in numerical value.
We solved the asymptotic equations using the numerical
method described in 19, 20. We use a curvilinear grid that has
a locally refined area of uniform grid very close to the re-
flection point, and is stretched exponentially away from the
reflection point toward the outer numerical boundaries and
the wall. This grid is shown schematically in Fig. 4(a). As
we describe in Section 5, we refine the grid interactively dur-
ing an ongoing simulation. Following each grid change, the
solution is interpolated onto a new grid, and the simulation
continues. In our numerical solutions, we use values of the
parameter a close to the sonic and detachment values, and
search for evidence of transition in the numerical solutions.

The second problem concerns the focusing of curved
shock fronts. When a weak non-planar shock propagates
down a shock tube, one of two configurations develops.
If the shock is sufficiently weak it crosses over itself and
forms a linear, fish-tail configuration, as shown in Fig. 9(a).
For slightly stronger shocks, the non-linear configuration in
Fig. 9(b) is observed; here, the acceleration of the central
part of the shock prevents the shock from crossing over it-
self and forming a fish-tail configuration. In both configu-
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rations, an apparent triple point, consisting of three inter-
secting shocks, is observed both experimentally and in nu-
merical solutions. It can be shown, however, that for suf-
ficiently weak shocks, such intersections cannot exist. Ap-
parent triple shock intersections also occur experimentally
and in numerical solutions of the Mach reflection of weak
shocks, which was investigated in 7, 20. In 7, 20, numerical ev-
idence was presented of a supersonic region near the triple
point that contains additional expansion waves, and the re-
sulting wave structure at the triple point is admissible by
theory. An expansion fan has not been detected at the triple
point in weak shock focusing, but the existence of solutions
similar to those in 7, 20 would resolve the conflict between
theory and experiment for the focusing problem. See 18 for
further explanation of shock wave focusing.

To study the shock focusing problem we have applied the
numerical scheme described in 7. We use a Cartesian grid
that has a locally refined area of uniform grid near the triple
point, and is stretched exponentially toward the outer nu-
merical boundaries and the wall, as shown schematically in
Fig. 4(b)

5. Structure of Visualization System

Our goal was to create a visualization system that is close
enough to the simulation system to appear to be a part of it,
yet general enough to be able to be coupled with several dif-
ferent simulation systems without having to rewrite it every
time. The major advantages of such a tight-knit system are
twofold: First, such a system supports interactive visualiza-
tion of “live” simulation data. Second, it allows us to steer
the simulation by manipulating parameters, thus improving
the quality of simulation results.

5.1. Interactive Visualization of “Live” Simulation Data

Our visualization system closely follows the system archi-
tecture of the one described in 23. It can visualize grid struc-
ture, and data can be explored interactively by placing and
moving visualization primitives in the simulation’s domain.
Since the example simulations described in Section 4 pro-
vide multi-valued data, with at least one scalar and one vec-
tor (velocity) for each grid vertex, the visualization primi-
tives supported by our system are contour lines of any scalar
value, and streamlines of the vector value. Both primitives
can be colored by mapping any scalar value.

A typical use of our system is to first explore a single
transient solution computed by the simulation by placing
and dragging some visualization primitives; once primitives
highlighting important features of the data have been placed,
automatic data update is enabled to see how the placed prim-
itives evolve over time. If new features develop in the data, or
if existing features are no longer well-represented, automatic
update is disabled, and the cycle is started over by adjusting
the existing primitives or adding new ones. A benefit of the

distributed system architecture described in Section 3 is that
the visualization system can be connected to/disconnected
from the simulation at will; therefore, it is not necessary for
a user to continually supervise a long-running simulation.
Typically, one only observes the first few computed solutions
to check for validity, and then comes back once in a while to
check if the simulation is still progressing as intended or to
change parameters on-the-fly.

