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THE TRIPLE POINT PARADOX FOR THE NONLINEAR WAVE
SYSTEM∗

ALLEN M. TESDALL† , RICHARD SANDERS‡ , AND BARBARA L. KEYFITZ†

Abstract. We present numerical solutions of a two-dimensional Riemann problem for the non-
linear wave system which is used to describe the Mach reflection of weak shock waves. Robust low
order as well as high resolution finite volume schemes are employed to solve this equation formulated
in self-similar variables. These, together with extreme local grid refinement, are used to resolve the
solution in the neighborhood of an apparent but mathematically inadmissible shock triple point.
Rather than observing three shocks meeting in a single standard triple point, we are able to detect
a primary triple point containing an additional wave, a centered expansion fan, together with a se-
quence of secondary triple points and tiny supersonic patches embedded within the subsonic region
directly behind the Mach stem. An expansion fan originates at each triple point. It is our opinion
that the structure observed here resolves the von Neumann triple point paradox for the nonlinear
wave system. These solutions closely resemble the solutions obtained in [A. M. Tesdall and J. K.
Hunter, SIAM J. Appl. Math., 63 (2002), pp. 42–61] for the unsteady transonic small disturbance
equation.
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1. Introduction. Experiments in which a weak shock wave reflects off a thin
wedge appear to show a pattern of reflection in which three shocks meet at a triple
point. However, the von Neumann theory of shock reflection [11] shows that Mach
reflection, in which three shocks and a contact discontinuity meet at a triple point, is
impossible for weak shocks. This apparent disagreement between theory and experi-
ment was pointed out by von Neumann in 1943 and is referred to as the von Neumann,
or triple point, paradox [8, 13].

In [13] numerical solutions were obtained of a problem for the unsteady tran-
sonic small disturbance equations that describes the reflection of weak shocks off thin
wedges. The solutions were obtained in a parameter range where regular reflection is
impossible, and contain a sequence of triple points in a tiny region behind the leading
triple point, with a centered expansion fan originating at each triple point. It was
shown that the triple points with expansion fans observed numerically are in fact con-
sistent with theory, and that the presence of the expansion fans at the triple points
resolves the paradox. A solution containing a supersonic patch and an expansion fan
was first proposed by Guderley [5, 6]. Although Guderley did not offer evidence that
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this is what really occurs nor suggest that there is actually a sequence of expansion
fans and triple points to resolve the triple point paradox, the term Guderley Mach
reflection was chosen in [14] to name this new reflection pattern.

The nonlinear wave system is a simplification of the isentropic Euler equations
obtained by dropping the momentum transport terms from the momentum equations
[4]. Compared to the unsteady transonic small disturbance equations, the nonlinear
wave system is closer in structure to the Euler equations: it is linearly well-posed
in space and time, it has a characteristic structure similar to the Euler equations,
and change of type takes the equations from a hyperbolic to a mixed-type system.
These features make the nonlinear wave system a useful prototype for studying two-
dimensional Riemann problems for the full Euler equations.

A problem for the nonlinear wave system that is the analogue of the reflection of
weak shocks off thin wedges was studied in [3]. In a parameter range where regular
reflection is not possible, the authors showed existence of the subsonic solution behind
the Mach shock and reflected wave by solving a free boundary problem for the Mach
shock. They did not find the actual reflected shock, but instead based their solution
on modeling it as a continuous function with a singularity in the derivative at the
sonic boundary. They showed that the composite solution they obtained is not a
weak solution near the sonic line. The actual solution, therefore, is different from
the construction they present, and they suggest two alternatives. Since triple point
solutions do not exist for the nonlinear wave system, one possibility is that the reflected
shock is a weak shock that has zero strength at the reflection point. Another possibility
is Guderley Mach reflection, as obtained in [13].

Several numerical solutions of the weak shock reflection problem for the nonlinear
wave system have been computed. In separate work, R. Sanders, A. Kurganov, and
M. Lukacova-Medvidova (all unpublished; see [9]) computed numerical solutions of
the problem studied in [3] over a wide range of parameter space where regular re-
flection is impossible. None of these solutions, however, are sufficiently well resolved
to determine the nature of the solution near the apparent triple point. For example,
it cannot be determined from any of these solutions whether the reflected shock has
zero strength at the triple point, or if some other reflection pattern, such as Guderley
Mach reflection, occurs. In fact, in the best resolved of these solutions, three shocks
do appear to meet at a triple point—the triple point paradox.

