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Abstract. For the four-dimensional nonhomogeneous wave equation bound-
ary value problems that are multi-dimensional analogues of Darboux prob-
lems in the plane are studied. It is known that for smooth right-hand side
functions the unique generalized solution may have a strong power-type sin-
gularity at only one point. This singularity is isolated at the vertex O of
the boundary light characteristic cone and does not propagate along the
bicharacteristics. The present paper describes asymptotic expansions of the
generalized solutions in negative powers of the distance to O. Some necessary
and sufficient conditions for existence of bounded solutions are proven and
additionally a priori estimates for the singular solutions are obtained.

1. Introduction

In the present paper, boundary value problems for the wave equation in R4

(1.1) ux1x1 + ux2x2 + ux3x3 − utt = f(x, t)

with points (x, t) = (x1, x2, x3, t) are studied in the domain

Ω = {(x, t) : 0 < t < 1/2, t <
√
x2

1 + x2
2 + x2

3 < 1− t},

bounded by the two characteristic cones

Σ1 = {(x, t) : 0 < t < 1/2,
√
x2

1 + x2
2 + x2

3 = 1− t},

Σ2 = {(x, t) : 0 < t < 1/2,
√
x2

1 + x2
2 + x2

3 = t}

and the ball Σ0 = {t = 0,
√
x2

1 + x2
2 + x2

3 < 1}, centered at the origin O : x =
0, t = 0. The following BVPs were proposed by M. Protter [33]:
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Problem P2. Find a solution of the wave equation (1.1) in Ω which satisfies
the boundary conditions

P2 : ut|Σ0 = 0, u|Σ1 = 0;

and its the adjoint problem:
Problem P2∗. Find a solution of the wave equation (1.1) in Ω which satisfies
the adjoint boundary conditions

P2∗ : ut|Σ0 = 0, u|Σ2 = 0.

Protter [33] formulated in 1952 some versions of P2 and P2∗ in R3 (i.e., in
(2+1)-D case) as a multi-dimensional analogue of the planar Darboux problems
with boundary data prescribed on one characteristic and on the noncharac-
teristic segment. Initially the expectation was that such BVPs are classical
solvable for very smooth right-hand side functions. However, soon it became
clear that contrary to this traditional belief, unlike the plane Darboux problem,
Protter’s problems are not well posed. The reason is that the homogeneous ad-
joint Problem P2∗ has an infinite number of nontrivial classical solutions (Tong
Kwang-Chang [36], Popivanov and Schneider [26], Khe Kan Cher [19]). It is
known from [27] that for each n ∈ N there exists a right-hand side function
f ∈ Cn(Ω) of the wave equation, for which the uniquely determined general-
ized solution of Problem P2 has a strong power-type singularity like r−n at the
origin O.

In the present paper we examine the exact behavior of the singular solutions
of Problem P2. In the case when the right-hand side function f is harmonic
polynomial, the Problem P2 is Fredholm and we find the asymptotic expansion
at O of the unique generalized solution. On the other hand, in the general
case when f ∈ C1(Ω) the problem is not Fredholm because it has an infinite
dimensional cokernel. We show that there are an infinite number of necessary
conditions for the existence of bounded solutions. We discuss the semi-Fredholm
solvability of Problem P2 and for f ∈ C6(Ω) we prove that the necessary
conditions for the existence of bounded solutions are also sufficient.

In a historical perspective, Protter studied Problems P2 and P2∗ in con-
nection with BVPs for mixed type equations that model transonic flow phe-
nomena. In fact, in [33] he also proposes a multidimensional analogue to
the two-dimensional Guderley-Morawetz problem for the Gellerstedt equation
of hyperbolic-elliptic type. The Guderley-Morawetz problem describes flows
around airfoils and is well studied. The existence of a weak solutions and the
uniqueness of the strong ones were first established by Morawetz [23] by re-
ducing the problem to a first-order system. Lax and Phillips [20] established
that these weak solutions are strong. A survey for the classical 2-D mixed-
type BVPs and their transonic background can be found in [24]. The domain
of Protter’s analogue could be constructed by rotation in R4 of a symmetric
planar domain for Guderley-Morawetz problem around the axis of symmetry.
As a result the set Ω forms the hyperbolic part of the domain. Although it
was expected the multidimensional mixed-type problems to be similar to the
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two-dimensional BVPs, for the Protter hyperbolic-elliptic problems a general
understanding of the situation is still not at hand. Even the question of well
posedness is surprisingly subtle and not completely resolved. One has unique-
ness results for quasiregular solutions, a class of solutions introduced by Protter,
but there are real obstructions to existence in this class. The Protter problems
in the hyperbolic part Ω of the domain illustrate some of the difficulties and
differences between the planar BVPs and the multidimensional analogues.

In order to construct the solutions of the homogenous Problem P2∗ we need
the spherical functions Y m

n in R3. Traditionally, Y m
n are defined on the unit

sphere S2 := {(x1, x2, x3) : x2
1 + x2

2 + x2
3 = 1} (see [14]). For convenience in the

discussions that follows, we keep the same notation Y m
n for the radial extension

of the spherical function to R3\{O}, i.e. Y m
n (x) := Y m

n (x/|x|) for x ∈ R3\{O}.
For the definition and properties of the spherical functions see Section 3. For
n, k ∈ N ∪ {0} define the functions

(1.2) En
k (x, t) =

k∑
i=0

Bn
k,i

(|x|2 − t2)n−k−i

|x|n−2i+1
,

where the coefficients are

Bn
k,i := (−1)i

(k − i+ 1)i(n+ 1− k − i)i
i!(n− i+ 1

2
)i

, Bn
k,0 = 1,

with (a)i := a(a+ 1) · · · (a+ i− 1) and (a)0 := 1. Then the functions

W n
k,m(x, t) = En

k (x, t)Y m
n (x)

are classical solutions of the homogeneous adjoint Protter problems.

Lemma 1.1. [29] The functions W n
k,m(x, t) are classical solutions from C(Ω)∩

C∞(Ω\{O}) of the homogeneous Problem P2∗ for k = 0, 1, . . . , [n/2]− 1.

A necessary condition for the existence of classical solution for the Problem
P2 is the orthogonality with respect to the L2(Ω) inner product, of the right-
hand side function f to all functions W n

k,m(x, t) from Lemma 1.1. To avoid an
infinite number of necessary conditions in the framework of classical solvability,
we introduce generalized solutions for the Problem P2 (see the similar definition
for the (2+1)-D case in [27] and [29]).

Definition 1.1. A function u = u(x, t) is called a generalized solution of the
Problem P2 in Ω, if the following conditions are satisfied:

1) u ∈ C1(Ω\O), ut|Σ0\O = 0, u|Σ1 = 0, and
2) the identity∫

Ω

(utwt − ux1wx1 − ux2wx2 − ux3wx3 − fw)dxdt = 0

holds for all w ∈ C1(Ω) such that wt|Σ0 = 0 and w = 0 in a neighborhood
of Σ2.
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This definition allows the generalized solution to have singularity at the origin
and we have an uniqueness result (see Theorem 5.1). Without any additional
conditions imposed on the right-hand side function f ∈ C(Ω), it is known
(see [26, 29]) that the generalized solution may have power type singularity.
Alternatively, we will prove the following necessary conditions for the existence
of bounded solutions.

Theorem 1.1. Suppose that there is a bounded generalized solution of the Prot-
ter Problem P2 with right-hand side function f(x, t) ∈ C(Ω). Then

(1.3)

∫
Ω

W n
k,m(x, t)f(x, t) dxdt = 0,

for all n ∈ N ∪ {0}, k = 0, . . . , [n/2], m = 1, . . . , 2n+ 1.

The proof of Theorem 1.1 is given in Section 4, but before that we will describe
the exact influence of the conditions (1.3) on the behavior of the generalized
solution.

First, we consider the case when the right-hand side function f ∈ C1(Ω) of
the wave equation (1.1) has the representation

(1.4) f(x, t) =
l∑

n=0

2n+1∑
m=1

fmn (|x|, t)Y m
n (x),

with l ∈ N ∪ {0}. In particular, notice that in the case when fmn (|x|, t) =
|x|namn (t) the function f is a harmonic polynomial in x of order l, whose coeffi-
cients are functions of t (see the properties of Y m

n in Section 3). For convenience
further by “harmonic polynomial of order l” we will mean a function from C1(Ω)
that has the more general form (1.4). The coefficients fmn are

fmn (|x|, t) =

∫
S2

f Y m
n dσ

and must have some special properties at (0, 0) (see for example Lemma 3.3).
According to the results from [29] we know that the generalized solution of

Problem P2 may have a power type singularity at the origin O : x = 0, t = 0. In
the present paper we study more accurately the exact behavior of the solution
of Problem P2 at O. It is governed by the parameters

(1.5) βnk,m :=

∫
Ω

W n
k,m(x, t)f(x, t) dxdt,

where n = 0, . . . , l; k = 0, . . . ,
[
n
2

]
and m = 1, . . . , 2n + 1. We find the asymp-

totic formula for the generalized solution of Problem P2.

