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SELF-SIMILAR SOLUTIONS FOR WEAK SHOCK REFLECTION*
ALLEN M. TESDALL? AND JOHN K. HUNTER*

Abstract. We present numerical solutions of a two-dimensional Riemann problem for the un-
steady transonic small disturbance equations that provides an asymptotic description of the Mach
reflection of weak shock waves. We develop a new numerical scheme to solve the equations in self-
similar coordinates and use local grid refinement to resolve the solution in the reflection region.
The solutions contain a remarkably complex structure: there is a sequence of triple points and tiny
supersonic patches immediately behind the leading triple point that is formed by the reflection of
weak shocks and expansion waves between the sonic line and the Mach shock. An expansion fan
originates at each triple point, thus resolving the von Neumann paradox of weak shock reflection.
These numerical solutions raise the question of whether there is an infinite sequence of triple points
in an inviscid weak shock Mach reflection.
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1. Introduction. Experimental observations of the Mach reflection of weak
shock waves off a wedge show a pattern that closely resembles a single Mach re-
flection, in which the incident, reflected, and Mach shocks meet at a triple point. The
von Neumann theory of shock reflection [10, 16] shows that a standard triple point
configuration, consisting of three shocks and a contact discontinuity, is impossible for
sufficiently weak shocks. This apparent conflict between theory and experiment for
weak shock reflection has been a long-standing puzzle and is often referred to as the
triple point, or von Neumann, “paradox” (see section 1.17 of [2], for example).

Guderley [8, 9] proposed that there is a supersonic region behind the triple point in
a steady weak shock Mach reflection, in which case there is an additional expansion
fan at the triple point, resolving the apparent paradox. There was, however, no
evidence of a supersonic region or an expansion fan in experimental observations
[3, 18, 19] or numerical solutions [4, 5, 20] of weak shock reflections off a wedge, until
Hunter and Brio [12] obtained a numerical solution of a shock reflection problem for
the unsteady transonic small disturbance equation that contained a supersonic region
behind the triple point. The region is extremely small, which is why it had not been
detected previously. Subsequently, Zakharian et al. [24] found a supersonic region in
a numerical solution of a shock reflection problem for the full Euler equations, using
local grid refinement near the triple point, for a set of parameter values corresponding
to those in [12].

The solutions in [12, 24] are for a single set of parameter values, and they are not
sufficiently well resolved to show an expansion fan at the triple point directly, or to
show the structure of the flow inside the supersonic region. In this paper, we present
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high-resolution numerical solutions of the shock reflection problem for the unsteady
transonic small disturbance equations for a range of parameter values. There is a
supersonic region behind the triple point in all of the numerical solutions obtained
here. This region consists of a sequence of supersonic patches formed by a sequence
of expansion fans and shock waves that are reflected between the sonic line and the
Mach shock (see Figures 5 and 6, for example). Each of the reflected shocks intersects
the Mach shock, resulting in a sequence of triple points, rather than a single triple
point. The numerical results raise the question of whether there is an infinite sequence
of triple points in an inviscid weak shock Mach reflection.

The total size of the repeating structure of supersonic patches is approximately
the same as that of the supersonic region in the solution obtained in [12], at the
same parameter value, by a different numerical scheme. Other important quantities,
including the strength of the reflected shock and the location of the triple point, agree
closely with this solution, providing an independent check on the self-similar solutions
presented here.

There are, at the moment, no experimental observations of a supersonic region
behind the triple point in a weak shock Mach reflection. As we discuss in section
5, the small size of the region and the effect of viscosity may make it very difficult
to detect experimentally. A structure similar to the one in the solutions presented
here has been observed in shock-boundary layer interactions in transonic flows over
an airfoil [1, 13] (see Figures 245 and 247 in [6]). The shock reflects off a laminar
boundary layer as an expansion wave, leading to a sequence of reflected shock and
expansion waves inside the supersonic bubble on the airfoil.

The numerical solutions of weak shock reflection in [5, 12, 20, 24] were obtained by
solving an initial-value problem for the unsteady equations. The problem of inviscid
shock reflection off a wedge is self-similar, and there are a number of advantages
to solving the problem in self-similar, rather than unsteady, form. In the unsteady
formulation the equations are time-marched, and any waves present move through
the computational domain, complicating algorithms for local grid refinement near the
triple point. By contrast, a solution of the self-similar equations is stationary, making
local grid refinement algorithms much easier to implement. Moreover, a global grid
refinement strategy is possible, in which a partially converged solution on a coarse
grid is interpolated onto a fine grid, and then converged on the fine grid. This process
may be repeated recursively until the desired resolution is obtained.