In this paper we present high resolution numerical solutions of the shock reflection
problem for the nonlinear wave system. Our most highly resolved solution shows that
Guderley Mach reflection occurs at a set of parameter values where regular reflection
is impossible: there is a sequence of supersonic patches behind the leading triple
point, formed by a sequence of expansion fans and shocks that reflect between the
sonic line and the Mach shock. This numerical solution is remarkably similar to those
obtained for the unsteady transonic small disturbance equations in [13], and as in [13]
the numerical results suggest that the sequence of triple points in an inviscid weak
shock Mach reflection may be infinite.

Recent experimental evidence appears to confirm that the resolution of the triple
point paradox obtained in [13] and again in the present paper is correct. Skews
and Ashworth in [12] obtained schlieren photographs of shock reflection experiments
which show a sequence of shocks and expansion waves behind the triple point in a
weak shock Mach reflection. The supersonic region is extremely small, as discussed
in [13], which is why it had never been observed before. Skews and Ashworth over-
came this difficulty by using a specially designed shock tube and flow visualization
enhancement techniques.
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The numerical solutions of Sanders, Kurganov, and Lukacova-Medvidova were
obtained by solving an initial-value problem for the unsteady nonlinear wave system.
The problem of inviscid shock reflection off a wedge is self-similar, and there are
advantages to solving the problem in self-similar, rather than unsteady, variables.
In the unsteady formulation any waves which are present initially move through the
numerical domain, making local grid refinement strategies difficult. By contrast, a
solution of the self-similar equations is stationary, and local grid refinement near the
triple point is much easier to implement. Moreover, in self-similar variables a global
grid continuation procedure can be used in which a partially converged solution on
a coarse grid is interpolated onto a fine grid, and then driven to convergence on the
fine grid. In this paper we present numerical solutions of the shock reflection problem
for the nonlinear wave system computed in self-similar coordinates. Procedures for
solving the unsteady transonic small disturbance equations in self-similar variables
were developed in [13], and are extended here to apply to the nonlinear wave system.

This paper is organized as follows. In section 2 we describe the shock reflection
problem for the nonlinear wave system. In section 3 we discuss our approach to solving
this problem numerically. The numerical results obtained are presented in section 4.
In section 5 we discuss questions raised by our results. Finally, we summarize our
findings in section 6.

2. The shock reflection problem for the nonlinear wave system. We
consider a problem for the nonlinear wave system that is analogous to the reflection
of weak shocks off thin wedges [3]. The shock reflection problem consists of the
nonlinear wave system

ρt + (ρu)x + (ρv)y = 0,(2.1)
(ρu)t + p(ρ)x = 0,
(ρv)t + p(ρ)y = 0

in the half space x > 0 with piecewise constant Riemann data consisting of two
states separated by a discontinuity located at x = κy. Here, ρ(x, y, t) is the density,
u(x, y, t) and v(x, y, t) are the x and y components of velocity, respectively, and p(ρ)
is the pressure. For convenience, we assume a polytropic gas law

p(ρ) = Cργ ,

where C is a constant and γ is the ratio of specific heats. Letting U = (ρ,m, n) denote
the vector of conserved variables, where m = ρu and n = ρv, the Riemann data are

U(x, y, 0) =
{

U1 ≡ (ρ1, 0, 0) if x < κy,
U0 ≡ (ρ0, 0, n0) if x > κy.

(2.2)

We choose ρ0 > ρ1 to obtain an upward moving shock in the far field, and determine
n0 so that the one-dimensional wave between U0 and U1 at angle κ consists of a shock
and a contact discontinuity with a constant middle state between them. The following
expression for n0 was obtained in [3]:

(2.3) n0 =
1
κ

√
(1 + κ2)(p(ρ0)− p(ρ1))(ρ0 − ρ1).

Strictly speaking, data for reflection from a wedge of angle θ radians would explic-
itly include the wedge as a discontinuous change of slope, of angle θ, in the boundary
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at the point (0, 0). In replacing a domain that imitates the physics by a half-plane
(x > 0), we are assuming that the reflection pattern near the apparent triple point
is a local phenomenon. The physical wedge angle θ in this model is related to κ in
(2.2), (2.3) by

(2.4) θ = tan−1(1/κ).

This problem depends on two parameters: the inverse slope κ of the incident
shock, and the incident shock strength ρ0/ρ1 (see Appendix A). For values of κ greater
than a critical value κR which depends on ρ0 and ρ1, a regularly reflected solution
of (2.1)–(2.3) is impossible. In addition, triple point solutions of (2.1), in which
three plane shocks separated by constant states meet at a point, do not exist (see
Appendix B for a proof of this). We note that a self-similar solution in which three
shocks and a linear wave meet at a point can be constructed. However, this is not
consistent with the initial data, since (2.1) implies (my − nx)t = 0, even for weak
solutions, and slip lines are characterized by nonzero values of my − nx. Therefore,
Mach reflection cannot occur when regular reflection becomes impossible, and the
shock reflection problem for the nonlinear wave system embodies the triple point
paradox in an essential form.