Theorem 1.2. Suppose that the right-hand side function f ∈ C1(Ω) has the
form (1.4). Then the unique generalized solution u(x, t) of Problem P2 belongs
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to C2(Ω\O) and has the following asymptotic expansion at the singular point O

u(x, t) =
l+1∑
p=1

(
|x|2 + t2

)−p/2
Fp(x, t) + F (x, t),

where:
(i) the function F ∈ C2(Ω\O) and satisfies the a priori estimate

|F (x, t)| ≤ C ||f ||C1(Ω) , (x, t) ∈ Ω,

with constant C independent of f and ||f ||Ck(Ω) =
∑
|α|≤k

max
Ω
|Dαf(x, t)|;

(ii) the functions Fp, p = 1, ..., l + 1, satisfy the equalities

(1.6) Fp(x, t) =

[(l−p+1)/2]∑
k=0

2p+4k−1∑
m=1

βp+2k−1
k,m F p+2k−1

k,m (x, t) ,

with functions F n
k,m ∈ C2(Ω\O) bounded and independent of f ;

(iii) if at least one of the constants βp+2k−1
k,m in (1.6) is different from zero,

then for the corresponding function Fp(x, t) there exists a direction (α, 1) :=
(α1, α2, α3, 1) with (α, 1)t ∈ Σ2 for 0 < t < 1/2, such that

lim
t→+0

Fp(αt, t) = cp,α = const 6= 0.

After the case of the harmonic polynomials, here we deal with the more
general situation when the right-hand side function f is smooth, but it can not
be expanded simply as a sum (1.4). Now, Lemma 1.1 shows that the Problem
P2 is not Fredholm solvable.

Remark 1.1. Consider the operator

T : uf 7−→ f ∈ Ck(Ω),

where uf is the unique classical solution to Protter Problem P2 for the right-
hand side function f . According to Lemma 1.1 we have dim coker(T ) = ∞.
This means that T is not Fredholm operator for example in Ck(Ω). On the
other hand, the uniqueness result Theorem 5.1 shows that dim ker(T ) = 0 and
T could be a semi-Fredholm operator. A semi-Fredholm operator is a bounded
operator that has a finite dimensional kernel or cokernel, and closed range (see,
for example [25]). Accordingly we need to find the range of T .

The next result suggests that T is a semi-Fredholm operator.

Theorem 1.3. Let the function f(x, t) belong to C6(Ω). Then the necessary
and sufficient conditions for existence of bounded generalized solution u(x, t) of
the Protter Problem P2 are

(1.7)

∫
Ω

W n
k,m(x, t)f(x, t) dxdt = 0,

for all n ∈ N ∪ {0}, k = 0, . . . , [n/2], m = 1, . . . , 2n+ 1.
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Moreover, this generalized solution u(x, t) ∈ C1(Ω\O) and satisfies the a
priori estimates

|u(x, t)| ≤ C
(
‖f‖C5(Ω) + ‖ft‖C5(Ω)

)
;

3∑
i=1

|uxi(x, t)|+ |ut(x, t)| ≤ C(|x|2 + t2)−1 ‖f‖C6(Ω)

where the constant C is independent of the function f(x, t).

Obviously, the set of all functions from C6(Ω) that satisfy the orthogonality
conditions (1.7) is closed. Therefore, Theorem 1.3 shows that the operator T
defined in Remark 1.1 with a domain D(T ) ⊂ C(Ω) has a closed range in C6(Ω),
and we get the following result.

Corollary 1.1. The operator T is a semi-Fredholm operator from D(T ) ⊂ C(Ω)
to C6(Ω).

We have briefly announced some of the results from this section in [32] with
the assumption f ∈ C9(Ω).

The main results in this work are discussed in Section 2 and the proofs are
in Sections 3–7. In more detail the paper is organized as follows: estimates
for the spherical functions involved in the representation of the solution are
proven in Section 3. In Section 4 the necessary conditions for bounded solution
Theorem 1.1 is proved. In Section 5 we consider some two dimensional boundary
value problems connected to Problem P2 – the Problems P21 and P22. Exact
formulas for the solution of the Problem P22 are presented in Lemma 5.1. In
Section 6 the proofs of the main Theorems 1.2 and 1.3 are given based on the
results from the previous sections and an asymptotic expansion formula for
the generalized solution of the 2D Problem P21 (Theorem 6.1). The long and
technical proof of Theorem 6.1 is postponed to the last Section 7.

2. Historical remarks on the main results

Let us point out several related resent works on Protter problems. Neces-
sary and sufficient conditions for the existence of solutions with fixed order of
singularity were obtained in [29]. Similarly, for the R3-analogues of Protter
problems some results are presented in [7, 28]. For the problem with Dirichlet
type boundary condition on Σ0, formula for the asymptotic expansion of the
singular solution can be found in [30], and the semi-Fredholm solvability is dis-
cussed in [31] for f ∈ C10(Ω). A comparison of various recent results for Protter
problems is made in [7].

Various authors adopted a variety of approaches to Protter problems over the
last sixty years, for example: Wiener-Hopf method, special Legendre functions,
a priori estimates, nonlocal regularization, etc. (see [27] and references there, see
also [2, 8, 15, 19, 28, 29]). Alternatively, different multidimensional analogues of
the classical Darboux problem for the wave equation are considered in [4, 5, 17],
while for some related semilinear equations and systems see [18]. The existence
of bounded or unbounded solutions for the wave equation in R3 and R4, as well
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as for the Euler-Poisson-Darboux equation has been studied in [1, 2, 19, 15, 16,
12, 29].

Regarding the Protter problems with lower order terms see [11] and references
therein. Problems with more general boundary condition ut + α(x)u = 0 on
Σ0 are studied in [11, 12]. Some possible regularization methods involving
integrodifferential or nonlocal terms can be found in [8].

For the Protter problems for equations of mixed hyperbolic-elliptic type pro-
posed in [33], Aziz and Schneider [3] proved an uniqueness result in the linear
case (see also [5]). Concerning nonexistence principle for nontrivial solution of
semilinear mixed-type equations in multidimensional case, we refer to [22].

In 1960 Garabedian [10] proved the uniqueness of a classical solution of Pro-
ter problem. However, generally, Problem P2 is not classically solvable and a
necessary condition for the existence of a classical solution is the orthogonality
of the right-hand side function f to all solutions of the corresponding homo-
geneous adjoint Problem P2∗. Here in Lemma 1.1, the solutions W n

k,m were
constructed with the help of the functions En

k defined by (1.2). The alternate
representation in terms of the Gauss hypergeometric function F = F (a, b, c;x)

En
k (x, t) = |x|n−2k−1(1− t2/|x|2)n−2kF (n− k + 1/2,−k, 1/2; t2/|x|2)

can be found in Khe Kan Cher [19]. In [26] there are some solutions for the
three-dimensional analogue of the homogeneous Problem P2∗.

Let us look back at Theorem 1.1 and the necessary orthogonality conditions
(1.3) for the existence of bounded solutions of Problem P2. Naturally, these
conditions include the functions W n

k,m from Lemma 1.1. However, notice that
there are also some others.

Remark 2.1. It is interesting that the conditions (1.3) include the case of
even n = 2k. Notice that the functions W 2k

k,m(x, t) are not classical solutions
of the homogenous adjoint Problem P2∗. Actually, they satisfy the homogenous
wave equation in Ω and (W 2k

k,m)t vanish on Σ0, but W 2k
k,m is not zero on Σ2.

In addition, the functions W 2k
k,m have a singularity at the origin O like |x|−1,

however this singularity is integrable in the domain Ω.

Instead of imposing an infinite number of orthogonality conditions on f , Popi-
vanov and Schneider [26, 27] introduced the concept of generalized solution that
allows the solution to have singularity on the inner cone Σ2. Here, Theorem 1.2
describes the affect of the parameters βnk,m on the behavior of the generalized so-
lution of Problem P2. The constants βnk,m are defined by (1.5) and are obviously
related to the orthogonality conditions (1.3). When the right-hand function is
a harmonic polynomial (1.4), the asymptotic expansion in Theorem 1.2 shows
that the generalized solution could be bounded only if all βnk,m involved are zero.
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Corollary 2.1. Suppose that the right-hand side function f ∈ C1(Ω) has the
form (1.4) and satisfies the orthogonality conditions

(2.1)

∫
Ω

W n
k,m(x, t)f(x, t) dxdt = 0

for all n = 0, . . . , l; k = 0, . . . ,
[
n
2

]
and m = 1, . . . , 2n + 1. Then the unique

generalized solution u(x, t) of Problem P2 belongs to C2(Ω\O), is bounded and
satisfies the a priori estimate

max
Ω
|u| ≤ C ||f ||C1(Ω) .

On the other hand, without any orthogonality conditions on f , the following
result is obtained.

Corollary 2.2. The generalized solution u of Problem P2 with a right-hand
side function f ∈ C1(Ω) in the form (1.4) satisfies the a priori estimate

(2.2) |u(x, t)| ≤ C

(
max

Ω
|f |
)

(|x|2 + t2)−(l+1)/2.

The influence of the orthogonality conditions (2.1) on the exact behavior of
the generalized solution is clarified by the case (iii) of Theorem 1.2. It shows
that for fixed indexes (n, k,m), the corresponding condition (2.1) “controls” one
power-type singularity.

In the Corollaries 2.1 and 2.2 the emphasis is on the extreme cases: when
all orthogonality conditions (2.1) are fulfilled or, alternatively, when none of
them are satisfied. In both cases the exact behavior of the solution is given.
The estimate (2.2), presented here is analogous to known estimates for Protter
problems in R3 ([27]) and in Rm ([1]). It is interesting that singularities of
the generalized solutions are isolated at the origin and do not propagate in the
direction of the bicharacteristics on the characteristic cone Σ2. Traditionally,
it is assumed that the wave equation, with sufficiently smooth right-hand side
cannot have a solution with an isolated singular point as in Hörmander [13,
Chapter 24.5]. The case here is different since the point of singularity O lies on
the non-characteristic part of the boundary Σ0 as well as on the characteristic
part Σ2.

Remark 2.2. The Problem P2 in R4 with harmonic polynomial on the right-
hand side is also studied in [29]. However, the explicit asymptotic expansion here
has no analogue in [29], where only the behavior of the singularities is given.
Additionally, if the orthogonality conditions (2.1) are fulfilled, the Corollary 2.1
states that the generalized solution is in fact bounded, while the estimates in
[29, Theorem 1.1] still allow the solution to have some logarithmic singularities.