In this paper, we present numerical solutions of the shock reflection problem for
the unsteady transonic small disturbance equations computed in self-similar coordi-
nates. Samtaney [17] developed a scheme for the solution of the Euler equations in
self-similar coordinates, but his scheme does not apply to the unsteady transonic small
disturbance equations, and a different approach is required. In our approach, we intro-
duce special self-similar variables in which the self-similar transonic small disturbance
equations have the form of the usual transonic small disturbance equations modified
by lower-order terms. What makes the use of the unsteady transonic small distur-
bance equations worthwhile is the fact that, with the same computational resources,
we can obtain a much more finely resolved solution than for the Euler equations.

This paper is organized as follows. In section 2, we describe the shock reflection
problem for the unsteady transonic small disturbance equation, and in section 3 we
give the details of our numerical method. In section 4, we present our numerical
solutions. In section 5, we discuss some of the questions raised by these solutions and
consider the effect of physical viscosity on the inviscid solutions. We summarize our
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conclusions in section 6.

2. The asymptotic shock reflection problem. The asymptotic shock reflec-
tion problem [11, 12, 14, 20] consists of the unsteady transonic small disturbance
equation

1
(21) Ut + <2u2) —+ ’Uy = O,
Uy — Vg =0

in the half space y > 0 with the initial and boundary conditions

|0 ifz>ay,
(22) a0 ={ | LI
(2.3) v(x,y,t) =0 if x> o(y,t),
(2.4) v(z,0,t) = 0.

Here, x = o(y,t) is the location of the incident and Mach shocks. The location of the
incident shock is given by

1
(2.5) T=ay+ (2 + a2> t.

The incident shock strength, as measured by the jump in u, is normalized to one. This
problem depends on a single parameter a, the inverse slope of the incident shock.

These equations may be derived by a systematic asymptotic expansion of the
shock reflection problem for the full Euler equations for weak shock reflection off
thin wedges [12]. The variables u(zx,y,t), v(z,y,t) are proportional to the z, y fluid
velocity components, respectively, and pressure perturbations are proportional to u.
The flow is irrotational and isentropic to leading order in the shock strength.

If the Mach number of the incident shock is M, and the wedge angle in radians
is 0y, then (2.1)-(2.4) is obtained in the limit M — 1 and 6,, — 0, with

(2.6) a=

fixed. Because of transonic similarity, the asymptotic problem depends on a single
combination of the incident shock strength and the wedge angle. A regularly reflected
solution of (2.1)~(2.4) is impossible when a < v/2, and triple point solutions of (2.1),
in which three plane shocks separated by constant states meet at a point, do not exist.

The problem (2.1)—(2.4) is self-similar, so the solution depends only on the simi-
larity variables

_ _Y
=, =7

Writing (2.1) in terms of £, n, and a pseudo-time variable 7 = log ¢, we get

1
(2.7 ur — Eug — nuy + <2u2> +v, =0,
3
Uy — v = 0.
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As 7 — 400, solutions of (2.7) converge to a pseudo-steady, self-similar solution that
satisfies

1
(2.8) —Eug — nuy, + (2u2> + v, =0,
¢
Uy —vg = 0.
Equation (2.8) is hyperbolic when u < ¢ + n?/4, corresponding to supersonic flow in
a self-similar coordinate frame, and is elliptic when u > ¢ + n?/4, corresponding to
subsonic flow. The equation changes type across the sonic line given by

"

3. The numerical method. In order to solve (2.7) numerically, we write it in
terms of parabolic coordinates

1
(3. r=g+ P 0=,

which gives

1 1
(3.2) Uy + (262>T + Tp + gﬁ+ 57 =0,
ug — v, = 0.

With respect to these variables, the self-similar equations have the form of the usual
transonic small disturbance equations modified by lower-order terms, and they can
be solved by a standard numerical scheme. We introduce a potential ¢(r,6,7) such
that

(3.3) =@, U= e,

and we write (3.2) in the potential form

1 3 1
(34) Prr + <29072°) + poo + 5% + §T =0.
r

We define a nonuniform grid r; in the r direction and 6; in the 6 direction, where
rig1 = Ti + Aripio and 0541 = 0; + AOj 115, We also define (r;_1/2,7i41/2) as
the neighborhood of the point r;, with length Ar; = %(Ari_lm + Ar;i1/2), where
Tit1/2 = %(Ti+1 + r;). Similar definitions apply for the nonuniform grid 6;. We
denote an approximate solution of (3.4) by

@ij ~ @(Tiv ej’ nAT),
where A7 is a fixed time step, and we discretize (3.4) in time 7 using

n+l _ n
(3'5) SDT‘ (p”’

3 1
n+1 n n+1
AT + 9000+ + f(go?”)r + §§0r+ + -7 =0,

2
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where the flux function f is defined by
(3.6)

We solve (3.5) by sweeping from right to left in r, using the spatial discretization

(3.7) .
Pig+1=Pij _ Pij—Pij—1 3
A A
n+1 j+1/2 j—1/2 n+1
L‘O’L',j — A’I"Z'+1/2AT AQ + 5AT§D17J
J

= O = iy T PR+ AT (F(Uigay2,, Uivaya )" = F(Wio1/2,, Gigrj2,)")

3
+ 5 ATQDn+1

1 .
i+1,5 + 5A7A7i+1/2 7"2'_;,_1/2.

