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Abstract. We consider the steady transonic small disturbance equations on a domain

and with data that lead to a solution that depends on a single variable. After writing

down the solution, we show that it can also be found by using a hodograph transformation

followed by a partial Fourier transform. This motivates considering perturbed problems

that can be solved with the same technique. We identify a class of such problems.

1. Introduction. There are many contexts in which free boundaries arise in systems

of conservation laws that change type when they are formulated as steady or quasi-steady

problems. The free boundary may take the form of a transonic shock. In that case, one

is often presented with a situation where the flow is completely known (typically it is

a constant state) on one side of the free boundary. On the free boundary itself, a set

of boundary conditions is given by the Rankine-Hugoniot conditions. This could be

called a ‘one-way’ free boundary. It has been studied recently by a number of authors,
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for example [1, 3, 4], as it arises naturally in looking at multidimensional self-similar

problems.

A second type of transonic free boundary problem occurs when the transition between

supersonic and subsonic flow is continuous. Then there is no natural set of boundary

conditions except that the solution be continuous and that it form a weak solution to

the conservation law system. It would not even be particularly natural to formulate this

as a free boundary problem, if techniques were available, say, to solve the mixed-type

system with only the natural boundary conditions in a larger domain. An example where

this was studied numerically is given in [12]; in that paper we coined the term ‘two-way

free boundary’ to describe this coupled problem. We succeeded in formulating boundary

conditions that sufficed for computation, but without any proof that they were correct.

The present paper provides a partial answer to the question of appropriate boundary

conditions that might lead to a well-posed problem.

If a ‘two-way’ problem is viewed as two separate problems – supersonic and subsonic

– then the solution is not known a priori in either the supersonic or the subsonic region.

The states are coupled through the condition of continuity at the boundary. A linear

version of the problem is given by boundary value problems for the Tricomi equation

formulated by Cathleen Morawetz [9] and solved by her in the plane, as well as by Lax

and Phillips [8] and others. An important difference is that the linear problem does not

have a free boundary.

The linear Tricomi problem is a representation of a fluid dynamics problem for ideal

compressible gas flow in the hodograph plane – that is, in phase space. By contrast, the

quasilinear problem formulated here describes a situation in physical space, either in the

spatial plane (for two-dimensional steady flow) or in a two-dimensional similarity space,

where the variables represent x/t and y/t. In the latter case, there is a clear notion

of dynamics, with the forward time direction represented by motion towards the origin.

For steady flow, the underlying direction of motion typically determines the timelike

direction.

The quasilinear problems that occur in self-similar reductions of two-dimensional gas

dynamics are more complicated than the problem considered in this paper. For example,

the continuous part of the sonic line in the problem of diverging rarefaction waves [12],

and the continuous side of the supersonic bubble in Guderley Mach reflection [11, 13,

14], both develop into shocks downstream, and in both problems the subsonic region

is noncompact. A principal motivation for the work in this paper is the hope that the

solution of the simplified problem considered here will be helpful in devising solutions

for these more natural (and more complex) problems.

As well as involving more intricate global geometry, the physical problems that occur

in gas dynamics also involve more than just an acoustic transition from supersonic to

subsonic flow. Linear characteristic families are present in general, and as a result the

transition, in PDE terms, is between a hyperbolic and a mixed-type system. Analysis

conducted so far seems to show that the basic problem can be understood by looking at

a model problem where no linear waves are present. Incorporating the linear waves is

far from straightforward, but it can be seen as a generalization imposed on the acoustic

problem.
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Thus, for this paper we consider the simplest nonlinear context: the steady transonic

small-disturbance equation (TSDE). This system has the advantage of transforming nat-

urally to a second-order equation, and of having a transparent characteristic structure

where it is hyperbolic. The nature of the nonlinearity and the change of type appear to

be generic. (An alternative model, the transonic full potential equation, is also appeal-

ing. As well as being of greater physical generality, it has the feature of respecting the

Euclidean symmetry of space. The standard procedure for the full-potential system is

to work with the velocity potential. We have not chosen that approach, partly on the

grounds that we want to move towards the consideration of non-potential flows. However,

a full-potential version of the problem considered here would be interesting.)