5.1.1. Visualization Primitives

Rendering contour lines (isolines) is probably the most com-
monly used visualization technique for scalar data. A con-
tour line connects all points in a domain having a given
function value c, and, for grid-based data, a contour line is
typically computed using a version of the Marching-Cubes
algorithm 24, 25, 26. This algorithm is not suitable for interac-
tive visualization. Therefore, we replace it with a “seeded
isoline” method. We do not create an isoline by specifying
a constant function value c, but by selecting a point inside
the domain. The visualization system calculates the scalar
value at the selected point, and we compute an isoline for
that value by “growing” it outward from the selected point:
First, a contour line fragment for the grid cell containing the
selected point is created using the Marching-Cubes method;
second, it is determined which edges of the cell are inter-
sected by the contour line; and, third, these cells are visited
in turn, creating the complete contour line, see Fig. 2. The
main benefit of this method is that it can be interrupted at any
time, enabling interactive response independent of data set
size and allowing a user to “drag” a contour line to quickly
and intuitively explore a scalar field.

(a) (b)

(c)

Figure 2: Computing a seeded contour line. (a) Creating
contour line fragment inside selected cell and determining
its neighbours; (b) and (c) growing contour line by propa-
gation through adjacent cells

Streamlines are one means to visualize vector (flow-field)
data. A streamline p(t) is a solution to the initial value prob-
lem p(t0) = x0, d

d t p(t) = f
(

p(t)
)

. In a more physical sense,
it describes the path of a massless particle released into a
steady flow field f (x) at point x0. The standard method to
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compute streamlines is to iteratively solve the initial value
problem using a Runge–Kutta method 27, see Fig. 3. Since
this computation method is directly applicable to interactive
visualization – the iteration can be interrupted at any time –
streamlines are generated by selecting a starting point x0
inside the domain, and then performing a fixed number of
Runge–Kutta iteration steps. The generated sample points
are finally connected by line segments to form a streamline.

p(t0) p(t0+∆t) p(t0+3∆t)

Figure 3: Generating a streamline by iteratively solving an
initial value problem starting at point x0 = p(t0)

Currently, these two simple visualization primitives are
the only ones supported. At this point, interactive placement
of contour lines and streamlines is the most efficient way
to visualize the two described phenomena. Once we gain
more insight into the computational problem, tracking meth-
ods like the one presented in 22 might be applicable.

5.1.2. Multi-valued Data

In the case of multi-valued data sets, different data compo-
nents can be selected for visualization-primitive generation.
For example, a data set could contain one scalar quantity
(density) and one vector quantity (momentum), as is com-
mon in many types of CFD simulations. In this case, contour
lines could be generated for density, x- and y-components of
momentum, or momentum magnitude. Primitives can be col-
ored by any scalar component. Combining different compo-
nents of possibly different fields for visualization, e. g., col-
oring contour lines of density with momentum magnitude,
can aid in understanding data.

5.1.3. Simulation Data Update

The system described in 23 reads pre-computed data for visu-
alization, while the system we describe here is directly con-
nected to a simulation via a network interface. This allows a
user to update the visualized data to the most recent transient
solution in the simulation at any time. When the simulation
data is updated, the already placed visualization primitives
will follow the change. The visualization system can also
automatically update the data whenever a new solution is
available, thus creating a real-time animation. By following
the changing visualization primitives over time, a user can
more easily understand how a simulation progresses.

Since all described visualization primitives use the notion
of a starting or seed point, we currently update all existing
primitives by recalculating them, using the new data, starting
from the same point. For streamlines, this is appropriate; for

contour lines, however, keeping the same seed point might
change the data value visualized by the contour line. This
updating method is sufficient to visualize a simulation’s evo-
lution, but we intend to implement “tracking” of isovalues in
a future program version.

5.2. Manipulating Simulation Parameters

In a tightly coupled simulation-visualization framework,
data visualization is only one part of the collaboration. If
visualization is used to “supervise” the simulation, it can
also be used to “steer” the simulation. The goals of steering,
i. e., interactive changing of simulation parameters, can be
either to increase solution accuracy, to decrease run time, or
to keep a simulation “on track.” The details on how to steer
a simulation depend on the simulated phenomenon, or, more
specifically, on the parameters exposed to the visualization
system and used for “tweaking.” In computational steering,
the process of retrofitting a stand-alone simulation code for
interaction is often called “instrumentation.”