The problem (2.1)–(2.3) is self-similar, so the solution depends only on the simi-
larity variables

ξ =
x

t
, η =

y

t
.

We write (2.1) in the form

(2.5) Ut + Fx + Gy = 0,

where

U = (ρ,m, n), F = (m, p, 0), and G = (n, 0, p).

Writing (2.5) in terms of ξ, η, and a pseudo-time variable τ = log t, we obtain

(2.6) Uτ − ξUξ − ηUη + Fξ + Gη = 0.

As τ → +∞, solutions of (2.6) converge to a pseudosteady, self-similar solution that
satisfies

(2.7) −ξUξ − ηUη + Fξ + Gη = 0.

Equation (2.7) is hyperbolic when c2(ρ) < ξ2 +η2, corresponding to supersonic flow in
a self-similar coordinate frame, and of mixed type when c2(ρ) > ξ2+η2, corresponding
to subsonic flow. Here, c(ρ) = √pρ denotes the local sound speed. The equation
changes type across the sonic line given by

ξ2 + η2 = c2(ρ).(2.8)

3. The numerical method. In order to solve (2.6) numerically, we write it in
conservative form as

(3.1) Uτ + (F − ξU)ξ + (G− ηU)η + 2U = 0.
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Fig. 1. A schematic diagram of the computational domain. AD is the wall and ABCD is
the far field numerical boundary. The incident shock enters the computational domain normal to
BC. The incident (right of T ), reflected (below T ), and Mach (left of T ) shocks meet at the triple
point T .

In self-similar variables, the nonlinear wave system has the form of the unsteady
equations (2.5) with modified flux functions and a lower-order source term.

The essential feature of the numerical method is the capability to locally refine the
grid in the area of the apparent triple point. We designed several nonuniform, logically
rectangular, finite volume grids so that a given incident shock is aligned with the grid
in the far field; see Figure 1. Specifically, each problem with a given incident shock
angle has an associated fitted finite volume C-grid. Grid continuation is employed
whereby partially converged numerical solutions are quadratically interpolated onto a
refined grid. Inside a given box surrounding the triple point, uniform grid spacing is
used. Outside of this box, the grid is exponentially stretched in both grid directions.

The basic finite volume scheme is quite standard. Each grid cell, Ω, is a quadri-
lateral, and using �ν = (νξ, νη) to denote the normal vector to a typical side of Ω,
numerical fluxes are designed to be consistent with

F̃ (U) = (F (U)− ξU) νξ + (G(U)− ηU) νη =

νξm + νηn− ξ̄ ρ
νξp− ξ̄ m
νηp− ξ̄ n

 ,

where ξ̄ = (�ξ · �ν) and �ξ = (ξ, η). Since �ξ varies, our numerical flux formulae evaluate
�ξ frozen at the midpoint of each cell side. We use two distinctly different numerical
fluxes in our results presented below: a first-order Lax–Friedrichs numerical flux and
a high-order variant of the Roe numerical flux. The Lax–Friedrichs flux is

HLF =
1
2

(
F̃ (Ul) + F̃ (Ur)− Λ (Ur − Ul)

)
,

where Λ > 0 is a scalar constant chosen to be larger than the fastest wave speed
found on the computational domain. While the Lax–Friedrichs method yields only
first-order accurate approximations, we regard it to be extremely robust. Our high-
order Roe scheme is obtained from piecewise linear reconstruction with characteristic
variable limiting, together with the Roe flux

HRoe =
1
2

(
F̃ (Ul) + F̃ (Ur)−RΛL (Ur − Ul)

)
,
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where Λ = diag(| − ξ̄− c|, | − ξ̄|, | − ξ̄ + c|), and R and L are the matrices of right and
left eigenvectors to the Jacobian of F̃ evaluated at the midpoint URoe = 1

2 (Ul + Ur).
Below, we use the equation of state p = 1/2ρ2. Therefore, using the midpoint for
evaluation yields an exact Roe average since in this case F̃ is quadratic.

Time integration is accomplished by the forward Euler method for the Lax–
Friedrichs scheme:

Un+1 − Un

∆τ
+

1
|Ω|

∫
∂Ω

Hn
LF ds + 2Un = 0.