We begin with a particularly simple boundary value problem for the TSDE. Assuming

a domain and boundary conditions that are invariant in one direction, we formulate a

problem that possesses a closed-form solution. This, in turn, is a springboard for a

perturbed problem that involves the transverse variable in a non-trivial way.

The structure of this paper is as follows. In Section 2 we pose the problem illustrated

in Figure 1 and write down the explicit solution. In Section 3 we rewrite the problem

in hodograph coordinates, and in Section 4 we set up a Fourier transform procedure to

solve problems in the hodograph plane, and we recover the one-dimensional solution via

Fourier transformation. Section 5 determines a class of perturbed problems that may be

solved by the same technique, and in Section 6 we prove that these solutions actually

exist, under certain conditions. In the concluding section, 7, we interpret our solutions.

2. The One-Dimensional Problem. A convenient formulation of the TSDE is

uux + vy = 0

vx − uy = 0.
(2.1)

It is hyperbolic when u < 0, elliptic when u > 0. We examine problems for which we

expect to find u = 0 on a regular curve, called the sonic line. We recall that this equation

is derived from steady potential flow in the more complete compressible gas dynamics

system by assuming an underlying flow in the negative x direction that is close to sonic.

Then u and v are perturbation velocity components (with positive u measuring a decrease

in speed). In addition, u is proportional to density (and also pressure) differences from

the ambient sonic flow. (For steady irrotational flows, Bernoulli’s law implies that density

and speed vary inversely with each other.)

In order not to be unduly influenced by the anisotropic nature of the equations, we

consider a strip, ΩP , in general position, bounded by two lines

αx+ βy = ±1, β 6= 0, (2.2)

on which we impose boundary conditions that will ensure change of type in the interior.

See Figure 1. The condition β 6= 0 is necessary for the one-dimensional problem to have

any solutions. Then, without loss of generality except for the possibility of rescaling the

variables by a dilation, we may choose β = 1, and let z = αx+ y. We assume now that

α 6= 0 as well. There is a solution for α = 0, but it is found by a different method. The
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 x

 y

 α x+y=1

 α x+y=−1

 u=0
 u=A/α 2

 < 0

 u=B/α 2
 > 0

Fig. 1. The Domain for the Problem

one-dimensional boundary conditions for u(z) are

u(−1) = A/α2 < 0

u(1) = B/α2 > 0
(2.3)

where A and B are constant. Because of the physical interpretation above, the basic flow

is expansive. (We could alternatively formulate a problem for a compression wave.)

We deduce from (2.1) a second-order equation for u:

(uux)x + uyy = 0 .

The one-dimensional problem becomes an ordinary differential equation for u(z):

α2(uu′)′ + u′′ = 0 .

The solution is

u(z) =
1

α2

(
− 1±

√
1 + Cz +D

)
,

where C and D are constants of integration. To fix ideas, we assume from now on

that α > 0, and we select the + sign in front of the square root so that we may have

u(−1) < 0 < u(1). We derive expressions for C and D in terms of the boundary

conditions:

C = (B −A)

(
A+B

2
+ 1

)
D =

A2 +B2

2
+A+B .

We want a solution with u(−1) < 0 < u(1), (that is, A < 0 < B), and hence we need

C > 0. (Note that we have scaled all the constants, including the boundary values

themselves, by α2.)
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Now the solution of the one-dimensional boundary value problem (2.1), (2.3), on the

strip

−1 ≤ αx+ y ≤ 1, (2.4)

is given by

u(x, y) =
1

α2

(
− 1 +

√
1 + C(αx+ y) +D

)
v(x, y) =

√
1 + C(αx+ y) +D

α3
− C

2α3
y .