In the two computational problems described above, we
chose to instrument the simulation codes by allowing a user
to change the grid during simulation, in order to adjust the
region of finest refinement to the location where the most in-
teresting features evolve. As described in Section 4, the grids
for both problems contain a uniform refinement area, with
grid cells growing exponentially in size when moving away
from that region, see Fig. 4. To accomodate grid changes, the
visualization system provides a “magnifying glass” that al-
lows a user to interactively manipulate all parameters defin-
ing the grid. When these parameters are sent to an ongoing
simulation, interpolation routines in the simulation code re-
sample the current transient solution onto the new grid, and
the simulation continues.

In principle, the described steering framework can be
adapted to manipulate other simulation parameters as well,
depending on the simulation being controlled. In the partic-
ular case of the two described computational problems, local
grid refinement is by far the most important parameter that
needs adjustment during a simulation.

5.3. Visualization System Architecture

The relative complexity of a coupled visualization system
is due to the fact that it has to work closely to the simula-
tion system. This implies that it must directly work on the
data structures provided by the simulation; converting data
to a canonical internal format is not an option. Since the vi-
sualization system also has to be interactive, the modules
generating its primitives must also be tightly knit into the
simulation’s data formats. Thus, it seems that such a system
has to be reimplemented from the ground up for each simu-
lation it is to be coupled with. Upon closer inspection it turns
out, however, that it is possible to isolate a small number of
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(a)

Refinement region
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(b)
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Figure 4: Grid structures used in computational problems.
In both grid(a) and grid(b), a local, uniform refinement re-
gion is surrounded by grid cells growing exponentially in
size. (a) Curvilinear grid used in reflection problem; (b) Rec-
tilinear grid used in focusing problem.

basic interfaces that allow to isolate the structure of the sim-
ulation data from the rest of the visualization system without
compromising efficiency.

Our visualization system consists of two main modules:
The first, Data Set Storage, handles representation of sim-
ulation data in various formats; the second, Visualization,
contains the functionality to generate and update visualiza-
tion primitives, and to display them and interact with them
in the user interface. To connect those two modules, the
only two interfaces required for both provided visualization
primitives, seeded isolines and streamlines, are the Loca-
tor and IsoFragment interfaces. The Locator inter-
face allows navigating a data set and evaluating it at arbitrary
points inside its domain. It is also used to communicate po-
sitions inside a data set between different system modules;
in this respect, it plays a role analogous to the iterator
interface found in the C++ Standard Template Library. The
IsoFragment interface is specific to generating seeded
isolines; it encapsulates how an isoline is generated itera-
tively, one line segment at a time, and how isolines propagate
through grid cells. The visualization system’s architecture is
shown in Fig. 5.

6. Results

We have used the described simulation-visualization system
to compute and explore solutions of the shock reflection
problem described in Section 4 for values of the parameter
a (see 7) close to the detachment and sonic point values. In
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Figure 5: Architecture of interactive visualization system.
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Figure 6: A solution on the full numerical domain, illustrat-
ing the approximate size and location of the refined uniform
grid area shown in Fig. 7, which is contained in the small
rectangular box shown in the inset figure. The plots show
contour lines of u-velocity for a Mach reflection near transi-
tion.

our solutions, we locally refined the grid over a very small
area close to the shock reflection point. In order to illustrate
the size and location of the refined uniform grid, in Fig. 6
we plot contour lines of the x-velocity component u as a
function of (x/t,y/t) over the full numerical domain. The
solution shown in Fig. 6 is for a value of a corresponding to
Mach reflection. The refined grid area is too small to be vis-
ible in the main plot shown in Fig. 6. The inset figure shows
an enlargement of the solution contained within the small
rectangular box centered about the reflection point, as indi-
cated. The solution shown in the figure inset also contains
a small box centered at the reflection point, indicating the
approximate location and size of the refined uniform grid.

During a computation, we interactively refined the grid
until the solution near the reflection point was sufficiently
well resolved. Fig. 7 shows a sequence of solutions com-
puted on consecutively refined grids, for the same value of a
as in Fig. 6. The regions shown contain the refined uniform
grids, and correspond in area to the boxed region shown in
the inset of Fig. 6. In this sequence, we have refined each
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grid by a factor of two in x/t and y/t in relation to the previ-
ous grid. The plots shown contour lines of u, and the contour
lines are plotted at the same values of u in Fig. 7(a)–(d). The
incident shock becomes more well defined as the grid is re-
fined, and the Mach shock, which is extremely short for the
value of a used here, identifies the solution as a Mach reflec-
tion.