Remark 2.3. Let us compare Protter problems in R3 (as treated in [28, 7]) and
R4 here (see also [29, 30]). In both cases the study these BVPs is based on the
properties of the special Legendre functions. Instead of Legendre polynomials Pn
here, in the three-dimensional case the Legendre functions Pν with non-integer
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indexes ν = n − 1/2 are used (for their properties see [9]). One can easily
modify both these techniques to obtain similar results for the (m+1)-dimensional
problems: for even m (analogous to R3 case) or for odd m (the present case R4).
Some related results for Protter problems in Rm+1 are presented in [1, 2].

In the general case when the right-hand side function f is smooth enough,
Theorem 1.3 implies that the necessary conditions (1.3) for existence of bounded
solutions from Theorem 1.1 are also sufficient. Further, this means that there
are no other nontrivial classical solutions of the homogenous adjoint Problem
P2∗ except those listed in Lemma 1.1.

Remark 2.4. We point out the differences between Theorem 1.3 and the re-
sults from [31] for Protter Problem P1 with Dirichlet type boundary condition on
Σ0. First, notice that in the case when right-hand side function f is harmonic
polynomial of order l the solution of Problem P2 may have worse singularity
(like (|x|2 + t2)−(l+1)/2, see Theorem 1.2) than the solution of Problem P1 (like
(|x|2 + t2)−l/2, see [30]). For the general case we are able to reduce the assump-
tions on f – in Theorem 1.3 we assume f ∈ C6(Ω), while in [31, Theorem 1.1]
smoother f ∈ C10 is required. In order to achieve this, we rely on the more
accurate estimates for the special functions proven in Section 3.

3. Estimates for the special functions

For the proof of the main results we will need some properties of the spherical
functions Y m

n in R3. They are naturally expressed on the unit sphere S2 :=
{(x1, x2, x3) : x2

1 +x2
2 +x2

3 = 1} in spherical polar coordinates. Let us introduce
polar coordinates (r, θ, ϕ) in R3:

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ.

where 0 ≤ θ < π, 0 ≤ ϕ < 2π, r > 0. Then the spherical functions, expressed
in terms of θ and ϕ as in the traditional definition on S2 (see [14]), are given by

(3.1)

Y 2k+1
n (θ, ϕ) =

√
2n+ 1

2π

√
(n− k)!

(n+ k)!
P k
n (cos θ) cos kϕ, k = 1, ..., n

Y 2k
n (θ, ϕ) =

√
2n+ 1

2π

√
(n− k)!

(n+ k)!
P k
n (cos θ) sin kϕ, k = 1, ..., n,

and Y 1
n (θ, ϕ) = ((2n+1)/4π)1/2Pn(cos θ). Here Pn are the Legendre polynomials

defined by the Rodrigues’ formula

(3.2) Pn(s) :=
1

2nn!

dn

dsn
(s2 − 1)n =

[n2 ]∑
k=0

a2ks
n−2k, a2k 6= 0.

while P k
n are the associated Legendre polynomials that can be defined as

P k
n (s) = (−1)k(1− s2)k/2

dk

dsk
Pn(s).
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The functions Y m
n satisfy the differential equation

(3.3)
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
Y m
n

)
+

1

sin2 θ

∂2

∂ϕ2
Y m
n + n(n+ 1)Y m

n = 0.

and form a complete orthonormal system in L2(S2) (see [14]).
Using Cartesian coordinates as in Section 1, one can define the spherical

functions as Y m
n (x1, x2, x3) := Y m

n (θ, ϕ) for x ∈ S2, or by

Y 2m
n (x1, x2, x3) = Cm

n

dm

dxm3
Pn(x3) Im {(x2 + ix1)m} , for m = 1, ..., n

and

Y 2m+1
n (x1, x2, x3) = Cm

n

dm

dxm3
Pn(x3) Re {(x2 + ix1)m} , for m = 0, ..., n,

where Cm
n are constants. In the present paper, we keep the same notation Y m

n

for the radial extension of the spherical function to R3\{O}, i.e. Y m
n (x) :=

Y m
n (x/|x|) for x ∈ R3\{O}. According to the properties of Y m

n (x), the function
|x|nY m

n (x) is a homogenous harmonic polynomial of order n in the variables
x1, x2, x3.

We will need some estimates for Y m
n and the special functions involved in the

representations of the solutions of the Protter problems. Let us start with the
Legendre polynomials Pn.

Lemma 3.1. The following estimates hold for x ∈ [0, 1] :

(3.4) |Pn(x)| ≤ 1, |P ′n(x)| ≤ n(n+ 1)

2
,

(3.5) |Pn(x)− Pn(0)| ≤ nx .

Proof. The estimates (3.4) are proved for example in [29]. Here we will show
that (3.5) holds. Using Bonnet’s recursion formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

we get (n+ 1)Pn+1(0) = −nPn−1(0) and

(n+ 1)(Pn+1(x)− Pn+1(0)) = (2n+ 1)xPn(x)− n(Pn−1(x)− Pn−1(0)).

Thus
|Pn+1(x)− Pn+1(0)| ≤ 2x+ |Pn−1(x)− Pn−1(0)|.

From here and the equalities P0(x) − P0(0) = 0 and P1(x) − P1(0) = x we get
the estimate (3.5) by induction. �

In order to study the first derivatives of the generalized solution of the Protter
problem, we will need to estimate also the first derivatives with respect to x of
Y m
n (x) := Y m

n (x/|x|) – the radial extension of the spherical function to R3\{O}:
∂

∂x1

Y m
n := r−1

[
cos θ cosϕ(Y m

n )θ − (sin θ)−1 sinϕ(Y m
n )ϕ

]
,

(3.6)
∂

∂x2

Y m
n = r−1

[
cos θ sinϕ(Y m

n )θ + (sin θ)−1 cosϕ(Y m
n )ϕ

]
,
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∂

∂x3

Y m
n := −r−1 sin θ(Y m

n )θ.

Using the so called addition theorem for Legendre polynomials we get the fol-
lowing result.

Lemma 3.2. For n ≥ 1 the functions Y m
n (x) satisfy the equalities

2n+1∑
m=1

(Y m
n )2 =

2n+ 1

4π
,

2n+1∑
m=1

3∑
i=1

(
∂

∂xi
Y m
n

)2

=
n(n+ 1)(2n+ 1)

2π|x|2
.

Proof. From the definition (3.1) of Y m
n follows that

2n+1∑
m=1

(Y m
n )2 =

2n+ 1

4π

[
(Pn(cos θ))2 + 2

n∑
k=1

(n− k)!

(n+ k)!
(P k

n (cos θ))2

]
According to the Addition theorem (see [21])

(3.7)

Pn(cos θ cos θ1 + sin θ sin θ1 cosϕ)

= Pn(cos θ)Pn(cos θ1) + 2
n∑
k=1

(n− k)!

(n+ k)!
P k
n (cos θ)P k

n (cos θ1) cos kϕ.

With θ = θ1 and ϕ = 0 one derives the equality

(Pn(cos θ))2 + 2
n∑
k=1

(n− k)!

(n+ k)!
(P k

n (cos θ))2 = 1.

This means that
2n+1∑
m=1

(Y m
n )2 =

2n+ 1

4π
.

Using (3.7) again, we get the required property of the derivatives of Y m
n . Directly

from (3.6) for the squares of the derivatives with respect to x we have

(3.8)
∑
|α|=1

(Dα
xY

m
n )2 = r−2(Y m

n )θ
2 + r−2(sin θ)−2(Y m

n )ϕ
2

and from the definition (3.1) of Y m
n we find

2n+1∑
m=1

(
∂Y m

n

∂θ

)2

=
2n+ 1

4π

[(
∂

∂θ
Pn(cos θ)

)2

+ 2
n∑
k=1

(n− k)!

(n+ k)!

(
∂

∂θ
P k
n (cos θ)

)2
]

;

2n+1∑
m=1

(
∂Y m

n

∂ϕ

)2

=
2n+ 1

2π

n∑
k=1

k2 (n− k)!

(n+ k)!
(P k

n (cos θ))2.
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Put ϕ = 0 and differentiation of (3.7) with respect to θ and θ1 gives

P ′′n (cos θ cos θ1 + sin θ sin θ1) {cos θ sin θ1 − sin θ cos θ1} {sin θ cos θ1 − cos θ sin θ1}
+P ′n(cos θ cos θ1 + sin θ sin θ1) {cos θ cos θ1 + sin θ sin θ1}

= sin θ sin θ1P
′
n(cos θ)P ′n(cos θ1) + 2 sin θ sin θ1

n∑
k=1

(n− k)!

(n+ k)!
P k′
n (cos θ)P k′

n (cos θ1).

With θ = θ1 we derive(
∂

∂θ
Pn(cos θ )

)2

+ 2
n∑
k=1

(n− k)!

(n+ k)!

(
∂

∂θ
P k
n (cos θ)

)2

= P ′n(1).

Analogously, after differentiating (3.7) twice with respect to ϕ:

P ′′n (cos θ cos θ1 + sin θ sin θ1 cosϕ) sin2 θ sin2 θ1 sin2 ϕ

−P ′n(cos θ cos θ1 + sin θ sin θ1 cosϕ) sin θ sin θ1 cosϕ

= −2
n∑
k=1

k2 (n− k)!

(n+ k)!
P k
n (cos θ)P k

n (cos θ1) cos kϕ.

Then substituting ϕ = 0 and θ1 = θ we have

2
n∑
k=1

k2 (n− k)!

(n+ k)!

(
P k
n (cos θ)

)2
= (sin θ)2P ′n(1).