(2.5)

Here we have recovered v from (2.1) in the standard way. The boundary conditions,

and the solution as given, are incomplete, as v is determined, from (2.1), only up to an

additive constant (which we have taken to be zero in (2.5)). To fix that constant, it

suffices to impose a boundary condition on v at a single point on the boundary, say

v(0,−1) = E .

We note that v is not a function of αx + y alone, and we will return to the correct

specification of the boundary conditions for v when we consider the two-dimensional

problem.

We shall refer to the solution (2.5) as (u0, v0) in the next section.

We note the domain of the (constant) boundary values. From

A = α2u(−1) = −1 +
√

1− C +D

B = α2u(1) = −1 +
√

1 + C +D

we require 1 − C + D > 0 and 1 + C + D > 0 for a real solution which is differentiable

up to the boundaries, and 1 − C + D < 1 and 1 + C + D > 1 for a transonic solution.

One of these conditions is redundant, and so we find that C and D lie in the interior of

a half-strip, 0 < C −D < 1 and C + D > 0, corresponding to −1 < A < 0, B > 0. See

Figure 2.

From the solution we can now recover the sonic line, given by u = 0 for this model

system. It is

αx+ y = z = −D
C

=
A2 +B2 + 2(A+B)

A2 −B2 + 2(A−B)
. (2.6)

Note that, as C > 0, the sonic line lies to the right or left of the origin according as

D < 0 or D > 0.

For completeness, we include the case α = 0. Now we seek u = u(y) solving the

second-order equation, and the solution, for u(−1) = A, u(1) = B, is

u(x, y) =
B −A

2
y +

A+B

2

v(x, y) =
B −A

2
x .

In this case, there is no restriction on the relative sizes of A and B.

For the remainder of this paper, we assume α 6= 0. As far as we know, this simple

explicit solution has not appeared in the literature, though it may be known to researchers

in transonic flow. Our interest in it, explored in this paper, is as an avenue for finding
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Fig. 2. Normalized Domain of the Boundary Values

possible boundary conditions for two-dimensional self-similar problems. In the current

paper, we exploit the fact that this geometry and solution are amenable to treatment

with a hodograph transform and, further, with the Fourier transform.

3. Formulation in the Hodograph Plane. The point of departure for the hodo-

graph transform is the observation that the functions u(x, y), v(x, y) can be considered

as a mapping T : R2 → R2,

T : (x, y) 7→ (u, v) ,

and this mapping is locally invertible if its Jacobian determinant,

det(dT ) = uxvy − vxuy (3.1)

is nonzero. For the one-dimensional solution, (2.5), this is the case, as

det(dT ) =
Cα

2α2S

(
− Cα

2α2

)
= − C2

4α4S
. (3.2)

Here S = S(x, y) =
√

1 + C(αx+ y) +D is an abbreviation for the quantity that appears

repeatedly in the formulas for u and v; it is nonzero throughout. The mapping T for the

one-dimensional solution is in fact globally invertible, with inverse given by (3.5) below.

From (3.1) and (3.2) we see that if we work with solutions that are small perturbations

(uniformly in C1) of the one-dimensional solution, then we can use the hodograph plane

to describe solutions.

The transformed variables satisfy

(dT )−1 =
∂(x, y)

∂(u, v)
=

(
∂(u, v)

∂(x, y)

)−1

or (
xu xv
yu yv

)
=

1

det(dT )

(
vy −uy
−vx ux

)
.
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Fig. 3. The Hodograph Mapping

Thus the hodograph system for the small-disturbance equations (after dividing by det(dT ))

is

xu + uyv = 0

yu − xv = 0 .
(3.3)

This can also be written as a second-order equation (the Tricomi equation):

yuu + uyvv = 0 . (3.4)

We again note that u < 0 corresponds to supersonic states (hyperbolic equation) and

u > 0 to subsonic (elliptic) regions.