Here, F' is a numerical flux function, and

~ _ Pig Pl
Wi—1/2,5 = ATi_1 )2 .
i

The variable 7,/ is the value of r at which the source term %7’ is evaluated, and
in most of the calculations we used the definition #; 1,/ = ;. We tried a number
of different treatments of the source term and obtained similar results with them all.
See [21] for a detailed discussion.

In most of the computations, we used an Engquist—Osher numerical flux func-
tion. Dropping the #-subscript j, which is constant in the following definitions, the
Engquist—Osher flux for (3.6) is

~ ~ 1 ~ 1 .
FEO (W12, Uiy1)0) = 5 max (t;_1/2,0)” + 3 min(@; 41,2, 0)>.

In our highest resolution computations for a = 0.5, we used a second-order, flux-limiter
scheme [23], with a Lax—Wendroff flux as the higher-order flux, and an Engquist—Osher
flux as the lower-order flux. The numerical flux function for this scheme is given by

(Wi—1/2, Uir1y2) + (1 — () FP°

F(ﬁi71/27ﬂi+1/2) = w(Q)FLW (ﬂi71/27ﬁi+1/2)»

( aiig/?’:ﬂiil/?’ B AATTi (ﬁ'i73/22ﬂ171/2 >2)(m_1/276i_3/2) Ui_1/2FUip1)2

( ﬁi_l/z;ﬁ“lﬂ _AA:i (ﬁi_l/Q:ﬁHl/Q)2>(17i+1/2—77¢_1/2), 2 =0
Q - 2

( qu/Q;qu/Q - (uiﬂ/2jui+3/2> >(ﬂi+3/2—ﬁi+1/2) Ty jatiisi /e -0

( %4/2:71”1/2 —AT <ﬂi71/2;ﬂi+1/2 )2>('Ei+1/275171/2)7 ? ’

where 1 is a minmod flux-limiter,

0, 0<0,
0<p<1,
1, o>1.
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D C B

Fi1a. 1. A schematic diagram of the computational domain. EA is the wall and ABDE is
the numerical boundary. The incident shock enters the computational domain through AB. The
incident, reflected, and Mach shocks meet at the triple point T.

The Lax—Wendroff flux for (3.6) is given by

- - 1 -
FEW (Ui 19, Uig1)2) = Z(“?q/z + 741 )0)

1 AT ﬂi,1/2+ﬂi+1/2 2 ~ ~
_iAT‘i f (ui+1/2 _Ui71/2)-

We evolve the solution of (3.7) forward in time 7 until it converges to a steady
state, using line relaxation. The direction of sweep, from right to left in r, is consistent
with the direction of propagation of the characteristics for (2.8), which is in the —r
direction.

3.1. Boundary conditions. We computed solutions of the half-space problem
(2.1)-(2.4) in the finite computational domain

rb<r<rk, 0<6<67,

shown schematically in Figure 1. The left and right boundaries of the computational
domain are parabolic because of the use of the coordinates in (3.1). We use a nonuni-
form grid that has a locally refined area of uniform grid very close to the triple point,
and is stretched exponentially away from the triple point toward the outer numerical
boundaries and the wall. In the solutions shown below, the nonuniform grids are
stretched by amounts between 0.5% and 1.5%, and the total number of grid points in
our largest grid is approximately 3 x 106.

We impose the physical no-flow condition (2.4), which implies that @y = 0, on
the wall FA. In addition, we require numerical boundary conditions on the outer
computational boundaries.

On the right boundary AB, we impose Dirichlet data corresponding to the in-
cident shock solution in (2.2)—(2.3). Using (3.1) in (2.5), we find that the incident
shock location with respect to the transformed self-similar coordinates is given by

1 1
=af+-0>+ = +d°.
r=abt+ 1 + 5 +a
Thus, the incident shock location is a parabola with respect to the transformed coor-
dinates, instead of a straight line. Ahead of the incident shock we have (u,v) = (0,0),
and behind the incident shock we have (u,v) = (1, —a). Hence, using (3.1), (3.3), and
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the requirement that the potential is continuous across the shock, we find that the
potential for the incident shock solution is given by

1,2 1p2 | 1 2
(3.8) @(7"79):{ 2" 1pg2 1,2 1 2 7’>a9+41192+%+a2,
r—af — 30°—35r°—5—a°, r<ab+ 30°+ 5 +a°.