Since P ′n(1) = n(n+ 1)/2 we conclude that

2n+1∑
m=1

∑
|α|=1

(Dα
xY

m
n )2 =

n(n+ 1)(2n+ 1)

2πr2
.

�
As a direct consequence, we find the next estimates for the spherical functions

radially extended out of S2.

Corollary 3.1. For n ≥ 1 the functions Y m
n (x) satisfy the inequalities

(3.9) |Y m
n (x)| ≤ n1/2 ,

(3.10)
2n+1∑
m=1

|Y m
n (x)| ≤ n ,

(3.11)
2n+1∑
m=1

3∑
i=1

∣∣∣∣ ∂∂xiY m
n (x)

∣∣∣∣ ≤ 3n2|x|−1 ,

(3.12)
2n+1∑
m=1

[
|(Y m

n )θ|+
∣∣(sin θ)−1(Y m

n )ϕ
∣∣] ≤ 3n2 .
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Proof. Obviously

|Y m
n (x)| ≤

[
2n+1∑
m=1

(Y m
n )2

]1/2

≤ n1/2 .

The estimates (3.10) and (3.11) follow directly from the Cauchy-Schwarz in-
equality and Lemma 3.2

2n+1∑
m=1

|Y m
n (x)| ≤

√
2n+ 1

[
2n+1∑
m=1

(Y m
n )2

]1/2

=
2n+ 1

2
√
π
≤ n ,

2n+1∑
m=1

3∑
i=1

∣∣∣∣ ∂∂xiY m
n (x)

∣∣∣∣ ≤ √6n+ 3

[
2n+1∑
m=1

3∑
i=1

(
∂

∂xi
Y m
n

)2
]1/2

=
(2n+ 1)

√
3n(n+ 1)√

2π|x|
.

Finally (3.12) follows from the equality (3.8):

2n+1∑
m=1

{
|(Y m

n )θ|+
∣∣(sin θ)−1(Y m

n )ϕ
∣∣} ≤ √4n+ 2

{
2n+1∑
m=1

[
(Y m

n )θ
2 + (sin θ)−2(Y m

n )ϕ
2
]}1/2

= |x|
√

4n+ 2

[
2n+1∑
m=1

3∑
i=1

(
∂

∂xi
Y m
n

)2
]1/2

≤ 3n2 .

�
Generally, if the function f(x, t) is smooth enough, it can be represented as

a harmonic series. In order to estimate the coefficients of the series we will
use the next result. It is based on the fact that the spherical functions are
eigenfunctions for the Laplace operator on the sphere S2.

Lemma 3.3. Let k ∈ N ∪ {0}.
1)([31]) Let f ∈ C2k(Ω). Then it has the representation

f(x, t) =
∞∑
n=0

2n+1∑
m=1

fmn (|x|, t)Y m
n (x)

and for n ∈ N
|fmn | ≤ Cn−2k ‖f‖C2k(Ω) .

2) Suppose f ∈ C2k+1(Ω) then for n ∈ N
2n+1∑
m=1

|fmn | ≤ Cn−2k|x| ‖f‖C2k+1(Ω) .

Proof. The estimate in the case 1) follows directly from the fact that the
spherical functions are eigenfunctions for the spherical Laplacean ∆S

∆SF :=
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
F

)
+

1

sin2 θ

∂2

∂ϕ2
F,
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i.e., the equation (3.3) shows that ∆SY
m
n = −n(n+1)Y m

n . In fact fmn is bounded
by the Fourier coefficient of (∆S)kf :

|fmn | =

∣∣∣∣∣∣
∫
S2

Y m
n f dσ

∣∣∣∣∣∣ ≤ Cn−2k

∣∣∣∣∣∣
∫
S2

Y m
n (∆S)kf dσ

∣∣∣∣∣∣ .
For detail proof of 1) see [31] and [35].

Next we will prove the case 2) with k = 0. Let F ∈ C1(Ω) then

Fm
n (r, t) :=

∫
S2

Y m
n F dσ = −n−1(n+ 1)−1

π∫
0

 2π∫
0

(∆SY
m
n )F dϕ

 sin θdθ .

Integrating by parts gives

Fm
n =

1

n(n+ 1)

π∫
0

 2π∫
0

(
sin θ

∂

∂θ
Y m
n

∂

∂θ
F +

1

sin θ

∂

∂ϕ
Y m
n

∂

∂ϕ
F

)
dϕ

 dθ ,
where

sin θ
∂

∂θ
F = r sin θ cos θ cosϕ

∂

∂x1

F + r sin θ cos θ sinϕ
∂

∂x2

F − r sin2 θ
∂

∂x3

F

∂

∂ϕ
F = −r sin θ sinϕ

∂

∂x1

F + r sin θ cosϕ
∂

∂x2

F.

Therefore using (3.12) we have

2n+1∑
m=1

|Fm
n | ≤

C|x|
n2
||F ||C1(Ω)

2n+1∑
m=1

π∫
0

 2π∫
0

(
|(Y m

n )θ|+
∣∣(sin θ)−1(Y m

n )ϕ
∣∣) dϕ

 dθ
≤ C1|x| ‖F‖C1(Ω) .

To prove the case 2) it remains to substitute (∆S)kf ∈ C1(Ω) for F in this
estimate. �

4. Necessary conditions for bounded solution

Here we will prove of the necessity of the orthogonality conditions (1.3) for
the existence of a bounded solution.
Proof of Theorem 1.1. Let u be a bounded generalized solution of Problem
P2. Let us fix a function χ(s) ∈ C∞(R) such that χ(s) = 0 for s ≤ 1, and
χ(s) = 1 for s ≥ 2.

For fixed indexes n ∈ N ∪ {0}, 0 ≤ k ≤
[
n
2

]
, 1 ≤ m ≤ 2n + 1, consider the

functions

Wq(x, t) = χ (2q(|x| − t)) χ(q|x|) W n
k,m(x, t)
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for q ∈ N. Obviously, Wq ∈ C∞(Ω) vanishes on a neighborhood of Σ2 and
(Wq)t = 0 on Σ0. Therefore according to Definition 1.1 we have∫

Ω

{ut(Wq)t − ux1(Wq)x1 − ux2(Wq)x2 − ux3(Wq)x3} dxdt =

∫
Ω

fWq dxdt

and thus

(4.1)

∫
Ω

fWq dxdt =

∫
Ω

u {(Wq)x1x1 + (Wq)x2x2 + (Wq)x3x3 − (Wq)tt} dxdt.

We want to prove that
∫

Ω
fW n

k,mdxdt = 0 for all n ∈ N ∪ {0}, k = 0, . . . , [n/2],

m = 1, . . . , 2n + 1. Notice that |fW n
k,m| ≤ C|x|−1 and then the integral∫

Ω
|fW n

k,m|dxdt is convergent. The function f ∈ C(Ω) and thus

lim
q→+∞

∫
Ω

fWq dxdt =

∫
Ω

fW n
k,m dxdt .

Therefore it is sufficient to prove that when q → +∞ the right hand side of the
equality (4.1) tends to zero for n ∈ N∪{0}, k = 0, . . . , [n/2], m = 1, . . . , 2n+ 1.

Using the fact that the functions W n
k,m are solutions of the homogenous wave

equation in Ω, straight forward computations show that

3∑
i=1

(Wq)xixi − (Wq)tt =

[
(W n

k,m)r + (W n
k,m)t +

1

r
W n
k,m

]
4qχ′1χ2 + 4q2W n

k,mχ
′
1χ
′
2

+

[
(W n

k,m)r +
1

r
W n
k,m

]
2qχ1χ

′
2 + q2W n

k,mχ1χ
′′
2

where r = |x|, while χ1 and χ2 stand for χ(2q(r − t)) and χ(qr) respectively.
Expressed with spherical polar coordinates (r, ϕ, θ) in R3∫

Ω

u [(Wq)x1x1 + (Wq)x2x2 + (Wq)x3x3 − (Wq)tt] dxdt

=

∫
Ω

{ [
(En

k )r + (En
k )t +

1

r
En
k

]
4qχ′1χ2 + q2En

k (4χ′1χ
′
2 + χ1χ

′′
2)

+

[
(En

k )r +
1

r
En
k

]
2qχ1χ

′
2

}
uY m

n (θ, ϕ) r2 sin θ drdϕdθdt.

For simplicity, we consider only one of the terms from the definition of the
function En

k (r, t) (see (1.2)). Let us denote by

w(r, t) =
(r2 − t2)n−k−i

rn−2i+1

defined in D = {0 < t < 1/2 , t < r < 1 − t}, and consider the subsets
D1,q = D∩{1/(2q) < r− t < 1/q}∩{r > 1/q} and D2,q = D∩{1/q < r < 2/q}.

Since the functions u, χ′, χ′′ and Y m
n are bounded, the function χ′(qr) = 0

in D\D2,q and χ′(2q(r− t))χ(qr) is zero in D\D1,q, it is sufficient to prove that
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the integrals

I1,q := q

∫
D1,q

∣∣wr + wt + r−1w
∣∣ r2 drdt ;

I2,q := q

∫
D2,q

∣∣wr + r−1w
∣∣ r2 drdt

and

I3,q := q2

∫
D2,q

w r2 drdt

tend to zero as q →∞, for n ∈ N ∪ {0}, k = 0, . . . , [n/2] and i = 0, ..., k.
We get limq→∞ I3,q = 0 from the estimate |w| ≤ rn−2k−1 in D and thus

I3,q ≤ q2

∫ r=2/q

r=0

∫ t=r

t=0

rn−2k+1 dtdr ≤ q2C

∫ 2/q

0

r2 dr ≤ C1q
−1.