We will use solution techniques for (3.4) to formulate solvable boundary-value prob-

lems for (2.1). We work with perturbations of the one-dimensional problem solved in

Section 2. For the one-dimensional solution (2.5), the mapping T is clearly globally in-

vertible. The mapping is orientation-reversing (with our choice of parameters), and maps

the infinite strip ΩP to an infinite vertical strip ΩH , see Figure 3. Solving (2.5) for the

inverse mapping yields

x =
1

C

(
α3u2 + 2α2v − 1

α

(
2 +D

))
y =

2

C

(
α2u− α3v + 1

)
.

(3.5)

Again, we note that the Jacobian,

1

det(dT )
= − 4

C2
α4(α2u+ 1) ,

is bounded away from zero (because α2u ≥ A > −1), with a bound depending only on

the domain and the boundary conditions (α, A and B).

4. Application of the Fourier Transform. The discussion above motivates our

trying to solve problems for hodograph variables
(
x(u, v), y(u, v)

)
with data given on the

vertical sides of ΩH . In particular, we will identify a set of hodograph data that is larger
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than the specific linear data that gives rise to the one-dimensional solution (3.5), but

that still admits an inverse hodograph transform (and hence corresponds to a flow in

physical coordinates).

A natural way to solve (3.3) or (3.4) on the infinite strip is to take a partial Fourier

transform (in v). To fix ideas, we use the following normalization:

ŷ(u, η) =

∫ ∞
−∞

e−ivηy(u, v) dv ≡ Fv
(
y(u, ·)

)
. (4.1)

In the motivating one-dimensional problem, y has linear growth in v, and so its Fourier

transform is a tempered distribution (element of S ′), and is defined as a limit of integrals.

Because y(v) (or v(y)) in the motivating problem is invertible on both sides of ΩH ,

we choose to prescribe boundary conditions for y(v).

From (3.5), the one-dimensional data on the vertical sides of the domain are

y0
L(v) =

2

C

(√
1− C +D − α3v

)
, y0

R(v) =
2

C

(√
1 + C +D − α3v

)
. (4.2)

The Fourier transforms of these functions are also tempered distributions. A Fourier

transform applied to equation (3.4) results in

ŷuu + uŷvv = 0 .

From properties of the Fourier transform in S ′ we have

ŷvv = −η2ŷ .

Thus, (3.4) transforms to

ŷuu − η2uŷ = 0 . (4.3)

Now, consider η as a parameter, and note that (4.3) is a scaling of the Airy equation,

Ytt − tY = 0 , (4.4)

with t = λu = η2/3u. Thus, we may use standard Airy functions to solve (4.3), and

further apply the Fourier transforms of the boundary conditions (4.2) at u = A/α2

and u = B/α2 to recover ŷ. For perturbations of the data (4.2), in Section 5 we will

similarly solve the perturbed problem for ŷ. In either case, we integrate (3.3) to obtain

x. Our intention is to produce a solution to the problem for (u, v) close to the original

one-dimensional solution. First, we display the mechanics for calculating the solution.

Let A1 and A2 be a fundamental set of solutions to the Airy equation. The data

ŷL(η), ŷR(η) give a two-point boundary-value problem (in u) for ŷ(u, η), at each value of

η. We write

ŷ(u, η) = c1(η)A1(η2/3u) + c2(η)A2(η2/3u) .

Boundary conditions are imposed on ŷ at u = A/α2 < 0 and at u = B/α2 > 0. If the

solution is continuous in u, we have

ŷ

(
A

α2
, η

)
= ŷL(η) (4.5)

ŷ

(
B

α2
, η

)
= ŷR(η) . (4.6)
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Thus we obtain a system of equations for c1(η) and c2(η):A1

(
η2/3A
α2

)
A2

(
η2/3A
α2

)
A1

(
η2/3B
α2

)
A2

(
η2/3B
α2

)(c1(η)

c2(η)

)
=

(
ŷL(η)

ŷR(η)

)
. (4.7)

Letting M = M(η) stand for the matrix in (4.7), we write (4.7) in vector notation as

Mc = ŷ . (4.8)

4.1. Recovery of the One-Dimensional Solution Via Fourier Transform. To fix ideas,

we solve the one-dimensional problem with data (y0
L, y

0
R) from (4.2), to recover y0(u, v) =

2(α2u− α3v + 1)/C as in (3.5).