In Fig. 8 we show u contour lines for a sequence of solu-
tions computed on grids corresponding in resolution to those
in Fig. 7, for a value of a corresponding to regular reflection
near transition. The numbers of grid points in the refined re-
gions shown in Fig. 7 and Fig. 8 are indicated in the figure
captions. The shocks become sharper and thinner as the grid
is refined in Fig. 8(a)–(d). A regular reflection is clearly vis-
ible. When computing solutions for values of a very close
to the sonic and detachment values, however, we have not
been able to discern the difference between Mach and reg-
ular reflection, due to the extreme shortness of the Mach
shock at transition and the inherent numerical diffusion of
our method.

In Fig. 9, we plot u contour lines, as a function of (x,y),
for solutions at time t = 1 corresponding to the linear and
non-linear configurations for shock focusing. In our compu-
tations, we maintained a fixed refined grid size, and moved
the refined grid region interactively as necessary so that it al-
ways contained the triple shock intersection. Fig. 10 shows
u contour lines for the non-linear focusing solution shown in
Fig. 9(b), restricted to a small area near the reflection region.
The number of points in the refined uniform grid, which is
contained in the region shown in Fig. 10, is given in the
figure caption. These solutions are preliminary, and further
work, including more highly refined solutions, is required in
order to resolve the solution near the triple point.

6.1. Visualization System Performance

We are routinely running the described simula-
tion/visualization framework as a distributed application
on two consumer-level desktop workstations (Intel Pen-
tium/AMD Athlon 800 MHz, 128 MB, NVidia GeForce,
Linux OS) connected by a 100 Mbit/s network. At the
typical grid size of 1800×1500 cells, the simulation system
needs between two and three seconds to calculate a new
transient solution. The visualization system is always inter-
active: panning/zooming of a fixed visualization performs
at above 30 frames/s, dragging of visualization primitives is
performed at at least 10 frames/s. Transmitting a transient
solution from the simulation system to the visualization
system is limited by network bandwidth; in our environment
and at typical grid size, the transmission time is between
three and five seconds, during which time the visualization
system is still responsive. If the simulation and visualization
systems run on the same machine, transmission time
becomes negligible. After a solution has been transmitted,
it takes the visualization system about 0.1 to 0.5 seconds to

update its internal data structures and re-calculate all placed
primitives, during which time it does not respond to user
interaction. Even in “movie mode,” where new transient
solutions are transmitted as soon as the simulation system
produces them, interactive exploration of the time-varying
data is still possible.

7. Conclusions and Future Work

We have shown that integrating simulation codes and inter-
active visualization systems offers several benefits: Explor-
ing data in real-time simplifies the process of understand-
ing data; observing an ongoing simulation aids in debugging
the simulation program and also understanding the problem
being simulated; and interactively refining grids on-the-fly
can improve simulation quality and/or reduce overall simu-
lation time. We implemented such an integrated simulation–
visualization system for the two described problems. Al-
though these problems use different underlying data struc-
tures, the described architecture encapsulates those differ-
ences inside a single module. Using our system to compute
highly refined solutions helped us to understand the inherent
difficulties in the computational approach.

Future work includes adding more visualization primi-
tives and more data structures to allow us to couple the visu-
alization system with a wider range of simulation systems.
For each simulation system, specific steering methods have
to be developed and integrated into the existing framework.
We intend to use the system to aid in further improving our
computational method.
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Figure 7: A sequence of solutions in the refined uniform grid area, corresponding to the boxed area in the inset figure of Fig. 6,
showing the effect of local grid refinement on the numerical solution. The plots show u-contours for solutions with the same
value of a as in Fig. 6. The refined uniform grids, contained in the regions shown, have the following numbers of grid points:
(a) 56×62; (b) 112×124; (c) 224×248; (d) 448×496. The total number of grid points used in the most refined computation
in (d) is approximately 4×106.
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Figure 9: Solutions for shock focusing, showing the (a) linear fish-tail, and (b) non-linear configurations at time t = 1. The
plots show u contour lines.
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