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Abstract. We study an asymptotic problem that describes the diffraction of a weak, self-similar
shock near a point where its shock strength approaches zero and the shock turns continuously into
an expansion wavefront. An example arises in the reflection of a weak shock off a semi-infinite
screen. The asymptotic problem consists of the unsteady transonic small disturbance equation with
suitable matching conditions. We obtain numerical solutions of this problem, which show that the
shock diffracts nonlinearly into the expansion region. We also solve numerically a related half-space
problem with a “soft” boundary, which shows a complex reflection pattern similar to one that occurs
in the Guderley Mach reflection of weak shocks.
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1. Introduction. Suppose that a weak plane shock wave of constant strength
hits a semi-infinite, rigid screen at normal incidence (see Figure 1). This problem is
self-similar, or pseudo-steady, and the solution depends only on (x/t, y/t) where (x, y)
are Cartesian spatial coordinates and t > 0 is time. (We ignore any complications
associated with the viscous separation of a vortex sheet from the edge of the screen.)

The incident shock diffracts around the screen and a cylindrical diffracted expan-
sion wavefront generated from the edge of the screen propagates behind it. Similarly,
the reflected shock diffracts past the screen, and the diffracted reflected shock meets
the diffracted expansion wave near the point S. Our interest is in understanding
the local structure of self-similar solutions of the compressible Euler equations near
a point such as S where the shock strength approaches zero and the wave changes
continuously from a shock into an expansion.

The method of matched asymptotic expansions shows that, in the weak shock
limit, the solution near S is described asymptotically by a self-similar solution of the
unsteady transonic small disturbance equation (UTSDE) in t > 0,

ut +

(
1

2
u2
)
x

+ vy = 0,

uy − vx = 0,

(1.1)

with the matching, or initial condition, that

u ∼ αy
t

√
−
(
x

t
+
y2

4t2

)
as

x

t
+
y2

4t2
→ −∞,

u = 0 for
x

t
+
y2

4t2
sufficiently large and positive.

(1.2)
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Fig. 1. A weak shock at normal incidence to a screen. Solid lines are shocks; dotted lines are
expansion wavefronts.

In (1.2), the small positive parameter α measures the strength of the wave, and it
cannot be removed by a rescaling. The matching data (1.2) corresponds to a self-
similar radial sound wave that changes continuously from a compression in y > 0 to
an expansion in y < 0.

The spatial variables (x, y) in (1.1)–(1.2) are suitably defined “inner” spatial vari-
ables about S, rather the original spatial variables. The x-variable increases across
the wavefront, and the y-variable increases along the wavefront. The dependent vari-
ables (u, v) are proportional to the (x, y) velocity perturbations, and the pressure
perturbation is proportional to u. We summarize the derivation of the UTSDE and
the definitions of the variables in the Appendix.

In Section 8.1, we show numerical solutions of (1.1)–(1.2) for several different
small values of α. A shock wave forms by compression in y > 0 and diffracts into
the lower half space y < 0, where it dies out at some point and is continued by an
expansion wavefront. The shock appears to diffract by an angle that is of the order α
as α→ 0+; specifically, we find numerically that it dies out at a point with y/t ∼ −cα,
where c ≈ 5.75. This point appears from our numerical solutions to be on the sonic
line where the self-similar form of (1.1) changes type, and not inside the supersonic
region. The disappearance of a diffracting shock at a sonic point differs from the
formation of shocks in two-dimensional Riemann problems and transonic flows that
is caused by the focusing of characteristics reflected off a sonic line. Such shocks
typically form at supersonic points [14]. See [10] for an analysis of related problems.

The weakly nonlinear asymptotics for the solution near a point such as S is
subtle. A straightforward dominant balance argument based on transonic scaling and
matching with the global linearized solution is not sufficient to determine the size of
the region near S where nonlinearity becomes important. Related to this difficulty
is the fact that, as we show in Section 5, the UTSDE and the matching condition
(1.1)–(1.2) are self-similar in the similarity variables (x/t, y/t). Thus, remarkably,
this problem possesses a second self-similarity with respect to the original self-similar
variables. The second self-similarity appears to be broken, however, by the difference
between the conditions required at a shock and an expansion wavefront, so that the
full solution is not self-similar. We do not carry out a complete analysis of these issues
here, but we obtain numerical solutions of (1.1)–(1.2).

The phenomenon of a shock that propagates into a constant state and diffracts
self-similarly into an expansion wave is not specific to the screen problem and is likely
to occur in other two-dimensional Riemann problems for the compressible Euler equa-
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tions and hyperbolic systems of conservation laws. The UTSDE equation provides a
universal asymptotic equation for such problems, and therefore the self-similar diffrac-
tion of a shock into an expansion wave that disappears at a sonic point is likely to be
a generic feature.

A further motivation for this work is to understand the structure of nearly glanc-
ing Mach reflections. Lighthill [11] showed that, according to linearized theory, the
strength of the reflected shock approaches zero at the triple point in such reflections.
Therefore, in order to understand the nonlinear structure of the solution near the
triple point, one has to understand how the weak reflected shock diffracts nonlinearly
into the Mach shock as its strength approaches zero. A strong Mach shock may be
described, in a first approximation, as a “soft” boundary y = 0 on which the pressure
is constant. This suggests that we study a half-space initial-boundary value problem
for (1.1)–(1.2) in y > 0 with u = 0 on y = 0. We show numerical solutions of this
IBVP in Section 8.2. The solution has a complex structure, with an apparently infi-
nite sequence of shock-rarefaction reflections, which is similar to what we observe in
the Guderley Mach reflection of weak shocks [15].