The transforms of y0
L and y0

R are straightforward:

ŷ0
L(η) =

2

C

√
1− C +D · 2πδ(η)− 2

C
α3 · 2πiδ′(η)

ŷ0
R(η) =

2

C

√
1 + C +D · 2πδ(η)− 2

C
α3 · 2πiδ′(η) .

(4.9)

Now, a general problem that arises in applying this method is that the matrix M in

(4.7) may not be invertible. In fact, the support of the data in (4.9) is concentrated

at the origin, and precisely at that point (among many points, as we shall see) M is

singular. The resolution of this is to regard M−1 as a complex function, analytic except

at a countable set of values, but containing singularities in the form of poles and (as here

at the origin) also algebraic singularities. Then we interpret in the sense of distributions

products of terms in M−1 with distributions. The following calculus produces the correct

result. We take for A1 and A2 a convenient pair:

A1(t) = 1 +O(t2) , A2(t) = t+O(t2) ,

for t ≈ 0 by choosing an appropriate fundamental set of solutions to (4.4), and examine

M and M−1, for uniformly small values of η:

M =


1 +O1

η2/3A

α2
+O2

1 +O3
η2/3B

α2
+O4

 (4.10)

where Oj = O(η4/3) for j = 1, . . . , 4. Then if we write M−1 in the form

M−1 =
1

B −A


B + a1 −A+ a2

− α2

η2/3
+ a3

α2

η2/3
+ a4

 (4.11)
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we will have

a1 = O(η4/3)

a2 = O(η4/3)

a3 = η−2/3α2(O4 −O2) +O(η4/3)

a4 = −η−2/3α2(O4 −O2) +O(η4/3) .

Now we can compute, formally,(
c1(η)

c2(η)

)
= M−1

(
ŷ0
L(η)

ŷ0
R(η)

)
=

(
k1δ(η) + k2δ

′(η)

k3η
−2/3δ(η)

)
, (4.12)

with

k1 =
4π

C

(
B
√

1− C +D −A
√

1 + C +D

B −A

)
=

4π

C

k2 = −4πiα3

C

k3 =
4πα2

C(B −A)

(√
1− C +D −

√
1 + C +D

)
=

4πα2

C
,

using the fact that in (4.9) the coefficients of δ′ are the same in ŷ0
L and ŷ0

R, from which

it follows that multiplication with the aj does not give any additional terms. Because

the support of δ is concentrated at η = 0, the expressions for c1 and c2 are exact. The

formula for c2 shows that it cannot stand alone as a distribution. However, the expression

c2A2 is well-defined, as we can use the approximations for A1 and A2 again to compute

ŷ(u, η) = c1(η)A1(η2/3u) + c2(η)A2(η2/3u)

= k1δ(η) + k2δ
′(η) + k3η

−2/3δ(η)
(
η2/3u

)
= k1δ(η) + k2δ

′(η) + k3δ(η)u .

Inverting the transform, we now find

y(u, v) =
k1

2π
+ k2

(
−i
2π

)
v +

k3

2π
u =

2

C

(
1− α3v + α2u

)
,

the y component of the one-dimensional solution in (3.5).

In this one-dimensional case the behavior of M and M−1 is important only near η = 0,

and M−1 has an integrable singularity at η = 0.

5. Perturbation of the One-Dimensional Problem. Sections 3 and 4 have ex-

pounded a technique. We now exploit the technique on some transonic problems. Con-

sider perturbing the hodograph data y0
L and y0

R. Let

yL(v) = y0
L(v) + εy1

L(v), yR(v) = y0
R(v) + εy1

R(v) . (5.1)

As the boundary-value problem for (3.4) and (5.1) is linear, we have

y(u, v) = y0(u, v) + εy1(u, v) ,

and

ŷ1(u, η) = c11(η)A1(η2/3u) + c12(η)A2(η2/3u) ,
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with

M

(
c11(η)

c12(η)

)
=

(
ŷ1
L(η)

ŷ1
R(η)

)
. (5.2)

Finally,

y1 = F−1
(
c11(η)A1(η2/3u) + c12(η)A2(η2/3u)

)
.