For I2,q let us compute first

|wr + r−1w|r2 =
(r2 − t2)n−k−i−1

rn−2i
[(n− 2k)r2 + (n− 2i)t2] ≤ C,

because n−k−i−1 could be negative only when n−2k = n−2i = 0. Therefore,
we have

I2,q ≤ q

∫ r=2/q

r=0

∫ t=r

t=0

C dtdr ≤ C1q
−1

and thus limq→∞ I2,q = 0.
Finally, to evaluate I1,q we use the estimate

|wr + wt + r−1w|r2 =
(r2 − t2)n−k−i−1

rn−2i
(r − t) |(n− 2k)r − (n− 2i)t| ≤ C

r − t
r

and find

I1,q ≤ qC

∫ r=1

r=1/q

∫ t=r

t=r−1/q

r − t
r

dtdr ≤ q−1C1

∫ r=1

r=1/q

r−1 dtdr ≤ C2q
−1 ln q

that shows that limq→∞ I1,q = 0. �

5. Previous results

In this section we quote some results from [29] that will be essentially the
starting point for the proofs of Theorems 1.2 and 1.3. We start with the follow-
ing uniqueness result.

Theorem 5.1. [29] The Problem P2 has at most one generalized solution.

In [29] the right-hand side function f of the wave equation (1.1) is fixed
as a harmonic polynomial (1.4). Then the following existence result for the
generalized solution is valid.
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Theorem 5.2. [29] Suppose that the right-hand side f ∈ C1(Ω) has the form
(1.4) where l ∈ N ∪ {0}. Then, the unique generalized solution u(x, t) of the
Problem P2 in Ω exists and has the form

(5.1) u(x, t) =
l∑

n=0

2n+1∑
m=1

umn (|x|, t)Y m
n (x) ∈ C2(Ω\O).

In fact, the function umn (|x|, t) from (5.1) is the solution of a two-dimensional
boundary value problem that involves only the corresponding coefficient fmn (|x|, t)
from (1.4). In order to formulate this BVP, it is natural to introduce polar co-
ordinates (r, θ, ϕ) in R3: r, θ and ϕ are such that 0 ≤ θ < π, 0 ≤ ϕ < 2π, r > 0
and

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ.

In the special case when f has the form

f(r, θ, ϕ, t) = fmn (r, t)Y m
n (θ, ϕ),

according to Theorem 5.2 we may look for a solution of the same form

u(r, θ, ϕ, t) = umn (r, t)Y m
n (θ, ϕ).

Then we can reduce the (3+1)-D Protter problem to some BVPs in R2. From
the properties of the spherical functions it follows that the function umn (r, t) is
a solution of the equation

(5.2) urr +
2

r
ur − utt −

n(n+ 1)

r2
u = f(r, t)

with right-hand side f(r, t) := fmn (r, t), in the domain D = {(r, t) : 0 < t <
1/2, t < r < 1− t}, bounded by

S0 = {(r, t) : t = 0, 0 < r < 1},

S1 = {(r, t) : 0 < t < 1/2, r = 1− t}, S2 = {(r, t) : 0 < t < 1/2, r = t}.
Thus, we arrive at the next two dimensional problems.
Problem P21. Find a solution of the equation (5.2) in the domain D which
satisfies the boundary conditions

P21 : ut|S0 = 0, u|S1 = 0.

Finally, we substitute

v = ru(r, t) , g = rf(r, t)

and

ξ =
r + t

2
, η =

r − t
2

and get the following problem.
Problem P22. Find a solution of the equation

(5.3) vξη −
n(n+ 1)

(ξ + η)2
v = g
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in the domain D1 = {(ξ, η) ∈ R2 : 0 < η < ξ < 1/2} with boundary conditions

P22 :

(
∂v

∂ξ
− ∂v

∂η

)
(η, η) = 0, v (1/2, η) = 0, for η ∈ (0, 1/2].

In [29] the solution of Problem P22 is constructed with the help of the Rie-
mann’s function

R(ξ1, η1; ξ, η) = Pn

(
(ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη

(ξ1 + η1)(ξ + η)

)
for the equation (5.3) found by Copson [6]. The problem is reduced to an
integral equation of Volterra type. Then this integral equation is solved using
some formulas from the book by Samko, Kilbas and Marichev [34] and the
properties of the Melin transform. According to formulas (23), (24) and (27) in
the proof of Theorem 3.1 from [29] we can write down the following result.

Lemma 5.1. The solution v(ξ, η) of Problem P22 is given by

(5.4)

v(ξ, η) = τ(ξ) +

1
2∫
ξ

τ(ξ1)
∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

−

1
2∫
ξ

 η∫
0

Pn

(
(ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη

(ξ1 + η1)(ξ + η)

)
g(ξ1, η1)dη1

 dξ1,

where

(5.5) τ(ξ) =

ξ∫
1
2

Pn

(
ξ1

ξ

)
G(ξ1)dξ1.

and

(5.6)

G(ξ) :=

1
2∫
ξ

 ξ∫
0

Pn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)(
∂

∂ξ1

− ∂

∂η1

)
g(ξ1, η1)dη1

 dξ1

−
ξ∫

0

Pn

(
η1 + 2ξ2

ξ(2η1 + 1)

)
g

(
1

2
, η1

)
dη1 −

1
2∫
ξ

Pn

(
ξ

ξ1

)
g(ξ1, 0)dξ1.

Finally, we will need the relation between the functions En
i (r, t) := En

i (x, t),
with r = |x|, defined in (1.2) and the Legendre polynomials Pn.

Lemma 5.2. [29] Define the functions

hk(ξ, η) =

ξ∫
η

skPn

(
ξη + s2

s(ξ + η)

)
ds.



SEMI-FREDHOLM SOLVABILITY FOR PROTTER-MORAWETZ PROBLEM 19

Then the equality

r−1 ∂

∂t

[
hn−2i

(
r + t

2
,
r − t

2

)]
= cni E

n
i (r, t)

holds for i = 0, . . . ,
[
n
2

]
with some nonzero constants cni .

6. Proofs of the main results

In this section we will prove Theorem 1.2 and Theorem 1.3. The proofs
are based on an asymptotic expansion formula for the solution of the two-
dimensional Problem P21. In order to formulate it, let us concentrate first on
Problem P2 with right-hand side functions f of the form

f(x, t) = fmn (r, t)Y m
n (θ, ϕ),

with fixed n,m ∈ N ∪ {0} and m ≤ 2n + 1. We will use the results stated in
Section 5. The unique generalized solution u of Problem P2 also has the form

u(x, t) = umn (r, t)Y m
n (θ, ϕ).

The function umn (r, t) is the solution of Problem P21 with the function f(r, t) :=
fmn (r, t) as a right-hand side in the equation (5.2). We are interested in the exact
behavior of umn (r, t) at (0, 0). One expects it to depend on the constants

(6.1) βnk :=

1
2∫

0

 1−t∫
t

En
k (r, t)f(r, t)r2dr

 dt for k = 0, ...,
[n

2

]
,

that correspond to βnk,m defined in (1.5) for the Problem P2. For simplicity,
denote further

A0 := ||f ||C(D) ; A1 := ||f ||C(D) + ||rft||C(D) ; A2 := ||rf ||C1(D) + ||rft||C1(D) ;

A3 := ||rf ||C1(D) + ||rft||C1(D) + ||rftt||C1(D) + ||r2ftrr||C(D) .

Theorem 6.1. Let f(r, t) and rft(r, t) ∈ C(D). Then the generalized solution
u(r, t) of Problem P21 belongs to C2(D\(0, 0)) and has the following asymptotic
expansion at (0, 0)

u(r, t) =

[n/2]∑
k=0

r−1(r + t)−(n−2k)βnkF
n
k (r, t) + F n(r, t),

where:
1) the functions F n

k ∈ C2(D\(0, 0)) are independent of f , bounded, and satisfy
F n
k (t, t) ≡ const 6= 0.

2) the function F n ∈ C2(D\(0, 0)) satisfies the following estimates:

|F 0(r, t)| ≤ C||rf ||C(D),

|(F 0)r(r, t)|+ |(F 0)t(r, t)| ≤ Cr−1||rf ||C(D),

and for n ≥ 1

(6.2) |F n(r, t)| ≤ CA1n
2 (1 + | ln r|) .
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If also rf and rft ∈ C1(D), then

(6.3) |F n(r, t)| ≤ Cr−1(A0n
2 + A2),

and if additionally rftt ∈ C1(D) and r2ftrr ∈ C(D), then

(6.4) |(F n)r(r, t)|+ |(F n)t(r, t)| ≤ Cr−3(A1n
2 + CA3),

where in all inequalities the constant C is independent of n and f .

The proof of this result is quite long and technical and we leave it for the last
Section 7. Here we will use Theorem 6.1 to prove Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Assume that the right-hand side function f is a
harmonic polynomial (1.4). Then the unique generalized solution u(x, t) also
is a harmonic polynomial (5.1), according to Theorem 5.2. Furthermore, the
functions umn (r, t) are solutions of Problem P21 with right-hand side fmn that
can be represented as

(6.5) fmn (r, t) :=

π∫
0

 2π∫
0

f(r, θ, ϕ, t)Y m
n (θ, ϕ)dϕ

 sin θdθ.

When f ∈ C1(Ω) we have fmn ∈ C1(D) and obviously

(6.6) ||fmn (r, t)||C1(D) ≤ C||f(x, t)||C1(Ω).

The definition of functions W n
k,m from Lemma 1.1 and (6.5) give the identity

(6.7)

1
2∫

0

 1−t∫
t

En
k (r, t)fmn (r, t)r2dr

 dt =

∫
Ω

W n
k,m(x, t)f(x, t)dxdt,

which shows that βnk = βnk,m, according to their definitions (6.1) and (1.5).
Now we can apply Theorem 6.1 for the functions umn (r, t) and fmn (r, t). Using

(6.6) and (6.7) we get the expansion

umn (r, t) =

[n/2]∑
k=0

r−1(r + t)−(n−2k)βnk,mF
n,m
k (r, t) + F n,m(r, t),

where |F n,m(r, t)| ≤ C ||f ||C1(Ω), |F
n,m
k (r, t)| ≤ C and F n,m

k (t, t) = const 6= 0.
Summing up over n and m one gets the desired expansion.