An outline of the rest of this paper is as follows. In Section 2, we summarize the
linearized solution of the wave equation for a self-similar cylindrical wave, including
the linearized solution for the screen problem illustrated in Figure 1. In Section 3,
we explain how the matching condition (1.2) for the weakly nonlinear solution near
S arises from the linearized solution; we also explain why a straightforward dominant
balance argument fails to determine the size of the region around S where nonlinearity
becomes important. In Section 4, we write out convenient self-similar forms of the
UTSDE (1.1). In Section 5, we show that the resulting self-similar equations are
themselves self-similar and reduce to an ODE. We also formulate BVPs for the ODE
solution behind a shock and an expansion wavefront. It does not, however, appear
possible to join solutions of these BVPs smoothly together across y = 0, which breaks
the second self-similarity of the problem. In Section 6, we approximate these ODE
solutions for small α to obtain ‘nonlinearized’ matching data that is an improvement
over the linearized matching data. This improved data allows us to compute numerical
solutions in an effective way; we describe our numerical method in Section 7. We
present the numerical solutions in Section 8 and conclude with a discussion of the
results in Section 9.

2. Linearized solution. Consider a sound wave propagating in two space di-
mensions whose strength is of the order 0 < δ � 1. According to the linearized theory
of acoustics, the pressure perturbation p(x, y, t) of the sound wave satisfies the wave
equation

ptt = c20∆p

where c0 is the sound speed of the unperturbed fluid.
Suppose that a sound wave originates from a source located at (x, y) = (0, 0) at

t = 0 and is self-similar, meaning that p(x, y, t) is a function of (x/t, y/t) only. Let
(r, φ) denote polar coordinates

(2.1) r =
(
x2 + y2

)1/2
, tanφ =

y

x
.

The linearized location of the wavefront of the sound wave is then r = c0t. If p = p0 for
r > c0t, then the asymptotic behavior of a self-similar solution of the wave equation
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near the wavefront has the square-root form

(2.2) p ∼ p0 + δk(φ)

√
1− r

c0t
as r → c0t

− with φ fixed.

The function k(φ) describes the angular dependence of the strength of the wave. The
diffracted wave generated by the reflection of a step-function pulse by a wedge has
the general properties described above, as do linearized solutions of two-dimensional
Riemann problems.

Self-similar solutions of the wave equation for the reflection of a pulse by a wedge
or screen were obtained by Keller and Blank [8]. For a pulse at normal incidence to
a screen, illustrated in Figure 1, the linearized solution for the pressure perturbation
p relative to the pressure behind the incident shock is given explicitly by

p = δσ(φ)− δ

π
arctan

[
1− `

1 + `+ 2
√

2` sin(φ/2)

]
+
δ

π
arctan

[
1− `

1 + `− 2
√

2` sin(φ/2)

]
.

(2.3)

Here, δ = [p] is the pressure jump across the incident shock (which is equal to the
pressure jump across the reflected shock in the linearized approximation), and we
choose −π < φ < π, 0 ≤ arctan z ≤ π. The similarity variable ` in (2.3) is given by

` =
r

c0t+
√
c20t

2 − r2
,

and the function σ accounts for the different pressures ahead of the incident shock,
behind the incident shock, and behind the reflected shock:

σ(φ) =

 −1 if −π < φ < −π/2,
0 if −π/2 < φ < π/2,
1 if π/2 < φ < π.

The asymptotic behavior of (2.3) as r → c0t
− is given by (2.2) with p0 = δσ and

(2.4) k(φ) =
2

π

[
sin(φ/2)

cosφ

]
.

3. Weakly nonlinear solution and matching conditions. The linearized
solution described in the previous section is not uniformly valid at the wavefront
r = c0t

− since its derivative becomes infinite there. Methods for the systematic
construction of matched asymptotic solutions that account for the effect of weak
nonlinearities near the wavefront, and which regularize the linearized square-root
singularity, were developed in [3, 4, 5, 6, 9, 12]. We briefly outline the results.

Along a ray with an angle φ such that k(φ) 6= 0 in (2.2), the diffraction of the wave
in the angular direction is negligible to leading order. The nonlinear behavior of the
wave near the wavefront is described by a self-similar solution of the cylindrical inviscid
Burgers equation in the radial direction [6]. If k(φ) > 0, the wave is compressive and
the wavefront consists of a very weak shock wave across which p jumps by an amount
of the order δ2; if k(φ) < 0, the wave is expansive and the wavefront is an expansion
wave across which p is Lipschitz continuous and its derivative jumps by an amount
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of the order δ2. Thus, the diffracted wavefront changes from a shock to an expansion
near an angle where k changes sign. In particular, this happens when k has a simple
pole or a simple zero.