The contribution at η = 0 can be handled as before, assuming that ŷ1
L and ŷ1

R are

tempered distributions. However, finding M−1 presents other difficulties, as detM is

zero for a countable set of values of η. (See Section 6.1.) A standard calculation shows

that d(detM)/dη 6= 0 at any point η0 where detM = 0. Thus

M−1 =
1

η − η0
Mr ,

where Mr is a bounded matrix. That is, M−1, considered as a distribution, contains

terms that have the form of a Cauchy principal value. (See, for example, [5, pages 100–

101].) Finally, using equation (5.2), c1 = M−1ŷ1, in the notation of equation (4.8), is

well-defined as long as ŷ1 is a multiplier (see [5, pages 102-103]). We obtain y1 from

y1 = F−1(c11) ∗ F−1(A1) + F−1(c12) ∗ F−1(A2) , (5.3)

where ∗ represents convolution. The operations in (5.3) are well-defined since A1 and

A2, scaled solutions to Airy’s equation, are analytic functions (except at η = 0), and

their inverse transforms are smooth and compactly supported. As a result y1 is smooth.

We now turn to verifying the hypotheses under which (5.3) was constructed, and to

interpreting the solution.

If we regard (5.1) as coming from a perturbation of the data (4.2), then a linear

perturbation in ε is unnatural, as the functions in (4.2) are the inverses of the physical

data. If we write the physical data as

vj(y, ε) = v0
j (y) +O(ε), j = L,R

with
dvj
dy
6= 0 and

dvj
dy

(y, ε) =
dv0
j

dy
(y) +O(ε) ,

then when we invert we obtain

yj(v) = v−1
j = y0

j (v) +O(ε)

= y0
j (v) + εy1

j (v, ε)

with

sup
v

(
|y1
j (v, ε)|+ |∂vy1

j (v, ε)|
)
< 1, j = L,R (5.4)

say. The constant 1 is arbitrary but serves to prescribe a range of ε for which the function

yj(v) is invertible.

The problem in ΩH consists of (3.4) in ΩH with boundary conditions

y(A/α2, v) = yL(v)

y(B/α2, v) = yR(v) .
(5.5)



12 KEYFITZ, TESDALL, PAYNE, AND POPIVANOV

As the problem is linear, we find that y(u, v) = y0(u, v) + εy1(u, v, ε), based on the two

terms in the boundary conditions. The contribution y0 is as before. The y1 portion may

contain ε as a parameter. (We can ignore this additional dependence on ε.)

Using the partial Fourier transform in the v variable, we obtain (5.3). As stated

before, this method gives a solution if the perturbations y1
j are restricted to be inverse

transforms of Fourier multipliers.

6. Details of the Construction. In this section, we take up three questions in turn:

(1) The singularities of M .

(2) The substitution of boundary conditions in v for the original problem.

(3) The nature of the perturbation problems we have solved.

6.1. The Matrix M . We examine M and (4.7) for each η. As noted, M is singular at

η = 0, with M−1 = O(η−2/3). Although y1 is determined by (5.3) for a wide set of data,

it is desirable, since we want to invert the hodograph transform, for y1 to be differentiable.

To control the behavior of ŷ1 at η = 0 it is sufficient to impose the condition (5.4), since

this forces on ŷj a behavior leading to singularities in c1 and c2 no worse than in (4.12).

However, we expect in addition a countable set of singularities for M at points ηk 6= 0.