We impose (3.8) as a boundary condition for (3.4) on AB.

The asymptotic behavior of the solution of the shock reflection problem at large
distances from the reflection point is given by the solution of the linearized shock re-
flection problem [12]. We use this result to formulate a numerical boundary condition
on the subsonic boundary CDE. In self-similar variables, the linearized solution for

@, behind the reflected wavefront r =1 is

1 2a+/1 —
(3.9) <pT:1—r+tan_1( a ! >, r<l1.
™

1—7‘—|—%02—a2

We impose (3.9) as a Neumann condition on the left boundary DE. Writing (3.9) as
or = f(r,0), we discretize it as

% = f(Ti+1/2,9j)~

On the top boundary BD, we impose the Dirichlet condition (3.8) when r > 1,
corresponding to the segment BC, and the condition (3.9) when r < 1, corresponding
to the segment C'D. The exact location of the reflected shock is slightly different
from the point r = 1, where we switch the numerical boundary conditions, and the
exact solution differs slightly from the linearized solution, but we found that the
disturbance originating from the top boundary was small provided that the boundary
was far enough away from the triple point (see Figure 9). We tried a number of other
numerical boundary conditions, but (3.8)—(3.9) gave the most satisfactory results.

4. Numerical results. We computed numerical solutions of (2.1)—(2.4) for a
equal to 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, and 0.8. In the following figures, we present
solutions for the values 0.3, 0.5, 0.6, and 0.8. The solutions for the other values
of a are similar to the ones presented here. Figure 2 shows u-contour plots of the
global solutions as a function of (z/t,y/t). From (2.6), increasing a corresponds to
increasing the wedge angle while fixing the Mach number of the incident shock, or
decreasing the Mach number while fixing the wedge angle. Hence, the sequence of
plots in Figure 2(a)—(d) is a numerical representation of a series of shock reflection
experiments in which the wedge angle is increased, while the Mach number is held
constant at a value near one.

The numerical solutions closely resemble a single Mach reflection. The Mach
shock becomes shorter and stronger as a increases, and the strength of the reflected
shock near the triple point, which is very weak for smaller values of a, also increases
with a (see Table 4.1). For a fixed value of a, the strength of the Mach shock increases
as it moves away from the triple point, reaching a maximum at the wall y = 0. The
strength of the reflected shock increases initially as it moves away from the triple
point, then decreases, approaching zero as y — +o00. The thickening of the incident
shock as it moves away from the triple point in Figure 2(a)—(d) is caused by the use
of a stretched grid.

In Figure 3, we show the u-contours and the numerically computed location of
the sonic line (2.9) near the triple point for the values of a shown in Figure 2. All of
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Fi1G. 2. Contour plots of u for increasing values of a, showing the full numerical domain. The
u-contour spacing is 0.05.

TABLE 4.1
Numerically computed values of the size of the supersonic region at the triple point, the triple
point location, and the strength [u], of the reflected shock at the sonic point. The shock strength is
measured by the jump [u] in u.

[ a [ A/ [ AW/ | @/0ip | WDy | [ulr ]

0.3 0.0030 0.023 0.837 0.831 0.01
0.4 0.0023 0.019 0.924 0.665 0.03
0.5 0.0012 0.0096 1.008 0.513 0.07
0.6 0.0006 0.0030 1.098 0.398 0.13
0.65 | 0.0004 0.0014 1.148 0.349 0.17
0.7 | 0.00016 | 0.00074 1.200 0.302 0.22
0.75 | 0.00008 | 0.00027 1.255 0.258 0.27
0.8 | 0.00004 | 0.00011 1.315 0.220 0.33

the solutions contain a small region of supersonic flow behind the triple point, the size
of which decreases rapidly with increasing a. Table 4.1 gives the size of the supersonic
region in the numerical solution for each value of a. The height A(y/t) is a numerical
estimate of the difference between the maximum value of 3/t on the sonic line and the
minimum value of y/t at the rear sonic point on the Mach shock. The width A(x/t)
is an estimate of the width of the supersonic region at the value of y/¢ corresponding
to the triple point. In detailed plots of our most refined solution with a = 0.5 (see
Figures 5 and 6, for example), the expansion fan generated by the collision of the
reflected shock with the incident shock at the triple point can be clearly seen. Behind
the leading triple point, there is a sequence of shocks and expansion fans. These
shocks are less apparent in the less resolved solutions, such as Figure 3(c), and in
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FiG. 3. Contour plots of u near the triple point for increasing values of a. The u-contour
spacing is 0.005 in (a), and 0.01 in (b)—(d). The dotted line is the sonic line. The regions shown
contain the refined uniform grids, which have the following numbers of grid points: (a) 620 x 480;
(b) 768 x 608; (c) 346 x 260; (d) 245 x 150.