If k(φ) has a simple pole, at φ = 0 say, then

k(φ) ∼ C

φ
as φ→ 0

for some constant C. For example, this happens at a singular point such as A in
Figure 1. A weakly nonlinear asymptotic solution near such a point was constructed
in [3, 4, 9]. In this case, the transverse diffraction of the wave in the angular direction
becomes as important as the nonlinear compression or expansion of the wave in the
radial direction. A straightforward dominant balance argument shows that, for a
linearized wave whose amplitude is of the order δ, the size of the inner region around
the singular point where diffraction balances nonlinearity is of the order δ normal to
the wavefront and the order δ1/2 along the wavefront [4]. The inner solution near
the singular point is described by a self-similar solution of the UTSDE (1.1) with
a suitable far-field condition that is obtained from the requirement that the outer
expansion of the inner UTSDE solution matches with the inner expansion of the
outer linearized solution. Thus, the linearized solution transmits information about
the global flow pattern to the local flow near the singular point on the wavefront.
Numerical solutions of the resulting IBVP, which show how a plane incident shock
joins with a curved diffracted shock and an expansion wave, are given in [7, 13].

If k(φ) changes sign through a simple zero, at φ = 0 say, then

k(φ) ∼ k′(0)φ as φ→ 0.

For example, this happens at the point S in Figure 1. In this case, the wavefront
changes continuously from a shock to an expansion wave. The local solution is then
described asymptotically by the UTSDE (1.1) with the matching condition (1.2).

To derive the matching condition, we observe from (2.2) that near such a point
the linearized solution for the pressure perturbation has the expansion

p− p0 ∼ δk′(0)φ

√
1− r

c0t
as r → c0t

− and φ→ 0.

We rewrite this equation in terms of the inner UTSDE variables defined in the Ap-
pendix. Using (10.4)–(10.5), we find that

ũ ∼ αỹ
t

√
−
(
x̃

t
+
ỹ2

4t2

)
where

α =

[
(γ + 1)k′(0)

2
√

2

](
δ

ρ0c20

)
.

Here, γ is the ratio of specific heats of the compressible fluid. The condition (1.2)
then results from matching the outer limit of the inner UTSDE solution with the
inner limit of the outer linearized solution, after we drop the tildes. For the screen
data (2.4) we have k′(0) = 1/π, which determines the parameter α in terms of the
pressure jump δ across the incident shock.
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The matching data (1.2) is invariant under the transonic scaling

u 7→ u

ε
, v 7→ v

ε3/2
, x 7→ x

ε
, y 7→ y

ε1/2
, t 7→ t

which leaves (1.1) invariant. As a result, the small parameter α cannot be removed
from the problem by rescaling. The invariance of the matching data under transonic
scaling explains why we cannot use a straightforward dominant argument to determine
the size of the inner region where nonlinearity and diffraction both become important;
in fact, a naive argument would suggest — incorrectly — that linear diffraction dom-
inates nonlinearity in arbitrarily small regions about S. We avoid these difficulties
here by retaining the leading order behavior of the linearized solution in the matching
data, even though it is formally of higher order in the small expansion parameter α
than the weakly nonlinear asymptotic solution.

4. Self-similar UTSDE. The problem (1.1)–(1.2) is self-similar, and its solu-
tion depends only on the similarity variables

(4.1) ξ =
x

t
, η =

y

t
.

Writing (1.1) in terms of ξ, η, we get

−ξuξ − ηuη +

(
1

2
u2
)
ξ

+ vη = 0,

uη − vξ = 0.

(4.2)

Equation (4.2) is hyperbolic when u < ξ + η2/4, corresponding to supersonic flow
in a self-similar coordinate frame, and elliptic when u > ξ + η2/4, corresponding to
subsonic flow. The equation changes type across the sonic line given by

ξ +
η2

4
= u(ξ, η).(4.3)

In the UTSDE approximation, the inner limits of the self-similar polar coordinates
(c0t− r)/r, φ with respect to the original spatial variables are given by

(4.4) ρ = −
(
ξ +

1

4
η2
)
, θ = η,

respectively. It is convenient to define corresponding ‘radial’ and ‘angular’ velocity
components by

(4.5) u = u, w = −v +
1

2
ηu.

Making the change of variables (4.4)–(4.5) in (4.2), we get

ρuρ + wθ +

(
1

2
u2
)
ρ

− 1

2
u = 0,

uθ − wρ = 0.

(4.6)

This transformation preserves weak solutions since it is linear in u and v.
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The matching condition (1.2) for the shock-diffraction problem gives

(4.7) u ∼ αθ√ρ, w ∼ 2

3
αρ3/2 as ρ→∞.

The asymptotic behavior of w follows from the asymptotic behavior of u and the
equation wρ = uθ. In addition, since there is no disturbance ahead of the wave,

(4.8) u = 0, w = 0 for ρ sufficiently large and negative.

The data in (4.7) satisfies the linearization of (4.6),

ρuρ + wθ −
1

2
u = 0, uθ − wρ = 0.

It is the linearized UTSDE solution for a diffracted wavefront with a square-root
profile that changes continuously from an expansion in θ < 0 to a compression in
θ > 0.

The jump conditions for (4.6) for a shock located at ρ = R(θ) may be written as

R+R2
θ + 〈u〉 = 0,(4.9)

Rθ[u] + [w] = 0,(4.10)

where 〈u〉 denotes the average of u on either side of the shock and [u], [w] denote the
jump in u, w across the shock.

In summary, the inner problem for the diffraction of a weak shock into an expan-
sion wavefront consists of the self-similar USTDE (4.6) together with the matching
conditions (4.7)–(4.8) and the jump conditions (4.9)–(4.10) across any shocks.