For reasons of linear stability, we use the explicit trapezoidal rule to integrate the
high-order Roe scheme, as follows:

Un+1/2 − Un

∆τ
+

1
|Ω|

∫
∂Ω

Hn
Roe ds + 2Un = 0,

2Un+1 − Un+1/2 − Un

∆τ
+

1
|Ω|

∫
∂Ω

H
n+1/2
Roe ds + 2Un+1/2 = 0.

3.1. The grid, initialization, and boundary conditions. We computed so-
lutions of the half-space problem (2.1)–(2.3) in the finite computational domain shown
schematically in Figure 1. We use a nonuniform grid that has a locally refined area of
uniform grid very close to the triple point, and is stretched exponentially away from
the triple point toward the outer numerical boundaries and the wall. (Exponential
stretching of 1% means ∆xi+1 = 1.01 ∆xi.) In the solutions shown below, the nonuni-
form grids are stretched by amounts between 0.5% and 1%. The total number of grid
points in our largest grid is approximately 11× 106, of which approximately 2.5× 106

cover a very small region surrounding the triple point. (See Figure 3(c) below where
this small region is depicted.)

We impose reflecting boundary conditions, equivalent to the physical no-flow con-
dition, on the wall AD. A standard first-order ghost cell implementation, with ficti-
tious cells located to the left of the boundary AD, is given by

ρ−1 = ρ0,(3.2)
m−1 = −m0,

n−1 = n0,

where the subscripts −1 and 0 indicate values at ghost cells and at the first real
cell adjacent to the boundary, respectively. In our higher-order computations we
used a second-order formulation of this boundary condition. In addition, we require
numerical boundary conditions on the outer computational boundaries.

In [3] expressions were given for the one-dimensional wave between U0 and U1
in the far field. The constant middle state Um = (ρ0,mm, nm) between the contact
discontinuity (the dotted line in Figure 1), located at ξ = κη, and the incident shock,
located at ξ = κη + χ, is given by

mm = −
√

(p(ρ0)− p(ρ1))(ρ0 − ρ1)
1 + κ2 ,(3.3)

nm = −κmm,

with χ = −
√

1 + κ2

√
p(ρ0)− p(ρ1)

ρ0 − ρ1
.
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On the outer numerical boundary ABCD, we impose Dirichlet data corresponding to
the incident shock/contact discontinuity solution in (2.2), (2.3), (3.3). We find that

U(ξ, η) =


U1, ξ < κη + χ,

Um, κη + χ < ξ < κη,

U0, ξ > κη.

(3.4)

We impose (3.4) as a boundary condition for (3.1) on ABCD.

4. Numerical results. We computed numerical solutions of (2.1)–(2.3) for κ
equal to 1, 2, 4, and 8. In our computations we used ρ0/ρ1 equal to 64, 8, and 2.
In the following figures we present solutions with ρ1 = 1 and ρ0/ρ1 equal to 64. The
solutions for other values of ρ0/ρ1 are similar to the ones presented here. For all
computations, the polytropic gas law p = 1

2ρ
2 was used. Figure 2 shows ρ-contour

plots of the global solutions as a function of (x/t, y/t). From (2.4), increasing κ
corresponds to decreasing the wedge angle that is modeled by our problem. Hence,
the sequence of plots in Figure 2(a)–(d) is a numerical representation of a series of
shock reflection experiments in which the wedge angle is decreased, while holding the
shock strength ρ0/ρ1 constant.

The numerical solutions appear to show a simple Mach reflection, with three
shocks meeting at a triple point. The Mach shock becomes longer and weaker as κ
increases, and the strength of the reflected shock also decreases when κ increases. For
a fixed value of κ, the strength of the Mach shock increases as it moves away from
the triple point, reaching a maximum at the wall x = 0.

For the value κ = 1, we used local grid refinement to obtain a highly resolved
solution in the neighborhood of the triple point. In Figure 3(a)–(c), we show ρ-, m-,
and n-contours and the numerically computed location of the sonic line, equation (2.8),
near the triple point for κ = 1. The solution contains a small region of supersonic
flow behind the triple point. The width ∆(x/t) of the patch is approximately 0.03,
and the height ∆(y/t) is approximately 0.01. Here, the width ∆(x/t) is a numerical
estimate of the difference between the maximum value of x/t on the sonic line and
the minimum value of x/t at the rear sonic point on the Mach shock. The height
∆(y/t) is an estimate of the difference between the value of y/t at the triple point
and the minimum value of y/t at the rear sonic point on the Mach shock. The width
of the supersonic region is approximately 5% of the length of the Mach shock. The
expansion fan centered at the leading triple point can be clearly seen. Behind the
leading triple point, there is a sequence of shocks and expansion fans. The thickening
of the incident shock as it moves away from the triple point in Figure 3(a)–(c) is
caused by the use of a stretched grid.