Finally, to prove property (iii), let us fix a direction (α, 1) := (α1, α2, α3, 1)
with α1 = sin θ0 cosϕ0, α2 = sin θ0 sinϕ0 and α3 = cos θ0. Then for the functions
F n
k,m from (1.6) we have

F n
k,m(αt, t) := 2(2k−n+1)/2F n,m

k (t, t)Y m
n (ϕ0, θ0)

and thus, there are some nonzero constants Cp,k,m such that

lim
t→+0

Fp(αt, t) =

[(l−p+1)/2]∑
k=0

2p+4k−1∑
m=1

Cp,k,m β
p+2k−1
k,m Y m

p+2k−1(ϕ0, θ0).



SEMI-FREDHOLM SOLVABILITY FOR PROTTER-MORAWETZ PROBLEM 21

Therefore the property (iii) follows from the fact that the spherical functions
Y m
n are linearly independent. �

Besides Theorem 6.1, the proof of Theorem 1.3 relies on and the estimates
from Section 3 for the special functions.
Proof of Theorem 1.3. The function f ∈ C6(Ω) can be represented as

f(x, t) =
∞∑
n=0

2n+1∑
m=1

fmn (|x|, t)Y m
n (x).

The generalized solution of Problem P2 could be formally written in the form

(6.8) u(x, t) =
∞∑
n=0

2n+1∑
m=1

umn (|x|, t)Y m
n (x),

where umn (r, t) is the solution of Problem P21 with right-hand side fmn . We
will prove that the series (6.8) and its derivatives are uniformly convergent in
Ω ∩ {r ≥ ε} for ε > 0, and that u is bounded.

According to Lemma 3.3 the series for f and its first derivatives uniformly
converge. For the derivatives with respect to xi and with respect to r, there
holds the relation

3∑
i=1

xi
∂

∂xi
f(x, t) =

∞∑
n=0

2n+1∑
m=1

r
∂

∂r
fmn (r, t)Y m

n (x),

and therefore r(fmn )r ∈ C(D). A similar argument shows that rfmn , r(fmn )t,
r(fmn )tt ∈ C1(D) and r2(fmn )trr ∈ C(D) and we can apply Theorem 6.1.

First, using to Lemma 3.3 case 1) with k = 3 and k = 2 we see that for n > 0

(6.9) ||fmn ||C(D) ≤ Cn−6 ‖f‖C6(Ω) ,

(6.10) ||rfmn ||C1(D) + ||r(fmn )t||C1(D) ≤ Cn−4 ‖f‖C6(Ω) .

On the other hand, Lemma 3.3 case 2) with k = 2 and k = 1 gives

(6.11)
2n+1∑
m=1

||fmn ||C(D) ≤ Cn−4r ‖f‖C5(Ω) ,

(6.12)
2n+1∑
m=1

||(fmn )t||C(D) ≤ Cn−4r ‖ft‖C5(Ω) ,

(6.13)

2n+1∑
m=1

(
||rfmn ||C1(D) + ||rfmn ||C1(D) + ||r(fmn )tt||C1(D) + ||r2(fmn )trr||C(D)

)
≤ Cn−2r ‖f‖C6(Ω) .

Next we study the series (6.8). Using the notations of Theorem 6.1, we know
that when βnk = 0 for k = 0, ...,[n/2], the function umn (r, t) satisfies

umn (r, t) = F n(r, t)
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and then for n > 0 from (6.2), (6.3) and (6.4) we have estimates:

(6.14) |umn (r, t)| ≤ Cn2
(
||fmn ||C(D) + ||r(fmn )t||C(D)

)
(1 + | ln r|)

or alternatively

(6.15) |umn (r, t)| ≤ Cr−1
(
n2||fmn ||C(D) + ||rfmn ||C1(D) + ||r(fmn )t||C1(D)

)
,

and for the derivatives

(6.16)

|(umn )r(r, t)|+ |(umn )t(r, t)|

≤ Cr−3
(
n2 ‖fmn ‖C(D) + n2 ‖r(fmn )t‖C(D)

+||rfmn ||C1(D) + ||rfmn ||C1(D) + ||r(fmn )tt||C1(D) + ||r2(fmn )trr||C(D)

)
.

Then applying the estimate (3.9) for the spherical functions from Corol-
lary 3.1 and substituting (6.11) and (6.12) in (6.14) we find

2n+1∑
m=1

|umn Y m
n | ≤ Cn−5/2 (1 + | ln r|)

2n+1∑
m=1

(
||fmn ||C(D) + ||r(fmn )t||C(D)

)
≤ Cn−3/2

(
||f ||C5(Ω) + ||ft||C5(Ω)

)
.

On the other hand, first using (6.15) with (6.9) and (6.10), and then (3.12) for
the sum of derivatives of Y m

n , we get

2n+1∑
m=1

∑
|α|=1

|umnDα
(x,t)Y

m
n |

≤ Cn−4r−1||f ||C6(Ω)

2n+1∑
m=1

∑
|α|=1

|Dα
(x,t)Y

m
n | ≤ Cn−2r−2||f ||C6(Ω).

Combining (6.16) for the derivatives of u with (6.11), (6.12) and (6.13) gives

2n+1∑
m=1

∑
|α|=1

|Y m
n D

α
(x,t)u

m
n |

≤ Cn5/2r−3

2n+1∑
m=1

(
‖fmn ‖C(D) + ‖r(fmn )t‖C(D)

)
+Cn1/2r−3

2n+1∑
m=1

(
||rfmn ||C1(D) + ||rfmn ||C1(D) + ||r(fmn )tt||C1(D) + ||r2(fmn )trr||C(D)

)
≤ Cn−3/2r−2||f ||C6(Ω).

For the case n = 0 we have Y 1
0 = const and representation (6.5) shows that

|f 1
0 | ≤ C||f ||C(Ω). Therefore Theorem 6.1 gives

|u1
0Y

1
0 | ≤ C||f ||C(Ω),∑

|α|=1

|Dα
(x,t)u

1
0Y

1
0 | ≤ Cr−1||f ||C(Ω).
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After this preparation, we are ready to estimate the Fourier series (6.8) and
its first derivatives:

|u(x, t)| ≤ C||f ||C(Ω) + C
(
||f ||C5(Ω) + ||ft||C5(Ω)

) ∞∑
n=1

n−2

≤ C
(
||f ||C5(Ω) + ||ft||C5(Ω)

)
,

and ∑
|α|=1

|Dα
(x,t)u(x, t)|

≤ Cr−1||f ||C(Ω) + Cr−2||f ||C6(Ω)

∞∑
n=1

n−3/2 + Cr−2||f ||C6(Ω)

∞∑
n=1

n−2

≤ Cr−2||f ||C6(Ω).

Therefore we have u ∈ C1(Ω\O) since for each fixed ε > 0 the series (6.8)
uniformly converges in the set Ω ∩ {r ≥ ε} and the same holds for its first
derivatives.

Finally, we will prove that the function u(x, t) defined as the series (6.8) is the
generalized solution of Problem P2. First, notice the function umn (|x|, t)Y m

n (x)
is the generalized solution of Protter Problem P2 with right hand side function
fmn (|x|, t)Y m

n (x). Thus u ∈ C1(Ω\O) satisfies the boundary conditions ut|Σ0 = 0
and u|Σ1 = 0 just like all the terms umn Y

m
n . The proof of the case 2) from the

Definition 1.1 is straightforward – for a test function w and l ∈ N we have∫
Ω

l∑
n=0

2n+1∑
m=1

{(umn Y m
n )twt − (umn Y

m
n )x1wx1

−(umn Y
m
n )x2wx2 − (umn Y

m
n )x3wx3 − fmn Y m

n w} dxdt = 0

and the uniform convergence in Ω ∩ supp(w) of the series (6.8) and its first
derivatives, allow us to take the limit l→∞ in this equality. Therefore∫

Ω

{utwt − ux1wx1 − ux2wx2 − ux3wx3 − fw} dxdt = 0

and we see that u(x, t) is the generalized solution of Problem P2 with right-hand
side f(x, t). �

7. The proof of the asymptotic expansion in the two-dimensional
case

The proof of Theorem 6.1 is based on the results stated in Section 5. In
particular, according to Lemma 5.1 the solution u(r, t) of Problem P21 can be
constructed with help of the substitutions ξ = (r + t)/2, η = (r − t)/2 as

u(ξ + η, ξ − η) = (ξ + η)−1v(ξ, η),



24 N. POPIVANOV, T. POPOV AND A. TESDALL

where v(ξ, η) is defined by the formulas (5.4), (5.5), (5.6) and

g(ξ, η) = (ξ + η)f(ξ + η, ξ − η).

One can see that generally the integral in (5.5) blows up when ξ approaches 0,
and thus v(ξ, η) has singularity at (0, 0) even for smooth functions g(ξ, η).

Proof of Theorem 6.1:
A. Proof of the asymptotic formula.

We will study the behavior of the function

v(ξ, η) = (ξ + η)u(ξ + η, ξ − η),

given by the integral representation (5.4) from Lemma 5.1. The smoothness of
v(ξ, η) in (5.4) away from the point (0, 0) follows directly from the smoothness
of the function G(ξ). Next we will derive the asymptotic expansion of v(ξ, η)
at (0, 0).