5. Similarity solutions. The PDE (4.6) and matching data (4.7) are compati-
ble with similarity solutions in (ρ, θ) of the form

(5.1) u(ρ, θ) = α2θ2F
( ρ

α2θ2

)
, w(ρ, θ) = α4θ3G

( ρ

α2θ2

)
.

Let us attempt to construct a similarity solution of the form (5.1) for the full problem
(4.6)–(4.8). Such a solution would necessarily consist of a shock wave in θ > 0 and
an expansion wavefront in θ < 0. Writing

z =
ρ

α2θ2
,

and using (5.1) in (4.6), we find that F (z), G(z) satisfy the ODEs

zF ′ +

(
1

2
F 2

)′
− 1

2
F = α2 (2zG′ − 3G) ,(5.2)

G′ = 2 (F − zF ′) ,(5.3)

where the prime denotes a derivative with respect to z.
From (4.7), the matching condition for (5.2)–(5.3) is

(5.4) F (z) ∼
√
z, G(z) ∼ 2

3
z3/2 as z →∞.

In (5.4) we take the positive square root if θ > 0, corresponding to a compression
wave, and the negative square root if θ < 0, corresponding to an expansion wave. We
also need to impose appropriate conditions at the wavefront.
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At an expansion wavefront located at z = 0, we require that the solution matches
continuously across the wavefront with the unperturbed solution, so that

(5.5) F (0) = 0, G(0) = 0.

At a shock wavefront located z = z0, with u = w = 0 ahead of the shock, the jump
conditions (4.9)–(4.10) imply that

(5.6) F (z0) = −2z0
(
1 + 4α2z0

)
, G(z0) = 4z20

(
1 + 4α2z0

)
.

The entropy condition F (z0) > 0 holds provided that −1/4 < α2z0 < 0.
This analysis leads to the following pair of BVPs. For the expansion wave in

θ < 0, we get

zF ′ +

(
1

2
F 2

)′
− 1

2
F = α2 (2zG′ − 3G) ,

G′ = 2 (F − zF ′) ,

F (z) ∼
√
z, G(z) ∼ 2

3
z3/2 as z →∞,

F (0) = 0, G(0) = 0,

(5.7)

for 0 ≤ z <∞, where we take the negative branch of the square root. For the shock
wave in θ > 0, we get

zF ′ +

(
1

2
F 2

)′
− 1

2
F = α2 (2zG′ − 3G) ,

G′ = 2 (F − zF ′) ,

F (z) ∼
√
z, G(z) ∼ 2

3
z3/2 as z →∞,

F (z0) = −2z0
(
1 + 4α2z0

)
, G(z0) = 4z20

(
1 + 4α2z0

)
,

(5.8)

for z0 ≤ z <∞, where we take the positive branch of the square root.
As shown by the numerical solutions, the full solution is not in fact self-similar.

This appears to be because the self-similar shock and expansion solutions do not
join together smoothly in the limit z → ∞, corresponding to θ → 0±, but we do
not investigate the solvability of (5.7)–(5.8) or the compatibility of their solutions
any further here. Instead, we use this solution to obtain a nonlinear version of the
linearized matching data that agrees with the linearized solution to leading order in α
and corrects for the behavior of the solution at the wavefront. We use this improved
matching data in our numerical computations.

6. Wavefront expansion. The linearized data (1.2) has a square-root singu-
larity at the wavefront, which is qualitatively incorrect since the nonlinear solution
has a discontinuity across a shock and is Lipschitz continuous across an expansion
wavefront.

We obtain a ‘nonlinearized’ solution with the correct qualitative behavior at the
wavefront by neglecting the small term on the right-hand side of (5.2), which corre-
sponds to neglecting the term wθ in the first equation of (4.6). This gives equations
that describe the behavior of solutions normal to the wavefront but neglect diffraction
effects transverse to the wavefront. Such solutions provide a leading-order approxi-
mation to the solution near a wavefront where the coefficient k(φ) of the linearized
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square-root singularity (2.2) does not vanish. It is therefore reasonable to expect that
they provide an approximation to the wavefront behavior in the present problem as
θ →∞ and also more accurate far-field matching data than the linearized data.

Approximating (5.2)–(5.3) to leading order in α2, we get

zF ′ +

(
1

2
F 2

)′
− 1

2
F = 0, G′ = 2 (F − zF ′) .

The solution of this system subject to the asymptotic condition (5.4) is

(6.1) F (z) = 1 +
√

1 + z, G(z) =
2

3

[
1 +
√

1 + z
]3

where we choose the positive square root for the compression solution in θ > 0 and
the negative square root for the expansion solution in θ < 0.

In the case of the negative square root, the functions F , G are given by (6.1) for
0 ≤ z < ∞. They vanish at z = 0, and we extend them continuously by zero for
−∞ < z < 0.

In the case of the positive square root, we cannot extend F , G continuously by
zero, and we get a discontinuity at some z = z0. The leading order approximation in
α of the jump condition (5.6) is

F (z0) = −2z0, G(z0) = 4z20 .

The approximate shock solution (6.1) satisfies both these conditions if

z0 = −3

4
.

Thus, the approximate shock-solution is given by (6.1) in −3/4 < z < ∞, and by
F = 0, G = 0 in −∞ < z < −3/4.