For, consider the eigenvalue problem for Airy’s equation:

x′′(t)− λ3tx(t) = 0, x(a) = 0 = x(b) , (6.1)

or

X ′′(τ)− τX(τ) = 0, X(λa) = 0 = X(λb) (6.2)

with τ = λt and x(t) = X(λt). Now, in our problem a < 0 < b, leading to a weight term

t of indefinite sign. The problem (6.1) has a countable set of eigenvalues λ1 < λ2 < . . .

and corresponding eigenfunctions xk(t) = Aik(λkt) where each Aik is a solution of Airy’s

equation with Aik(λka) = 0 = Aik(λkb). Existence of these eigenvalues is a classical

result, see Ince [7].

Proposition 6.1. The matrix M is singular at precisely the values ηk = λ
3/2
k , where λk

are the eigenvalues of (6.1) with a = A/α2, b = B/α2.

Proof. With the notation in the statement of the proposition, if λk is an eigenvalue of

(6.1), then at η = λ
3/2
k

M(η) =

(
A1(λka) A2(λka)

A1(λkb) A2(λkb)

)
,

where {A1(·), A2(·)} form a fundamental set of solutions to Airy’s equation. It does not

affect the singularity in M if we choose A1 so that A1(λka) = 0. In that case, A1(λkt)

satisfies (6.2) which means that A1(λkb) = 0 and M is singular.

Conversely, if M is singular for a given value of η 6= 0, then define λ = η2/3, and again,

without loss of generality, take A1(λa) = 0. As A1 and A2 are linearly independent, we

have A2(λa) 6= 0. Thus

detM ≡ A1(λa)A2(λb)−A1(λb)A2(λa) = 0

implies A1(λb) = 0, whence A1(λ·) satisfies (6.2). �
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As explained in Section 5, these singularities in M do not affect the existence or smooth-

ness of y1 (provided always that ŷ1 is a multiplier). It would be interesting to learn

whether they have any physical significance.

6.2. Boundary Conditions: v versus u. Our point of departure in Section 4 was to

solve by Fourier transforms a boundary value problem for y(u, v). That meant substi-

tuting boundary conditions in v for those in u in the original problem (2.1) and (2.3). It

is natural to ask whether the problems are equivalent.

If dyj(v)/dv 6= 0 for j = L and R, then there are unique functions vj(y) that are

perturbations of the one-dimensional boundary data for v, which, from (2.5), are

v0
L(y) =

1

α3

(√
1− C +D − C

2
y
)
, v0

R(y) =
1

α3

(√
1 + C +D − C

2
y
)

(6.3)

at αx+ y = −1 and αx+ y = 1 respectively. This gives an alternate formulation for the

one-dimensional problem and its perturbations. In support of the equivalence between

these boundary conditions we have

Proposition 6.2. For any values C and D in the admissible range, the problem con-

sisting of (2.1) in ΩP with data (6.3) on ∂ΩP has a unique solution in S ′ in the class of

hodograph-invertible mappings. The solution coincides with the one-dimensional solution

found in Section 2.

We note that it appears to be difficult to prove a uniqueness result without restricting

the class of solutions to those to which the hodograph transformation can be applied. An

equivalent formulation is to state that this is the only solution in a C1 neighborhood of

the one-dimensional solution. With this hypothesis, the proof is simple and is omitted.

6.3. The Nature of the Perturbation Problems. Finally, we examine restrictions on the

set of problems that can be solved by this method.

Upon inverting the perturbed solution (x(u, v), y(u, v)) we obtain a solution (u(x, y), v(x, y))

in a domain Ω ⊂ R2 bounded by the curves

(xL(v), yL(v)) = (x(A/α2, v), yL(v))

(xR(v), yR(v)) = (x(B/α2, v), yR(v)) .
(6.4)

Here x(u, v) is found by integrating (3.3) and is determined up to an additive constant. In

order to preserve invertibility, the perturbed boundary condition must be chosen so that

all components of dT are uniformly small perturbations of the one-dimensional problem.

From standard properties of convolution operators, we obtain bounds in the C1 norm

(as in equation (5.4)).