Figure 3(d) they cannot be seen at all.

The area covered by the most refined uniform grid fits inside the region shown
in Figure 3(a)—(d); the actual refined grid area would appear as a sheared rectangle
because the equations are discretized with respect to the parabolic coordinates in
(3.1). The figure caption gives the number of grid points in the most refined area of
the grid. The small numerical oscillations immediately behind the Mach shock (see
Figure 3(a) and (d), for example) seem to be caused by the lack of alignment of the
shock with the grid.

We found that, for a given value of a, a certain minimum grid resolution was
required to resolve the supersonic region behind the triple point. As we refined the
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F1c. 4. A sequence of contour plots illustrating the effect of increasing grid resolution on the
numerical solution. The solutions plotted here are for a = 0.5. The figures show the u-contours in
the refined grid area mear the triple point, with a w-contour spacing of 0.01. FEach grid is refined
by a factor of two in both x/t and y/t in relation to the previous grid. The region shown includes
the refined uniform grid area. The dotted line is the sonic line. In (a), the refined uniform grid
contains 64 x 42 grid points. A supersonic region is visible as a bump in the sonic line, but it is
poorly resolved. In (b), the refined uniform grid area contains 128 x 84 grid points. The supersonic
region appears to be smooth. In (c), the refined uniform grid area contains 256 X 168 grid points.
There is an indication of a shock wave behind the leading triple point. The refined uniform grid in
(d) contains 512 x 336 grid points. Two shock waves are visible behind the leading triple point.

grid beyond this minimum level, a detailed flowfield structure in the region emerged.
Figure 4 shows the u-contours and the sonic line near the triple point for a sequence
of solutions for a = 0.5 computed on successively refined grids. In this sequence, we
refined each grid by a factor of two in x /¢ and y/t in relation to the previous grid. The
resolution of the locally refined areas is indicated on the plots. In Figure 4(a)—(b), the
sonic line appears fairly smooth. The supersonic region in Figure 4(b) is similar in
size, shape, and resolution to the one obtained in [12]. At the next level of refinement,
shown in Figure 4(c), there is an indication of the coalescence of u-contours at the
rear of the supersonic region and evidence of a second reflected shock there. Finally,
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in Figure 4(d), the second reflected shock is better defined, with an indication of a
third, weaker shock following it. Further shocks appear in our most refined solution
in Figure 3(b).

Returning to Figure 3, we can explain the qualitative differences between the
solutions for different values of a in terms of their numerical resolution. As shown in
Table 4.1, the size of the supersonic region decreases with increasing a. We therefore
had to use more refined grids for higher values of a. For example, the solution shown
in Figure 3(d) for a = 0.8 was computed using a grid that was a factor of 16 times
more refined in 2/t and y/t than the grid used in the solution for a = 0.5 shown in
Figure 3(b). However, the supersonic region in Figure 3(d) is smaller than the one
in Figure 3(b) by a linear factor of about 90, resulting in a lower relative resolution.
Consequently, the detailed flowfield near the triple point is not visible in Figure 3(d),
similar to the under-resolved solutions shown in Figure 4(a)—(b). By contrast, the
solutions for a = 0.3,0.5,0.6 in Figure 3(a)-(c) contain a sequence of shocks and
expansions, evident from the pronounced bumps in the sonic line.

There is a small discrepancy between the numerically computed location of the
triple point in these figures and the theoretical location of the incident shock in (2.5).
The reason for this discrepancy is that the numerical boundary conditions did not
give an incident shock that was of exactly constant strength and exactly straight
in (z/t,y/t)-coordinates. The deviation of the numerical solution for the incident
shock from the exact uniform solution was, however, very small. For example, in
our numerical solution for a = 0.5, the nonuniformity in « and v in the state behind
the incident shock is less than 0.4%, and the numerically computed value of the x/t-
coordinate of the triple point differs by 0.15% from the theoretical value obtained from
(2.5) using the numerically computed value of y/t. We tried a number of different
implementations of the numerical scheme and boundary conditions, but none of them
gave an exactly straight incident shock. Nevertheless, we saw a supersonic region
and the same structure of reflected shocks and expansion fans inside it for all of the
implementations.