First we will find the relation between the constants βnk and the function G(ξ)
defined by (5.6). Let us compute the integral

1
2∫

0

ξkG(ξ)dξ =

1
2∫

0

1
2∫
ξ

ξ∫
0

ξkPn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)(
∂

∂ξ1

− ∂

∂η1

)
g(ξ1, η1)dη1dξ1dξ

−

1
2∫

0

ξ∫
0

ξkPn

(
η1 + 2ξ2

ξ(2η1 + 1)

)
g

(
1

2
, η1

)
dη1dξ −

1
2∫

0

1
2∫
ξ

ξkPn

(
ξ

ξ1

)
g(ξ1, 0)dξ1dξ

=

1
2∫

0

ξ1∫
0

 ξ1∫
η1

ξkPn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)
dξ

( ∂

∂ξ1

− ∂

∂η1

)
g(ξ1, η1)dη1dξ1

−

1
2∫

0


1
2∫

η1

ξkPn

(
η1 + 2ξ2

ξ(2η1 + 1)

)
dξ

 g

(
1

2
, η1

)
dη1 −

1
2∫

0

 ξ1∫
0

ξkPn

(
ξ

ξ1

)
dξ

 g(ξ1, 0)dξ1

= −

1
2∫

0

ξ1∫
0

(
∂

∂ξ1

− ∂

∂η1

) ξ1∫
η1

ξkPn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)
dξ

 g(ξ1, η1)dη1dξ1

= −

1
2∫

0

ξ1∫
0

(
∂

∂ξ1

− ∂

∂η1

)
hk(ξ1, η1)g(ξ1, η1)dη1dξ1.

Now we can apply Lemma 5.2 to get(
∂

∂ξ
− ∂

∂η

)
hn−2i(ξ, η)

∣∣∣∣ ξ = (r + t)/2
η = (r − t)/2

= cni r E
n
i (r, t)
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and we conclude that

(7.1)

1
2∫

0

ξn−2iG(ξ)dξ = −

1
2∫

0

 ξ∫
0

(
∂

∂ξ
− ∂

∂η

)
hnn−2i(ξ, η)g(ξ, η)dη

 dξ

= −cni

1
2∫

0

 1−t∫
t

En
i (r, t)f(r, t)r2dr

 dt = −cni βni .

Next we consider the case n ≥ 1. The simpler case n = 0 will be discussed
separately later in the proof.

Let us expand the Legendre polynomial Pn in formula (5.5) using (3.2):

Pn(x) =

[n2 ]∑
k=0

a2kx
n−2k,

where a2k 6= 0. For τ(ξ) we get

τ(ξ) =

ξ∫
1
2

Pn

(
ξ1

ξ

)
G(ξ1)dξ1 =

[n2 ]∑
k=0

a2kξ
−n+2k

ξ∫
1
2

ξn−2k
1 G(ξ1)dξ1.

Applying (7.1) we find
(7.2)

τ(ξ) =

[n2 ]∑
k=0

a2kξ
−n+2k

cni βni +

ξ∫
0

ξn−2k
1 G(ξ1)dξ1

 =

[n2 ]∑
k=0

a2kc
n
i β

n
i ξ
−n+2k + ψ(ξ),

where

(7.3) ψ(ξ) =

[n2 ]∑
k=0

a2kξ
−n+2k

ξ∫
0

ξn−2k
1 G(ξ1)dξ1 =

ξ∫
0

Pn

(
ξ1

ξ

)
G(ξ1)dξ1.

Now, we want to estimate the function ψ(ξ). First, let us look more carefully
to the representation (5.6) of the function G(ξ) with g = rf(r, t):

(7.4)

G(ξ) =

1
2∫
ξ

 ξ∫
0

Pn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)(
∂

∂ξ1

− ∂

∂η1

)
g(ξ1, η1)dη1

 dξ1

−
ξ∫

0

Pn

(
η1 + 2ξ2

ξ(2η1 + 1)

)
g

(
1

2
, η1

)
dη1 −

1
2∫
ξ

Pn

(
ξ

ξ1

)
g(ξ1, 0)dξ1.

Since all the arguments of Pn here are in the interval [0, 1] and |Pn(x)| ≤ 1 for
x ∈ [0, 1] , it is obvious that

(7.5) |G(ξ)| ≤ CA1



26 N. POPIVANOV, T. POPOV AND A. TESDALL

and therefore

(7.6) |ψ(ξ)| ≤ CA1ξ,

where the constant C is independent of n and f .
We will need also a more accurate estimate for ψ(ξ) with higher power of ξ.

The first two integrals in (7.4) are bounded by 2A1ξ. For the last term

Jn(ξ) :=

1
2∫
ξ

Pn

(
ξ

ξ1

)
g(ξ1, 0)dξ1

more computations are required. First, using the estimate (3.5) from Lemma 3.1,
we have

|Jn(ξ)− Jn(0)| =

∣∣∣∣∣∣∣
1
2∫
ξ

Pn

(
ξ

ξ1

)
g(ξ1, 0)dξ1 − Pn(0)

1
2∫

0

g(ξ1, 0)dξ1

∣∣∣∣∣∣∣
≤ n

1
2∫
ξ

ξ

ξ1

|g(ξ1, 0)|dξ1 +

∣∣∣∣∣∣Pn(0)

ξ∫
0

g(ξ1, 0)dξ1

∣∣∣∣∣∣ ≤ CA1nξ
ε,

with some ε ∈ (0, 1) and the constant C is independent of n. Therefore

(7.7) |G(ξ) + Jn(0)| ≤ CA1nξ
ε.

Now, notice that the value of ψ(ξ) will not change if we add Jn(0) to G(ξ). This
is based on the equality

ξ∫
0

Pn

(
ξ1

ξ

)
Jn(0)dξ1 ≡ Pn(0)

1
2∫

0

g(ξ1, 0)dξ1

ξ∫
0

Pn

(
ξ1

ξ

)
dξ1 = 0,

that holds, because when n is odd number Pn(0) = 0, while for even indices
n, n > 0, the polynomial Pn is an even function and by the definition of the
Legendre polynomials (see (3.2)) follows

ξ∫
0

Pn

(
ξ1

ξ

)
dξ1 = ξ

1∫
0

Pn (t) dt =
1

2
ξ

1∫
−1

Pn (t) dt = cξ

1∫
−1

dn

dtn
{

(1− t2)n
}
dt = 0.

Thus

ψ(ξ) = ψ(ξ) +

ξ∫
0

Pn

(
ξ1

ξ

)
Jn(0)dξ1 =

ξ∫
0

Pn

(
ξ1

ξ

)
[G(ξ1) + Jn(0)] dξ1

and we can apply (7.7) to conclude that for n > 0 there is ε > 0 and a constant
C independent of n and f , such that

(7.8) |ψ(ξ)| ≤ A1Cnξ
1+ε.
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Now we apply the expansion (7.2) of τ(ξ) in the definition (5.4) of v(ξ, η) and
find that

v(ξ, η) =

[n2 ]∑
k=0

a2kc
n
kβ

n
k ξ
−n+2k + ψ(ξ)

+

1
2∫
ξ

τ(ξ1)
∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1 + F1(ξ, η),

where the function F1 is smooth (see (5.4)) and |F1 (ξ, η)| ≤ A1Cξ. Consider
the term

1
2∫
ξ

τ(ξ1)
∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

=

[n2 ]∑
k=0

a2kc
n
kβ

n
k

1
2∫
ξ

ξ−n+2k
1

∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

+

1
2∫
ξ

ψ(ξ1)
∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1.

According to (7.8) the last integral is bounded:∣∣∣∣∣∣∣
1
2∫
ξ

ξ1+ε
1

∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

∣∣∣∣∣∣∣ ≤
Cξη

ξ + η

1
2∫
ξ

ξε−1
1 dξ1 ≤ C ′ξ.

Thus, we find the expansion

(7.9) v(ξ, η) =

[n2 ]∑
k=0

a2kc
n
kβ

n
k ξ
−n+2kGn

k(ξ, η) + ψ1(ξ, η),

where

Gn
k(ξ, η) := 1 + ξn−2k

1
2∫
ξ

ξ−n+2k
1

∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

and |ψ1(ξ, η)| ≤ A1Cξ. Let us point out that Gn
k(ξ, 0) = 1, while the fact that

the functions Gn
k are bounded, follows from the estimate∣∣∣∣∣∣∣
1
2∫
ξ

ξ−n+2k
1

∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

∣∣∣∣∣∣∣ ≤ Cξ−n+2k.
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The representation (7.9) holds for n > 0, while when n = 0 we have simply
P0 ≡ 1 and can substitute it in formulas (5.4), (5.5) and (5.6) for the solution
v of Problem P22. Straightforward computations lead to

(7.10) v(ξ, η) = a0c
0
0β

0
0 +

ξ∫
0

G(ξ1)dξ1 −

1
2∫
ξ

 η∫
0

g(ξ1, η1)dη1

 dξ1,

where

G(ξ) := −
ξ∫

0

g(ξ, η1)dη1 −

1
2∫
ξ

g(ξ1, ξ)dξ1.

Therefore, the representation (7.9) obviously stays true in the case n = 0.
Finally, let us return to the generalized solution u(r, t) of Problem P21 and

to the coordinates r and t:

u(r, t) = r−1v

(
r + t

2
,
r − t

2

)
= r−1

[n2 ]∑
k=0

βnk (r + t)−n+2kF n
k (r, t) + F n(r, t).

Here, the function F n(r, t) is given by

(7.11) F n(r, t) := r−1ψ1

(
r + t

2
,
r − t

2

)
and therefore |F n(r, t)| ≤ CA1, while functions F n

k (r, t) defined by

F n
k (r, t) := 2n−2ka2k c

n
k G

n
k

(
r + t

2
,
r − t

2

)
are independent on f and are obviously bounded. To complete the proof of the
case 1), notice that this definition gives

F n
k (t, t) = 2n−2ka2kc

n
k 6= 0.