The area covered by the most refined uniform grid is indicated by the box con-
tained in Figure 3(c), and the figure caption gives the number of grid points in the
most refined area of the grid. The box appears to be skewed because of the use of a
C-grid. To illustrate the size and location of the refined uniform grid, in Figure 3(d)
we plot ρ-contour lines over the entire numerical domain, for κ = 1. The refined grid
area is too small to be visible in the main plot shown in Figure 3(d). The inset figure
shows an enlargement of the solution contained within the small rectangular box cen-
tered about the reflection point, as indicated. The solution shown in the inset figure
also contains a small box centered at the reflection point, indicating the approximate
size and location of the region shown in Figure 3(a)–(c).

We found that, as in [13], a certain minimum grid resolution was required to
resolve the supersonic region behind the triple point. As we refined the grid beyond
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Fig. 2. Contour plots of ρ for increasing values of κ. The ρ-contour spacing is 1.0. The shock
strength ρ0/ρ1 = 64; ρ1 = 1.

this minimum level, details of the flow field near the triple point became clearer.
Figure 4 shows ρ-contours and the sonic line near the triple point for a sequence
of solutions for κ = 1, using a Lax–Friedrichs numerical flux. The sequence was
computed using successively refined grids, with each grid refined by a factor of two in
x/t and y/t in relation to the previous grid. The resolution of the locally refined areas
is indicated on the plots. In Figure 4(a)–(b), the sonic line appears smooth. At the
next level of refinement, shown in Figure 4(c), there is a steepening of the contours
at the rear of the patch, and an indication of a shock forming there. Further shocks
appear in our highest resolution solution in Figure 3. At resolutions lower than shown
in the figure, the supersonic region disappears entirely.

There is a small discrepancy between the location of the triple point in these fig-
ures and the theoretical location of the incident shock, given in (3.3). The reason for
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Fig. 3. The contour plots in (a)–(c) show the true nature of the solution near the triple point
for κ = 1. The ρ-contour spacing is 0.5 in (a), the m-contour spacing is 1.5 in (b), and the n-
contour spacing is 5.25 in (c). The heavy line is the sonic line. The box in (c) indicates the area of
the refined uniform grid, which has 2048× 1320 grid points. A second-order Roe numerical flux was
used. The plot in (d) is an illustration of the approximate size and location of the region shown in
the plots in (a)–(c), which is contained in the small rectangular box shown in the inset figure; the
plot shows contour lines of ρ.

the discrepancy is that the numerical boundary conditions did not give an incident
shock that was of exactly constant strength and exactly straight in the (x/t, y/t) coor-
dinates. However, the deviation of the numerical solution for the incident shock from
the exact uniform solution was small. For example, in our numerical solution shown
in Figure 3, the numerically computed value of the y/t coordinate of the triple point
differs by 0.1% from the theoretical value obtained from (3.3) using the numerically
computed value of x/t, and the nonuniformity in ρ in the state behind the incident
shock near the triple point is about 0.6%. We tried a number of different implemen-
tations of the numerical boundary conditions and computational mesh, but none of
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Fig. 4. A sequence of contour plots illustrating the effect of increasing grid resolution on the
numerical solution. The solutions plotted here are for κ = 1. The figures show ρ-contours in the
refined grid area near the triple point, with a ρ-contour spacing of 1.0. Each grid is refined by a
factor of two in relation to the previous grid. The region shown includes the refined uniform grid
area. The heavy line is the sonic line. In (a), the refined uniform grid contains 760 × 760 grid
points. A supersonic region is visible as a bump in the sonic line, but it is poorly resolved. In (b),
the refined uniform grid area contains 1280 × 1024 grid points. The supersonic region appears to
be smooth. In (c), the refined uniform grid area contains 2048 × 1320 grid points. There is an
indication of an expansion fan behind the leading triple point.

them gave an incident shock that was of exactly constant strength. Nevertheless, the
presence of a supersonic patch did not depend on the particular implementation.