Using (6.1) in (5.1), we find that the corresponding solution for u, w is

u(ρ, θ) = α2θ2 + αθ
√
ρ+ α2θ2,

w(ρ, θ) =
2

3
α
(
αθ +

√
ρ+ α2θ2

)3(6.2)

where we take the positive square root in both θ < 0 and θ > 0. If θ < 0, then the
functions u, w in (6.2) are defined for 0 ≤ ρ < ∞ and zero when ρ = 0, so we may
extend them continuously by zero for −∞ < ρ < 0. If θ > 0, then we extend the
solutions for u, w by zero on −∞ < ρ < ρ0, where

(6.3) ρ0 = −3α2θ2

4

is the approximate shock location. This solution satisfies the jump condition (4.10)
exactly, but it satisfies (4.9) only to leading order in α, so the discontinuity in (u,w)
is not an exact shock solution.

The asymptotic behavior as ρ→∞ of the solution (6.2) agrees with the linearized
asymptotic behavior (4.7) to leading order in α and ρ. For example,

u(ρ, θ) ∼ αθ√ρ+ α2θ2 +O

(
α3θ3
√
ρ

)
as ρ→∞.
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The higher-order terms in α represent nonlinear corrections to the far-field linearized
solution.

For the numerical computations, it is convenient to introduce a potential Φ such
that

(6.4) u = Φρ, w = Φθ.

The potential corresponding to the wavefront data (6.2) is

(6.5) Φ(ρ, θ) = α2ρθ2 +
2

3
α4θ4 +

2

3
αθ
(
ρ+ α2θ2

)3/2
where we again take the positive branch of the square root. If θ < 0, then Φ is
defined for 0 ≤ ρ < ∞ and zero with zero derivatives when ρ = 0, and we extend
it continuously by zero for −∞ < ρ < 0. If θ > 0, then the solution (6.5) for the
potential is defined in ρ0 ≤ ρ <∞ and zero at ρ0, where ρ0 is the approximate shock
location (6.3), and we extend it continuously by zero for −∞ < ρ < ρ0, although its
derivatives jump across ρ = ρ0.

7. Numerical method. The numerical method we use was developed in [15] to
solve self-similar problems for the UTSDE. We briefly review the method here (see
[15] for a detailed description) and then discuss the boundary conditions used for the
present problem.

7.1. Numerical scheme for the UTSDE. We write the UTSDE (1.1) in terms
of the self-similar variables used in [15],

r =
x

t
+
y2

4t2
, θ =

y

t
, τ = log t,

ū = u− r, v̄ = v − 1

2
θu,

(7.1)

which gives

ūτ +

(
1

2
ū2
)
r

+ v̄θ +
3

2
ū+

1

2
r = 0,

ūθ − v̄r = 0.

(7.2)

These variables are related to the ones introduced in Section 4 by

r = −ρ, θ = θ, ū = u+ ρ, v̄ = −w.

To solve (7.2) numerically, we follow the classical Cole-Murman approach. We
introduce a potential ϕ(r, θ, τ) such that

(7.3) ū = ϕr, v̄ = ϕθ,

and write the system (7.2) in the scalar form as

ϕrτ +

(
1

2
ϕ2
r

)
r

+ ϕθθ +
3

2
ϕr +

1

2
r = 0.(7.4)

Equation (7.4) can be solved using standard transonic finite difference techniques.
Although this equation is unsteady because of the first term on the left, its solutions
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(for self-similar problems) are stationary. We use a high order method, and iterate
in time τ until a solution of (7.4) converges to a steady state, using line relaxation.
The “pseudo-velocities” ū and v̄ are recovered from the potential in the standard way,
and the physical velocity perturbations u and v are then obtained through (7.1). See
[14, 15] for full details. For “pseudo-steady” solutions, the potential ϕ(r, θ) is related
to the potential Φ(ρ, θ) in (6.4) by

ϕ = −Φ− 1

2
r2.

7.2. Boundary conditions. We carried out numerical solutions of (7.4) subject
to the wavefront-corrected matching data (6.2), which gives

ū(r, θ) ∼ −r + α2θ2 + αθ
√
−r + α2θ2,

v̄(r, θ) ∼ −2

3
α
(
αθ +

√
−r + α2θ2

)3
as r → −∞, with

ū = −r, v̄ = 0 for r sufficiently large and positive.

Here, we take the positive branch of the square root throughout. The potential ϕ(r, θ)
corresponding to the potential Φ(ρ, θ) in (6.5) is given by

ϕ(r, θ) = α2rθ2 − 2

3
α4θ4 − 2

3
αθ(−r + α2θ2)3/2 − 1

2
r2.

In θ < 0, we use this potential for −∞ < r ≤ 0 and extend it continuously by −r2/2
(corresponding to u = v = 0) for 0 < r <∞. In θ > 0, we use this potential for −∞ <
r ≤ 3α2θ2/4 and extend it continuously by −r2/2 for 3α2θ2/4 < r < ∞. This gives
an approximate solution of the UTSDE that corrects the behavior of the linearized
solution near the expansion wavefront or shock, and has the same asymptotic behavior
as r → −∞ as the linearized solution to leading order in α.