In Figure 5, we plot closely spaced u-contours, and more widely spaced v-contours,
to give a detailed picture of the sequence of shock and expansion waves for a = 0.5.
Figure 6 is an enlargement of the solution shown in Figure 5 over a very small area
close to the leading triple point, which shows the expansion wave that originates at
the triple point. The expansion wave is in the family opposite to the shock waves,
and it reflects off the sonic line as a compression wave (cf. the discussion in [9]). This
compression wave forms a shock that hits the Mach shock and reflects as the next
expansion wave. The result is a sequence of triple points, rather than a single triple
point. The variables u and v decrease smoothly across the expansion wave at the
front of a patch from sonic to supersonic values, moving from right to left in the
downstream direction; then v and v jump from supersonic to subsonic values across
the shock at the rear of a patch. A very weak wave is visible behind the incident
shock in Figure 5(b). This wave is a numerical artifact that is generated when the
incident shock crosses from the stretched grid into the uniform grid.

Each shock-expansion pair in the sequence is smaller and weaker than the one
preceding it. Four reflected shocks appear to be visible in Figures 5-6. From the
numerical data, their approximate strengths, beginning with the leading reflected
shock, are

[ul; ~0.08,  [ulz~0.02,  [us~001, [u]s~ 0.003.

Here, the jump [u] in u across a reflected shock is measured at the point where the flow
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Fic. 5. A detailed contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-
contour spacing is 0.0005 and the v-contour spacing is 0.001. The sonic line is plotted in Figure 3(b)
and Figure 6. The figure shows a sequence of shock and expansion waves. Each erpansion wave
is centered at a triple shock intersection and reflects off the sonic line into a compression wave.
The compression wave forms a shock wave that intersects the Mach shock, resulting in a sequence
of triple points. Three shock-expansion wave pairs and triple points are visible in the plots, with
indications of a fourth. The region shown contains the refined uniform grid, which has 768 x 608
grid points.

behind the shock is sonic. This point is very close to the corresponding triple point
on the Mach shock, as shown in Figure 6. It is not possible, however, to determine
from the numerical solution whether or not this sonic point coincides exactly with
the triple point, as argued by Guderley [9] in the case of steady weak shock Mach
reflections.

Three shocks and an expansion fan appear to connect four states at the leading
triple point. We label these states 1-4 in Figure 6. Table 4.2 gives values of v and v
for each of the states, computed from the numerical solution. For states 2-4, these
values were computed at the locations indicated in the figure. The values of (u,v)
for state 3 behind the reflected shock were computed close to the point where the
flow behind the shock is sonic. This ensures that states 2 and 3 are connected by the
reflected shock and not by any part of the expansion fan, which connects states 3 and
4. For state 1, the values for (u,v) were computed at a location sufficiently far ahead
of the incident shock so that they were not influenced by the effects of numerical
diffusion near the shock.

The velocity components (@, ?) in a reference frame moving with the triple point
are given by [12] as

1 1
(4.1) U=u-— (§*+4nf), 0= 0= S,

where (&4,7.) are the (£, n)-coordinates of the triple point. From the numerical solu-
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Fic. 6. An enlargement of the solution in Figure 5 near the leading triple point, showing (a)
u-contours and (b) v-contours. The u-contour spacing is 0.005, and the v-contour spacing is 0.001.
The dashed line in the plots is the sonic line. Table 4.2 gives the values of uw and v from the numerical
solution for the states labeled 1-4 in the plots.

tion shown in Figure 6, we obtain &, = 1.008, 1. = 0.5128. We show the corresponding
values of (@, ) in Table 4.2. In Figure 7(a), we plot the shock and rarefaction curves
for the steady transonic small disturbance equation [12] through each of the four states
for (@,v). The plot in Figure 7(b) is an enlarged view of the shock and rarefaction
curves for the states 2, 3, and 4. The curves coincide almost exactly with those of
a triple point with an expansion fan. We show similar curves through the numerical
values of the analogous states at the second triple point in Figure 7(c)—(d). These
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TABLE 4.2

Numerically computed values for the four states at the leading and second triple points, from
the solution for a = 0.5 (see Figure 6). The state ahead of the incident shock is denoted by 1, the
state behind the incident shock by 2, the state behind the reflected shock by 3, and the state behind
the Mach shock by 4. The states 1'-4’ are the four analogous states at the second triple point. The
variables @ and U are defined in (4.1), with & = 1.008, n« = 0.5128 for states 1-4, corresponding
to the leading triple point, and &, = 1.007, n. = 0.5108 for states 1'—4’, corresponding to the second
triple point.