In the computation for κ = 1, we partially converged a solution on a coarse grid,
resampled the data onto a refined grid, and repeated the process until the necessary
resolution was obtained. Three consecutive intermediate solutions in this computation
are shown in Figure 4. Computations on less refined grids were made using a Lax–
Friedrichs numerical flux, and after partial convergence on the most refined grid we
switched to the more expensive Roe method. Figure 5 shows ρ-contours for a solution
made using a first-order Roe scheme. Further computation using a second-order Roe
scheme yielded the final solution shown in Figure 3. The solution on the final grid
was evolved until no further change was observed in the details of the solution near
the triple point. The solutions shown in Figures 4(c), 5, and 3 were obtained on
the same grid using different methods. All three of the solutions contain a small
supersonic region behind the triple point. The solutions shown in Figures 5 and 3,
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Fig. 5. A contour plot of ρ near the triple point computed using a first-order Roe method.
The number of points in the refined uniform grid is the same as in Figure 4, which shows a Lax–
Friedrichs solution, and in Figure 3(a)–(c), which shows a second-order Roe method solution. The
ρ-contours are plotted at the same levels of ρ as in Figure 3(a).

Fig. 6. A detailed plot of contour lines for ρ illustrating Guderley Mach reflection. The
ρ-contour spacing is 0.1. Three reflected shock/expansion wave pairs are clearly visible, with indica-
tions of a fourth. The region shown contains the refined uniform grid, which has 2048× 1320 grid
points.

which are more highly resolved, contain a sequence of supersonic patches and triple
points, which is better defined in Figure 3.

In Figure 6 we plot closely spaced ρ-contours to give a detailed picture of the
sequence of shocks and expansion waves in a Guderley Mach reflection for κ = 1. Each
shock-expansion pair in the sequence is smaller and weaker than the one preceding
it. Three reflected shocks appear to be visible in the plot. From the numerical data,
their approximate strengths, beginning with the leading reflected shock, are given in
Table 1. The jump [ρ] in ρ across a reflected shock is measured near the point where
the flow behind the shock is sonic. This point is very close to the corresponding triple
point on the Mach shock, as shown in Figure 3.
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Table 1

Approximate values of the reflected shock strengths for the three reflected shocks visible in Fig-
ure 6, beginning with the leading reflected shock, from the numerical data. For each shock, ρ1 and
ρ0 denote the approximate values of ρ ahead of and behind the shock, respectively.

Shock ρ1 ρ0 [ρ]
1 64 76 12
2 72 75 3
3 74 75 1

5. Discussion. These numerical results are remarkably similar to the computed
solutions of the shock reflection problem for the unsteady transonic small disturbance
equations in [13]. In both cases, a weak shock reflection in a parameter range where
regular reflection is impossible results in a sequence, possibly infinite, of triple points
and supersonic patches embedded in the subsonic flow behind the Mach and reflected
shocks. The unsteady transonic small disturbance equations can be derived from
the full Euler equations by a systematic asymptotic expansion, and are considered
to give an adequate description of the physical flow near the shock interaction point
for weak shocks and small wedge angles. The nonlinear wave system, however, is
not a systematic reduction of the Euler equations, and it does not appear to have
any immediate physical relevance. It is therefore noteworthy that the shock reflection
problem for the nonlinear wave system has a solution that resembles the solutions in
[13], and is consistent with the experimental results in [12].

The nonlinear wave system has a characteristic structure similar to the two-
dimensional Euler equations: nonlinear acoustic waves coupled (weakly) with linearly
degenerate waves. The nonlinear wave system also respects the spatial (Euclidean)
symmetries of gas dynamics, but not the space-time (Galilean) symmetry. In fact (see
[10]), they are essentially the simplest system one can construct with these symme-
tries. The existence of a Guderley Mach reflection solution for a system that is only
loosely related to gas dynamics suggests that the behavior may be typical of equations
with this characteristic structure, and is not restricted to equations that describe gas
dynamic phenomena. We conjecture that a sequence of supersonic patches and triple
points is a generic feature of two-dimensional Riemann problems for some class of hy-
perbolic systems of conservation laws. Possibly this class is characterized by “acoustic
waves,” as defined in [2]. It is possible that numerical solutions of the weak shock
reflection problem for the full Euler equations will contain a sequence of supersonic
patches as well.

An important feature of the numerical solution is the small size of the supersonic
region. In our solution for κ = 1, the width of the supersonic patch is approximately
5% of the length of the Mach shock. This is somewhat larger than the supersonic
regions in the solutions in [13], which were obtained over a range of parameter values
and varied in height from approximately 0.05% to 3% of the length of the Mach shock.
Based on the dependence of patch size on wedge angle observed in [13], we expect
solutions for larger values of κ to contain even larger supersonic regions. However, the
strength of the reflected shock near the triple point decreases as κ increases, making
it very difficult to resolve numerically the details of the solution near the triple point.
We have displayed a solution with κ = 1 because it offers a good compromise between
the size of the supersonic region and the strength of the sequence of reflected shocks
and expansions.