On the outer numerical boundaries we impose Dirichlet data corresponding to
this wavefront potential and its extension as described above. Specifically, we impose
as a numerical boundary condition
(7.5)

ϕ(r, θ) =


α2rθ2 − 2

3α
4θ4 − 2

3αθ(−r + α2θ2)3/2 − 1
2r

2, θ < 0, r ≤ 0,
−r2/2, θ < 0, r > 0,
α2rθ2 − 2

3α
4θ4 − 2

3αθ(−r + α2θ2)3/2 − 1
2r

2, θ > 0, r ≤ 3α2θ2/4,
−r2/2, θ > 0, r > 3α2θ2/4.

8. Numerical results. In this section we show numerical solutions of the diffrac-
tion problem (1.1)–(1.2) and a related half-space problem. As explained in the previ-
ous section, we obtained these solutions by solving the transformed equations (7.4)–
(7.5), then plotting u as a function of the similarity variables (x/t, y/t).

8.1. The diffraction problem. We computed numerical solutions of (1.1)–
(1.2) for α equal to 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.45. In the following figures, we
show solutions for the values 0.1, 0.2, and 0.3. The solutions for the other values of
α are similar to the ones presented here.

Figure 2 shows u-contour plots of the global solution, and illustrates the compu-
tational domain used. The left and right boundaries of the computational domain
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are curved because of the use of the parabolic coordinate r in (7.1). The dashed line
in these plots is the numerically computed location of the sonic line (4.3), and the
u-contour levels are indicated on the plots. The solution is subsonic to the left of the
sonic line and supersonic to the right.

The numerical solutions depicted in Figure 2 are all qualitatively similar. There
is a shock wavefront located on the sonic line for y/t = θ larger than some particular
negative value (depending on α) of θ, which we will denote by θ∗(α), and an expan-
sion wavefront for smaller values of θ. The shock appears to die out and become
an expansion at the sonic line. (We refer to the locus of transition points between
supersonic and subsonic flow as the sonic line, whether the flow is continuous there
or not.) Values of u jump from 0 to positive values as the shock is crossed from right
to left in the direction of flow, and values of u decrease smoothly from 0 to negative
values as the expansion wavefront is crossed from right to left. The shock wavefront
becomes stronger as α increases, and the expansion wave also increases in strength
with increasing α. For a fixed value of α, the shock increases in strength as θ increases.
The plots in Figure 2 show that the shock wavefront moves further to the right in
x/t as α increases. This is due to the boundary condition (7.5), which shows that the
shock location (at a given value of θ) is proportional to α2.

In the numerical solutions depicted in Figure 2, the transition between the shock
and expansion wavefront takes place continuously at a value of y/t equal to θ∗(α).
In order to show this continuous transition more clearly, in Figure 3 we show surface
plots of u as a function of (x/t, y/t). The point at which the shock dies out, reaches
zero strength, and becomes an expansion wavefront is clearly visible in these plots.
From the plots, the value of y/t = θ∗(α) < 0 where this occurs, becomes more negative
as α increases, meaning that the shock diffracts further into the expansion region as
the wave gets stronger. For example, from the numerical solutions, θ∗(0.1) ≈ −0.7
while θ∗(0.3) ≈ −2.1.

In the plots in Figure 2 and Figure 3, the shock appears to die out on the sonic
line. To determine if the shock reaches zero strength exactly at the sonic line (and not
at a point inside the supersonic region), we computed a highly refined solution of (7.4)-
(7.5) for α equal to 0.3, using a nonuniform grid with a locally refined area of uniform
grid surrounding the apparent shock die-out point. Figure 4 shows u-contours and the
sonic (dashed) line near the point at which the shock reaches zero strength. In this
solution we used approximately 17× 106 points, of which 9× 106 points were devoted
to the local refinement. The u-contour with value u = 0 is indicated on the plot; above
this contour, the shock has non-zero strength. As shown, the shock appears to reach
zero strength exactly on the sonic line. The small numerical oscillations immediately
behind the shock near the point where it dies out seem to be caused by the use of a
stretched grid.

In order to determine the functional relationship between the y/t location where
the shock dies out and α, in Figure 5 we plot θ∗(α) as a function of α using the
numerically determined values of θ∗ from all of the numerical solutions we obtained.
In this figure, the numerical data pairs (α, θ∗) are plotted as symbols. We fit the
numerical data to the following curve:

(8.1) −θ∗(α) = 5α2 + 5.75α.

This curve is plotted as a solid line in the figure, and appears to model the data fairly
well. From the data and the curve (8.1), we see that θ∗ → 0 as α→ 0.

As a check on the numerical computations, we plotted the shock strength [u] as
a function of the distance θ − θ∗ from the point where the shock dies out. The plot
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(c) α = 0.3

Fig. 2. Contour plots of u over the full numerical domain, for increasing values of α. The
u-contour spacing, as indicated by the displayed values of u, is 0.2. The dashed red line is the sonic
line; flow to the right of the sonic line is supersonic, and flow to the left of it is subsonic. The
solutions in (a), (b) and (c) were computed on uniform grids which contain 1000×1000 grid points.

from the numerical solution with α = 0.4 is shown in Figure 6. The shock strength
data were obtained from the numerical solution at the locations indicated by the data
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Fig. 3. Plots of the function z = u(x/t, y/t) for the three solutions displayed in Figure 2(a–c).
The nearly discontinuous jump in u in each of the plots in (a)–(c) is the numerical shock. The
values of u smoothly decrease across the expansion wavefront.

points in the plot by taking cross-sections of u normal to the shock. We then fit the
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Fig. 4. A plot of u-contours near the point where the shock becomes an expansion. The dashed
(red) line is the sonic line. The u-contour spacing is 0.015. The curve visible in the lower right is
part of the outer numerical boundary. The region shown contains the refined uniform grid, which
has 3000 × 3000 grid points (∆(x/t) = ∆(y/t) = 1 × 10−5).