B. Proof of the estimates of F n.
Next, for n ≥ 1, we will estimate the function F n and its first derivatives.
First, we will study the behavior of F n at (0, 0). The function F n(r, t) is

given by (7.11), where ψ1(ξ, η) is defined in (7.9) as

(7.12) ψ1(ξ, η) = ψ(ξ) +

1
2∫
ξ

ψ(ξ1)
∂

∂ξ1

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1 + F1(ξ, η),

and
(7.13)

F1(ξ, η) = −

1
2∫
ξ

 η∫
0

Pn

(
(ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη

(ξ1 + η1)(ξ + η)

)
g(ξ1, η1)dη1

 dξ1.
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Since the argument of the Legendre polynomial Pn in (7.13) varies in the interval
[0, 1]

|F1(ξ, η)| ≤ CA0ξ,

where the constant C is independent of n and f . Thus applying the estimate
(7.6) for ψ we get

|ψ1(ξ, η)| ≤ CA1ξ + CA1n
2

1
2∫
ξ

ξη

ξ1(ξ + η)
dξ1 + CA1ξ ≤ C1A1n

2ξ| ln ξ|.

Therefore

|F n(r, t)| ≤ C2A1n
2 (1 + | ln r|) ,

where the constant C2 is independent of n and f , i.e., (6.2) holds.
Now we consider the derivatives of F n. Thus we need to evaluate the deriva-

tives of ψ1(ξ, η) – integrating (7.12) by parts we get
(7.14)

ψ1(ξ, η) = Pn

(
ξ − η + 4ξη

ξ + η

)
ψ(1/2)−

1
2∫
ξ

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
ψ′(ξ1)dξ1+F1(ξ, η).

For ψ′(ξ) defined by (7.3), using (7.5) we find

|ψ′(ξ)| =

∣∣∣∣∣∣G(ξ)−
ξ∫

0

P ′n

(
ξ1

ξ

)
ξ1

ξ2
G(ξ1)dξ1

∣∣∣∣∣∣ ≤ Cn2 max |G(ξ)| ≤ CA1n
2,

where the constant C is independent of n and f . In fact, we can remove the
coefficient n2 here for smoother functions g. In order to do this, let us rewrite
ψ′ as

(7.15) ψ′(ξ) = ξ−1

ξ∫
0

Pn

(
ξ1

ξ

)
∂

∂ξ1

{
ξ1G(ξ1)

}
dξ1.

For (ψ1)ξ and (ψ1)η we will need also ψ′′:

(7.16) ψ′′(ξ) = ξ−2

ξ∫
0

Pn

(
ξ1

ξ

)
∂2

∂ξ1
2

{
ξ1G(ξ1)

}
dξ1.
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Then estimates for the derivatives of G(ξ) are required:

G′(ξ) = −
ξ∫

0

∂

∂ξ
g(ξ, η1)dη1 −

1
2∫
ξ

∂

∂ξ
g(ξ1, ξ)dξ1

−
ξ∫

0

P ′n

(
η1 + 2ξ2

ξ(2η1 + 1)

)
2ξ2 − η1

ξ2(2η1 + 1)
g

(
1

2
, η1

)
dη1 −

1
2∫
ξ

P ′n

(
ξ

ξ1

)
g(ξ1, 0)

ξ1

dξ1

+

1
2∫
ξ

 ξ∫
0

∂

∂ξ
Pn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)(
∂

∂ξ1

− ∂

∂η1

)
g(ξ1, η1)dη1

 dξ1.

Notice that for the argument of Pn in the last term

(7.17)

(
ξ
∂

∂ξ
+ ξ1

∂

∂ξ1

+ η1
∂

∂η1

)
ξ1η1 + ξ2

ξ(ξ1 + η1)
= 0

since the function is homogenous. Therefore we can replace there the derivative
with respect to ξ with [−ξ1∂/∂ξ1 − η1∂/∂η1]/ξ. Integrating by parts we find

G′(ξ) = −g(1/2, ξ)− 1

2ξ

ξ∫
0

Pn

(
η1 + 2ξ2

ξ(1 + 2η1)

) (
∂

∂ξ1

− ∂

∂η1

)
g(ξ1, η1)

∣∣∣∣
ξ1=1/2

dη1

+g(ξ, 0)−

1
2∫
ξ

P ′n

(
ξ

ξ1

)
g(ξ1, 0)

ξ1

dξ1 −
ξ∫

0

P ′n

(
η1 + 2ξ2

ξ(2η1 + 1)

)
(2ξ2 − η1)g (1/2, η1)

ξ2(2η1 + 1)
dη1

+
1

ξ

1
2∫
ξ

 ξ∫
0

Pn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)(
2 + ξ1

∂

∂ξ1

+ η1
∂

∂η1

)(
∂

∂ξ1

− ∂

∂η1

)
g(ξ1, η1)dη1

 dξ1

Recall that g(ξ, η) = rf(r, t), and thus g(ξ, 0)/ξ = f(r, r) and in the last
integral we have(

ξ
∂

∂ξ
+ η

∂

∂η

)(
∂

∂ξ
− ∂

∂η

)
g(ξ, η)

∣∣∣∣ξ=(r+t)/2
η=(r−t)/2

=

(
r
∂

∂r
+ t

∂

∂t

)
rft(r, t).

Hence, using (3.4) from Lemma 3.1, we get that

(7.18) |G′(ξ)| ≤ CA0n
2 + CA2.

Analogously for G′′(ξ), differentiating one more time the expression for G′(ξ),
applying again (7.17) in the last integral, and integrating by parts the last three
terms, we find the estimate

(7.19) |G′′(ξ)| ≤ CA1n
2ξ−1(1− 2ξ)−1 + CA3ξ

−1.

Applying (7.5), (7.18), (7.19) to ψ and ψ′ in (7.15), (7.16) we find

(7.20) |ψ′(ξ)| ≤ CA0n
2 + CA2,
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and

(7.21) |ψ′′(ξ)| ≤ CA1n
2ξ−2| ln(1− 2ξ)|+ CA3ξ

−1.

To evaluate the derivatives of ψ1 we need also to study the derivatives of F1

defined by (7.13):

(F1)η = −

1
2∫
ξ

g(ξ1, η)dξ1

+

1
2∫
ξ

 η∫
0

P ′n

(
(ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη

(ξ1 + η1)(ξ + η)

)
2(ξ1 − ξ)(ξ + η1)

(ξ1 + η1)(ξ + η)2
g(ξ1, η1)dη1

 dξ1;

(F1)ξ =

η∫
0

g(ξ, η1)dη1

+

1
2∫
ξ

 η∫
0

P ′n

(
(ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη

(ξ1 + η1)(ξ + η)

)
2(ξ1 + η)(η − η1)

(ξ1 + η1)(ξ + η)2
g(ξ1, η1)dη1

 dξ1.

Notice that in these integrals 0 ≤ η1 ≤ η ≤ ξ ≤ ξ1 and therefore

(ξ1 − ξ)(ξ + η1)

(ξ1 + η1)(ξ + η)2
≤ 1

ξ + η
and

(ξ1 + η)(η − η1)

(ξ1 + η1)(ξ + η)2
≤ 1

ξ + η
.

Then it follows from Lemma 3.1 that

|(F1)ξ(ξ, η)|+ |(F1)η(ξ, η)| ≤ CA1n
2.

Now we are ready to estimate the derivatives of ψ(ξ, η) from (7.14). For
(ψ1)η(ξ, η) after integration by part we have

(ψ1)η = −

1
2∫
ξ

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
∂

∂ξ1

[
ξ1(ξ − ξ1)

η(ξ + η)
ψ′(ξ1)

]
dξ1 + (F1)η

+P ′n

(
ξ − η + 4ξη

ξ + η

)
2ξ(2ξ − 1)

(ξ + η)2
ψ(1/2) + Pn

(
ξ − η + 4ξη

ξ + η

)
2ξ − 1

4η(ξ + η)
ψ′(1/2).

Then, applying (7.20) and (7.21), it follows

|(ψ1)η| ≤ C(ξ + η)−2[A1n
2 + CA3].

Similarly, for (ψ1)ξ we find

(ψ1)ξ = −

1
2∫
ξ

Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
∂

∂ξ1

[
ξ1(η + ξ1)

ξ(ξ + η)
ψ′(ξ1)

]
dξ1 + (F1)ξ

+P ′n

(
ξ − η + 4ξη

ξ + η

)
2η(2η + 1)

ξ + η
ψ(1/2) + Pn

(
ξ − η + 4ξη

ξ + η

)
2η + 1

4ξ(ξ + η)
ψ′(1/2),
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and thus we get

|(ψ1)ξ| ≤ C(ξ + η)−2
(
A1n

2 + CA3

)
.

Finally, to prove (6.4) notice that

(F n)r(r, t) = −r−2ψ1(ξ, η)

∣∣∣∣ξ=(r+t)/2;
η=(r−t)/2

+
1

2
r−1((ψ1)ξ + (ψ1)η)

∣∣∣∣ξ=(r+t)/2;
η=(r−t)/2

and

(F n)t(r, t) =
1

2
r−1((ψ1)ξ − (ψ1)η)

∣∣∣∣ξ=(r+t)/2;
η=(r−t)/2

and therefore

|(F n)r(r, t)|+ |(F n)t(r, t)| ≤ Cr−3
(
A1n

2 + CA3

)
,

where the constant C is independent of n and f .
The estimate (6.3) is a straightforward consequence of formulas (7.18) for G′

and (7.14) for ψ1, while the case n = 0 follows directly from the representation
(7.10). �
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