[ State [ u [ v [ u [ v ]
1 0 0 -1.074 0

2 0.997 | -0.5000 | -0.077 | -0.756
3 1.073 | -0.4963 | -0.001 | -0.771
4 1.047 | -0.5062 | -0.027 | -0.775
1/ 0 0 -1.072 0

2! 1.052 | -0.5076 | -0.020 | -0.776
3’ 1.072 | -0.5047 0.000 -0.778
4’ 1.060 | -0.5088 | -0.012 | -0.779

-0.1-0.075-0.05-0.025 0.025 0.05 0. 075LI

-0.04 -0.03 -0.02 -0.01 0.01 O.OéJ
(c) (d)

Fic. 7. The plots in (a)—(b) show the theoretical shock and rarefaction curves through each
of the four states for (@,v) at the leading triple point (see Figure 6). Their numerical values are
gien in Table 4.2. (The bars have been omitted from the axis labels.) The curves correspond almost
ezactly to those of a triple point with an expansion fan. The plots in (c)—(d) show similar shock
and rarefaction curves for the second triple point. The states 2 and 4 lie slightly off the shock curve
of 1; nevertheless, the overall agreement with the curves of a triple point with an expansion fan is
excellent.

plots show that the triple points with expansion fans that we observe numerically are
consistent with theory.

To accelerate the convergence of the solution on a very refined grid, we partially
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Fic. 8. A plot of the maximum norm of the residual, showing partial convergence on a sequence
of grids, followed by convergence on the most refined grid. The sharp local peaks correspond to inter-
polations onto more refined grids. The computation on the most refined grid begins at approzimately
n = 30000. The final stage of convergence to a value for the mazimum norm of the residual of less
than 10~9 is not shown in the plot.

4

yit
N
e I LI I LI I ;L I

FiG. 9. A check of the sensitivity of the solutions to the size of the numerical domain, showing
u-contours for two solutions computed on different sized domains, for a = 0.5. The full numerical
domains are shown, with u-contours for the large domain solution (dashed lines) and the small
domain solution (solid lines) plotted at the same values of u. Contour lines for uw and v near the
triple point for both solutions shown here are compared in Figure 10.

converged the solution on a coarse grid, interpolated the solution onto a refined grid,
and repeated this process until the desired resolution was obtained. For example,
Figure 4 shows a sequence of solutions obtained on four consecutive intermediate
grids during the computation for a = 0.5. In Figure 8, we plot the maximum norm
of the residual for a typical computation, in which nine grids were used. The sharp
local peaks correspond to interpolations onto more refined grids. In the computation
shown, the solution on each intermediate grid was converged until the maximum norm
of the residual was less than 10~7. The solution on the final grid in a computation
was converged until no further change was observed in the details of the solution near
the triple point, which typically occurred when the maximum norm of the residual
was less than 1077,

We performed checks to determine the sensitivity of the solutions to the placement
of the top and left numerical boundaries, which intersect the region where (2.8) is
elliptic. In Figure 9, we plot u-contours for two solutions for a = 0.5 computed on
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Fic. 10. A comparison of u- and v-contours near the triple point for the two solutions shown
in Figure 9. The plots in (a) and (b) show u-contours for the solutions computed on the larger
and smaller domains, respectively, plotted at the same levels of u. The plots in (c) and (d) show
v-contours for the solutions computed on the larger and smaller domains, respectively, plotted at the
same levels of v. The dashed line in (a)—(d) is the sonic line. The u-contour spacing in (a)—(b) is
0.005, and the v-contour spacing in (c)—(d) is 0.001.

BT

different sized domains. In this study, the top and left numerical boundaries of the
smaller domain were extended, as indicated in the figure, to approximately double
the distance from these boundaries to the triple point. The contour lines are plotted
at the same values of u for both solutions, with the dashed lines representing the
u-contours of the solution on the larger domain. The contour lines approach each
other and almost coincide near the triple point.

Figure 10 is an enlargement of the solutions near the triple point, showing u-
contours and v-contours for the solutions on the larger and smaller domains. The
u-contours in Figure 10(a)—(b) and the v-contours in Figure 10(c)—(d) are plotted
at the same values of u and v, respectively, and the sizes of the regions shown in
these plots are the same. The dashed line in Figure 10(a)—(d) is the sonic line. The
structure of reflected shocks and expansion waves, supersonic patches, and repeating
triple points did not change as a result of enlarging the computational domain, and
the size of the supersonic region is nearly identical for the two solutions. The main
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effect of extending the boundaries is a slight shift in the location of the leading triple
point. The shift is approximately 0.05% in z/t and 0.2% in y/t.