Fig. 5. The y/t location θ∗ of the point where the shock becomes an expansion, as a function of
α. The data from the numerical solutions are plotted as symbols. The solid curve is equation (8.1).

data to the curve

(8.2) [u] = 0.08(θ − θ∗)2,

which is plotted as a solid line in the figure, and which appears to fit the data well.
In Section 9, we compare this to a theoretical result and discuss the implications for
our numerical solutions.

8.2. The half-space problem. In addition to the solutions just presented, we
computed a solution of a problem for (7.4)–(7.5) on the half space y/t > 0, with the



16 JOHN K. HUNTER AND ALLEN M. TESDALL

Fig. 6. The behavior of shock strength with distance from the point where the shock dies out,
θ− θ∗ (from the numerical solution with α = 0.4). The data from the numerical solution are plotted
as symbols, and the solid curve is equation (8.2).

boundary condition

(8.3) u = 0 on y/t = 0.

For this problem, we imposed only the part of the matching data in (7.5) for y/t > 0.
The condition (8.3) corresponds physically to a “soft” boundary on which the pressure
is constant. We chose this problem because of its relationship to the problem of weak
shock reflection off a wedge [15]; a “soft” boundary provides a model for the reflection
of a weak diffracted shock off a strong Mach shock at a triple point.

Figure 7(a)–(b) shows u-contour plots of the solution of this zero-pressure bound-
ary problem, obtained with α = 0.3. The red line in these plots is the sonic line. The
plot in (a) shows the full global solution, and illustrates the computational domain
used — just the upper half of the computational domain used in the solutions shown
above. On the top, left and right computational boundaries, we imposed the wave-
front data (7.5). On the lower boundary y/t = 0 we imposed (8.3), which implies
that ϕ = −r2/2 on y/t = 0. The plot in (a) shows a shock wavefront reflecting off the
“soft” boundary y/t = 0. We used local grid refinement in a neighborhood surround-
ing this reflection point, and an enlargement of the solution near the reflection point
is shown in (b). In a tiny area behind the reflection point, there is a supersonic patch
that is formed by a sequence of weak shocks and expansions that reflect between the
sonic line and the lower boundary. This structure closely resembles a Guderley Mach
reflection (GMR), which we have found in problems for weak shock reflection (see
[15, 16, 17]). In Section 9, we compare the solution shown in Figure 7(b) to GMR
and elaborate on this resemblance.

We note that, in computing the solutions shown in Figure 4 and Figure 7, we
used grid continuation, in which partially converged coarse grid solutions are inter-
polated onto more refined grids and converged on the refined grids. In both of these
computations, we performed successive grid refinements until further refinement of
the grid resulted in no observable change in the solution. Thus, in the solution shown
in Figure 4, the computation was stopped when no further change in the position of
the shock die-out point was observed, an indication of grid convergence. Similarly,
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Fig. 7. Contour plots of u for the numerical solution of the zero-pressure boundary problem
(7.4)-(7.5),(8.3). The plot in (a) shows the solution over the full numerical domain. The shock
reflects off the boundary y/t = 0. The plot in (b) shows a closeup near the reflection point. The red
line in these plots is the sonic line. The u-contour spacing is 0.1 in (a), and 0.003 in (b). In these
plots, the flow is supersonic to the right of the sonic line and subsonic to the left. The full grid in
(a) contains 2670 × 2100 grid points. The region shown in (b) contains the refined uniform grid,
which has 1500 × 1500 grid points (∆(x/t) = ∆(y/t) = 1 × 10−4).

the solution shown in Figure 7 was determined to be grid converged when one further
refinement of the grid produced almost no observable change in the details of the
GMR structure.

9. Interpretation of the numerical results. A significant feature of the nu-
merical solutions of the shock diffraction problem (7.4)–(7.5) is that the shock appears
to die out exactly at the sonic line. This sonic shock disappearance point is shown
clearly in Figure 4. Our use of a grid continuation procedure, with grid refinement
continuing until evidence of grid convergence is obtained, suggests that the picture of



18 JOHN K. HUNTER AND ALLEN M. TESDALL

the disappearance of a shock at the sonic line is not likely to change under further
grid refinement. The disappearance of a diffracting shock at a sonic point contrasts
with the formation of a shock at a supersonic point due to coalescence of compression
waves that are reflected from a sonic line, as originally proposed by Guderley [2] and
recently confirmed in the computations in [14].

We next use the wavefront solution (6.2), which we impose as a numerical bound-
ary condition in our computations, to explain our result in Figure 6. According to
(6.2), on ρ = 0 we have

u =

{
2α2θ2, θ > 0,
0, θ < 0.

Ahead of the shock, whose approximate location is given by (6.3), u = 0. Therefore,
the shock strength [u] in the wavefront solution is proportional to θ2, and the shock
strength [u] → 0 as θ → 0. This is consistent with the numerical result depicted
in Figure 6, with θ2 replaced by (θ − θ∗)2. (In the numerical solutions, the shock
diffracts into the expansion wavefront and reaches zero strength at θ = θ∗ instead of
at θ = 0, and so the shock strength [u] is proportional to (θ−θ∗)2 instead of θ2.) This
agreement between the numerical solution and the approximate wavefront solution
provides a check on the accuracy of the numerical method.