One of the scenarios proposed in [3] for resolving the triple point paradox in the
nonlinear wave system is that the reflected shock have zero strength at the shock
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interaction point. In that case, there would be no triple point, and presumably no
supersonic patch. We have obtained solutions, using different numerical schemes,
which contain a supersonic region behind the triple point in a weak shock reflection.
In these solutions, the reflected shocks have finite strength at the point where they
collide with the Mach shock. Although we have not obtained numerical evidence of
the zero strength reflected shock solution, we note that in the problem studied in [3],
it is assumed that κ is large enough that the incident shock intersects the sonic circle,
equation (2.8), corresponding to the state U0 behind the shock. For shock reflection
data with κ = 1, the incident shock does not intersect the sonic circle, so the partial
solution presented in [3] is not available here. We also note, however, that in [13],
several solutions were obtained in a parameter range for which the incident shock
does intersect the sonic line for the state behind the incident shock. All of these
solutions contained a reflected shock of nonzero strength at the triple point, and a
supersonic region. For the nonlinear wave system, since we have obtained a solution
containing a supersonic region at only one set of parameter values, we do not know
if Guderley Mach reflection occurs over the entire set of parameter values for which
regular reflection is impossible, or if solutions at large enough values of κ contain a
reflected shock with zero strength at the triple point.

6. Conclusion. We have presented numerical evidence of a structure of reflected
shocks and expansion waves, and a sequence of triple points and supersonic patches,
in a small region behind the leading triple point in a shock reflection problem for the
nonlinear wave system. This result is consistent with previous numerical solutions
of a shock reflection problem for the unsteady transonic small disturbance equations,
and with recent experimental results for weak shocks reflecting off thin wedges.

Appendix A. Symmetry. Equation (2.1) admits the usual Euclidean sym-
metries of gas dynamics (translation invariance and equivariance under rotation and
reflection in the plane), but not the Galilean symmetry. For a polytropic gas law
p(ρ) = Cργ , where γ is the ratio of specific heats and C is a constant, it is also
invariant under the scaling

(x, y) 	→ ρ
γ−1

2
1 (x, y), ρ 	→ ρ1ρ, (m,n) 	→ ρ

γ+1
2

1 (m,n).

Based on this, we see that solutions of the nonlinear wave system depend on the
density only through a characteristic density ratio ρ0/ρ1, or equivalently, through the
velocity ratio or the Mach number M = c(ρ0)/c(ρ1) = (ρ0/ρ1)(γ−1)/2.

Appendix B. Nonexistence of triple points. To examine triple points in
the nonlinear wave system we note, first, that this system does not have the Galilean
invariance of the gas dynamics equations, so we cannot assume that the flow is sta-
tionary at a triple point. However, because of rotational symmetry we can assume
that one of the shocks is horizontal, and we do so to simplify the calculation. We can
also choose one set of momentum components to be zero.

We label the horizontal shock Sa, and proceeding counterclockwise, the other two
are Sb and Sc (Figure 7). The state between Sa and Sb is U1 = (ρ1, 0, 0); the other
two states, also proceeding counterclockwise, are U2 and U0 = (ρ0, 0, n0). The value
of ρ0 can be any number greater than ρ1. Note that the component m0 = 0 because
Sa is horizontal. The equation of Sa is {η = ωa}, where ωa =

√
(p0 − p1)/(ρ0 − ρ1),

and n0 = ωa[ρ] =
√

(p0 − p1)(ρ0 − ρ1), using (2.3). (Note that κa =∞ here and that
U0 corresponds to Um in (3.3).)



14 A. M. TESDALL, R. SANDERS, AND B. L. KEYFITZ

Fig. 7. Triple point configuration.

We introduce the notation Pab =
√

(pa − pb)(ρa − ρb). We have the following
proposition.

Proposition B.1. For any convex equation of state p(ρ), there is no nontrivial
set of solutions to the Rankine–Hugoniot equations for constant states {U0, U1, U2}
separated by shocks Sa, Sb, Sc, irrespective of whether the three shocks intersect in a
point or not.

Proof. The Rankine–Hugoniot equations at Sb and Sc imply (see [4, Appendix
A])

m2 −m1 =
P21√
1 + κ2

b

, m2 −m0 =
P20√
1 + κ2

c

,

n2 − n1 = − P21√
1 + κ2

b

κb, n2 − n0 = − P20√
1 + κ2

c

κc.