Proposition 6.3. There exists a constant C, independent of y1
L and y1

R, such that for

the function y1 satisfying (5.3), with y1 = (y1
L, y

1
R),

‖y1‖C1(ΩH) ≤ C‖y1‖C1(R) .

Proof. We cite Lp and Sobolev estimates on convolutions, (see for example Hormander

[6, Section 4.5]), noting that since y1 is smooth we can differentiate (5.3) as many times

as needed to obtain the desired estimate. �
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Nonetheless, the form of the perturbation is peculiar. The original domain ΩP is replaced

by a domain Ω that is a priori unknown, but in which the flow satisfies u ≡ A/α2,

v = vL(y) on the left, and u ≡ B/α2, v = vR(y) on the right. The solution itself

determines the boundaries of the domain given by (6.4).

This unorthodox perturbation was forced on us by the choice of technique. Unless we

keep u constant on the boundaries, the hodograph domain will not be suitable for the

partial Fourier transformation we applied. Even if we are willing to abandon the Fourier

transform, it is not possible to fix boundaries simultaneously in ΩP and ΩH (unless the

solution is already known).

In addition, as there is no apparent compactness mechanism, it also seems infeasible

to use the perturbations we have constructed in the hodograph plane to approximate a

desired perturbation in ΩP .

7. Conclusions. The study of multidimensional conservation laws, a subject of great

current interest, has prompted new investigations of steady systems, such as the TSDE.

The change-of-type phenomena exhibited in these simpler problems have already moti-

vated techniques useful for the study of self-similar two-dimensional systems. For ex-

ample, the work of Čanić, Keyfitz and Lieberman, [2], established the method that was

expanded in the works already cited, [1, 3, 4].

A situation that occurs in self-similar two-dimensional systems – the occurrence of a

sonic line across which the flow is continuous – has similarly motivated the excursion

in the present paper. This phenomenon has been displayed in our research in two con-

texts: as a continuous two-way free boundary in a problem involving rarefactions and

the unsteady TSDE [12], and in the more complicated supersonic patch in Guderley

Mach reflection [11, 13, 14]. (We have suggested the former as a simple model for the

latter.) At the moment, we have only numerical evidence for the behavior of the sonic

line in these problems. If we adopted the technique from the earlier work cited of solving

self-similar problems separately in the supersonic and subsonic regions, then the sonic

line would appear as a free boundary in both a degenerate hyperbolic system and in

a degenerate elliptic or mixed system. This is a somewhat intimidating prospect. The

review paper by Morawetz [10], describing the state of the art of about seven years ago,

points out the advances in linear problems, but notes that for the nonlinear system the

only analytical results are those for a uniformly positive viscosity. The current paper

takes a different, though rather specialized, approach.

One of the contributions of this paper is to display a simple but (to our knowledge)

new solution to TSDE, the solution (2.5) to the problem (2.1) and (2.3).

We found this solution by elementary means, but we also recovered it via a partial

Fourier transform in the hodograph plane. We also showed that Fourier transformation

can be used to solve a collection of problems in hodograph variables. It is noteworthy

that this is a method that does not take account of the type of the equation locally; one

works on transonic problems and recovers the sonic line as a part of the solution.

By transforming back to physical variables, we have defined a type of boundary value

problem in the physical domain that has a solution. That problem consists of giving

the same data, (2.3), but on a region with boundaries defined by (6.4), with yL and yR
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almost linear. In the boundary value problem we have solved, the domain boundaries

are now free boundaries.

The family of problems we have solved appears to offer some insight into the continuous

sonic line problems mentioned above, particularly the ‘diverging rarefactions’ problem

posed in [12]. We note in particular the apparent symmetry in the boundary conditions

that give rise to a well-posed problem. There is one boundary condition on each side –

yL and yR, or vL and vR – even though the equation is hyperbolic on one side and elliptic

on the other. This can be justified, of course, by the fact that of the two characteristic

families in the hyperbolic region one is outgoing and one incoming at the boundary.

Thus, in this example, the intuition that one should pose a single boundary condition on

each boundary is confirmed.
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