There is a close relationship between the solution of the zero-pressure boundary
condition problem (7.4)–(7.5),(8.3), shown in Figure 7, and Guderley Mach reflection
solutions of weak shock reflection problems that we have previously obtained. To
illustrate this close relationship, Figure 8 shows a solution of the weak shock reflection
problem for the UTSDE obtained in [15]. The plots in Figure 7(b) and Figure 8 both
show u-contours and the numerically computed location of the sonic line in a tiny
region behind the reflection point. Both solutions contain a sequence of weak shocks
and expansion waves that are reflected between a sonic line and a lower boundary, with
the shocks reflecting off the lower boundary as expansion waves, and the expansion
waves reflecting off the sonic line as compression waves which form shocks. In the
zero-pressure boundary problem, the lower boundary (at y/t = 0) is “soft,”, while in
the GMR solution in Figure 8 the lower boundary is the Mach stem. Hence, in the
GMR solution the points at which the shock reflects off the lower boundary are shock
triple points. Guderley [2] argued that the sonic line must pass exactly through a
triple point in the case of steady shock reflection, but it is not clear that this must be
exactly true in the self-similar case. Nevertheless, in our previous numerical solutions
of self-similar GMR (see [15, 16, 17]), the sonic line does appear to pass through the
first several triple points in the sequence, as shown in Figure 8. In addition, in these
solutions the sonic line approached the triple points more and more closely as the
grid resolution was increased. This contrasts with the situation shown in Figure 7(b).
There, although the sonic line passes directly through the first reflection point, it does
not even approximately pass through the rest, and this does not appear to be a result
of inadequate numerical resolution. We do not know whether or not this indicates
that the solution of the zero-pressure boundary problem is in some way fundamentally
different from GMR, or if the secondary triple points in a GMR need not be exactly
sonic.

10. Appendix: the UTSDE. In this appendix, we briefly summarize the
derivation of the UTSDE equation for compressible flows. For more details and further
discussion, see e.g. [1, 4, 18].
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Fig. 8. Guderley Mach reflection (GMR), as obtained in [15]. The plot shows u-contours; the
red line is the sonic line. The u-contour spacing is 0.003. The flow is supersonic to the right of the
sonic line and subsonic to the left.

The density ρ, pressure p, and velocity u = (u, v) of an inviscid, compressible
fluid in two space dimensions, with Cartesian coordinates x = (x, y), satisfy the
compressible Euler equations

ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u + p) = 0,(
ρ

[
e+

1

2
ρu2

])
t

+∇ ·
(
ρ

[
e+

1

2
ρu2

]
u

)
= 0,

(10.1)

where e is the specific internal energy of the fluid. For definiteness, we consider an
ideal gas with constant ratio of specific heats γ > 1 and equation of state

e(p, ρ) =

(
1

γ − 1

)
p

ρ
,

but the same analysis applies to a general equation of state.
The UTSDE asymptotic expansion for a weakly nonlinear sound wave propagating

in the x-direction and diffracting more slowly in the y-direction is
ρ
u
v
p

 =


ρ0
0
0
p0

+ εU

(
x− c0t

ε
,
y

ε1/2
, t

)
ρ0
c0
0

ρ0c
2
0



+ ε3/2V

(
x− c0t

ε
,
y

ε1/2
, t

)
0
0
c0
0

+O(ε2),

(10.2)

where ρ0, p0 are the unperturbed density and pressure, respectively, c0 =
√
γp0/ρ0

is the unperturbed sound speed, and 0 < ε � 1 is small positive parameter that
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measures the amplitude of the wave and the size of its x and y derivatives. The
scaling chosen in (10.2), with u = O(ε), ∂x = O(ε−1), ∂y = O(ε−1/2) after a suitable
nondimensionalization, is the one that leads to a dominant balance between weak
nonlinearity and weak diffraction on a time-scale of the order 1.

Use of the expansion (10.2) in the compressible Euler equations (10.1) implies
that U(X,Y, t), V (X,Y, t) satisfy the UTSDE equation

Ut +

(
γ + 1

4
c0U

2

)
X

+
1

2
c0VY = 0,

UY − VX = 0.

Introducing normalized variables

ũ =

(
γ + 1

2

)
U, ṽ =

(
γ + 1

2
√

2

)
V,

x̃ =
X

c0
, ỹ =

√
2Y

c0
,

(10.3)

we find that ũ(x̃, ỹ, t), ṽ(x̃, ỹ, t) satisfy

ũt +

(
1

2
ũ2
)
x̃

+ ṽỹ = 0,

ũỹ − ṽx̃ = 0,

which is (1.1), after we drop the tildes.
For the matching, it is useful to note how polar coordinates (r, φ) with respect to

the original spatial variables, given in (2.1), transform into the asymptotic variables.
As ε→ 0+ with x̃, ỹ, t fixed, we have

(10.4)
r − c0t
c0t

∼ ε
[
x̃

c0t
+
ỹ2

4t2

]
φ ∼ ε1/2√

2

ỹ

t
.

Moreover, the pressure perturbation is related to ũ by

(10.5) p− p0 ∼ ερ0c20
(

2

γ + 1

)
ũ.
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