Using the values m1 = m0 = n1 = 0, n0 = P01, we get two equations:

(B.1) m2 =
P21√
1 + κ2

b

=
P20√
1 + κ2

c

, n2 = − P21√
1 + κ2

b

κb = P01 −
P20√
1 + κ2

c

κc.

In principle, we can solve this pair of equations to obtain κb and κc as functions of
the data ρ0 and ρ1. We get a 1-parameter family of solutions parameterized by ρ2.
However, the solutions obtained are not real numbers. For, if we substitute the first
equation in (B.1) into the second, we get

−κb
P20√
1 + κ2

c

= P01 − κc
P20√
1 + κ2

c

,

or

(B.2) κb = κc −
√

1 + κ2
c

P01

P20
.

Now square the first relation in (B.1), write it as

1 + κ2
b = (1 + κ2

c)
P 2

21

P 2
20

,
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and substitute (B.2), to obtain

1 +
(
κc −

√
1 + κ2

c

P01

P20

)2

= (1 + κ2
c)

P 2
21

P 2
20

,

or

(P 2
20 + P 2

01 − P 2
21)
√

1 + κ2
c = 2κcP01P20.

Square this and solve for κ2
c :

κ2
c =

(P 2
20 + P 2

01 − P 2
21)2

4P 2
01P

2
20 − (P 2

20 + P 2
01 − P 2

21)2 .

Now, after a calculation,

P 2
20 + P 2

01 − P 2
21 = (ρ2 − ρ0)(p1 − p0) + (ρ1 − ρ0)(p2 − p0).

So

4P 2
01P

2
20 − (P 2

20 + P 2
01 − P 2

21)2 = −[(ρ2 − ρ0)(p1 − p0)− (ρ1 − ρ0)(p2 − p0)]2 ≤ 0.

In fact, this quantity is less than zero unless

p2 − p0

ρ2 − ρ0
=

p1 − p0

ρ1 − ρ0
.

For a convex function p, this implies ρ2 = ρ1, a degenerate case with only two distinct
states.

Thus, no solutions exist. Note that the proof did not require the three shocks to
intersect in a point, and that therefore this is a somewhat stronger result than simply
the nonexistence of triple points.

In a similar manner it is possible to show that, as in gas dynamics, a self-similar
solution consisting of three shocks and a linear wave meeting at a point can be con-
structed. However, as mentioned in section 2, because of the invariance in time of
the quantity (my − nx), the linear characteristic coordinate, a linear wave cannot be
present in the solution unless it is present in the data. For the data given in (2.2),
therefore, solutions containing a triple point with a linear wave cannot exist. The
same triple point paradox occurs in gas dynamics, of course, where solutions con-
taining a triple point with a contact discontinuity cannot occur for sufficiently weak
shocks (see [7] for a discussion of this).
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[4] S. Čanić, B. L. Keyfitz, and E. H. Kim, Mixed hyperbolic-elliptic systems in self-similar
flows, Bol. Soc. Bras. Mat., 32 (2001), pp. 1–23.

[5] K. G. Guderley, Considerations of the Structure of Mixed Subsonic-Supersonic Flow Pat-
terns, Air Materiel Command Tech. Report, F-TR-2168-ND, ATI 22780, GS-AAF-Wright
Field No. 39, U.S. Wright-Patterson Air Force Base, Dayton, OH, 1947.



16 A. M. TESDALL, R. SANDERS, AND B. L. KEYFITZ

[6] K. G. Guderley, The Theory of Transonic Flow, Pergamon Press, Oxford, UK, 1962.
[7] L. F. Henderson, Regions and boundaries for diffracting shock wave systems, Z. Angew. Math.

Mech., 67 (1987), pp. 73–86.
[8] J. K. Hunter and M. Brio, Weak shock reflection, J. Fluid Mech., 410 (2000), pp. 235–261.
[9] B. L. Keyfitz, home page, http://www.math.uh.edu/∼blk.

[10] B. L. Keyfitz and M. C. Lopes Filho, A geometric study of shocks in equations that change
type, J. Dynam. Differential Equations, 6 (1994), pp. 351–393.

[11] J. von Neumann, Collected Works, Vol. 6, Pergamon Press, New York, 1963.
[12] B. Skews and J. Ashworth, The physical nature of weak shock wave reflection, J. Fluid Mech.,

542 (2005), pp. 105–114.
[13] A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection, SIAM J.

Appl. Math., 63 (2002), pp. 42–61.
[14] J. K. Hunter and A. M. Tesdall, Weak shock reflection, in A Celebration of Mathematical

Modeling, D. Givoli, M. Grote, and G. Papanicolaou, eds., Kluwer Academic, New York,
2004.