5. Discussion. These numerical results raise the question of whether there is an
infinite sequence of triple points in an inviscid weak shock Mach reflection. Gamba,
Rosales, and Tabak [7] prove, under some mild assumptions, that the flow behind a
triple point cannot be strictly subsonic for the unsteady transonic small disturbance
equation. Therefore, if there were a finite sequence of supersonic triple points, there
would presumably have to be a smooth transition from supersonic to subsonic flow at
the rear of the final supersonic patch. Such a smooth transition appears unlikely to
occur, however, because the resulting nonlinear mixed-type boundary value problem
would be overdetermined [9, 15].

The most plausible alternative to a finite sequence of triple points terminated by a
shock-free supersonic patch is an infinite sequence of more closely spaced triple points,
weaker shock-expansion pairs, and smaller supersonic patches that accumulate at the
rear sonic point of the supersonic region on the Mach shock. In this structure, the
shock and expansion waves would reflect back and forth infinitely many times between
the Mach shock and the sonic line, into the rear sonic point. The inviscid equations
do not define a length scale so solutions may, in principle, develop arbitrarily small
structures. We do not know, however, of a way to confirm or deny the existence of
an infinite sequence of patches whose size shrinks to zero.

A remarkable feature of the numerical solutions is the extraordinarily small size
of the supersonic region, especially for larger values of a. For example, when a = 0.8,
the height of the supersonic region is approximately 0.05% of the height of the Mach
shock. Once the inverse shock slope a is fixed, there are no further parameters in
the problem, so the small size of the region cannot be explained by the dependence
of the solution on a small parameter. The shock reflection pattern is produced by
the requirement that the y-velocity component v, which is equal to —a behind the
incident shock, must return to zero at the wall y = 0. Thus, a global scale for v, is

a

(y/t)t.p. ’

where (y/t)y.p. is the (y/t)-location of the triple point. The supersonic region is
produced by the expansion fan that is formed when the leading reflected shock collides
with the incident shock. If Av is the change in v across this fan, then a local scale
for v, near the triple point is

Av
7= Ry

where A(y/t) is the height of the supersonic region. From the numerical data, we find
that « is much less than § for larger values of a, corresponding to a rapid change in
the solution near the triple point and a tiny supersonic region. For example, when
a = 0.5, we find from the numerical data that /8 ~ 1.0, but when a = 0.8, we find
that /8 =~ 0.05. Since the largest value of a that we investigated is 0.8, we neither
know if solutions for higher values of a contain a supersonic region with a sequence of
triple points over the entire range 0.8 < a < v/2, nor know if the transition between
regular and Mach reflection occurs exactly at a = /2.

A repeating structure of supersonic patches and triple points with expansion
fans appears to provide a resolution of von Neumann’s triple point paradox within
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the framework of inviscid shock theory, and viscosity is not required to explain the
structure of a weak shock Mach reflection. Nevertheless, in view of the extremely
small size of the supersonic region, it is important to consider the likely effect of
physical viscosity on the inviscid description. Since the triple point lies in the interior
of the fluid, it is reasonable to expect that boundary layer effects do not influence
the local structure of the solution. Thus, the main effect of viscosity is to thicken
the shocks. If the size of the supersonic region is smaller than the viscous thickness
of the reflected shock, then the sonic line is embedded inside the viscous profile of
the reflected shock, and the local structure of the solution near the triple point is
dominated by viscous effects. Since the numerical scheme includes numerical viscosity,
which mimics the effect of physical viscosity, the plots in Figure 4 of the solution with
increasing numerical resolution presumably indicate the effect of decreasing physical
viscosity on the solution. At resolutions lower than the ones shown in Figure 4, the
supersonic region disappears completely, and the sonic line runs down the inside of
the reflected shock, through the triple point, and down the Mach shock.

To compare the width of the supersonic region with the viscous shock thickness,
we suppose that the reflected shock Mach number is M, and the mean free path in the
gas is A. The thickness § of the reflected shock is then approximately given by [22]:

3\

6:Mr—1'

The incident and Mach shocks are thinner than the reflected shock because they are
stronger. If the width of the supersonic region in z/t in the solution of the unsteady
transonic small disturbance equation is A(z/t), then, from [12], the asymptotic width
d of the supersonic region parallel to the wall in physical variables is given by

d=2(M — 1)A(z/t)L.

Here, L is the distance traveled by the Mach shock along the wall, from the corner of
the wedge to the reflection point, and M is the Mach number of the incident shock.
Hence

d ,L
E—C(M—l) X,

where the dimensionless constant ¢ is defined by
2 T
(5.1) c=3A (;) [ulr,

and [u], is the ratio of the reflected and incident shock strengths,

M, -1
M-1

[u]r =

The supersonic region is much larger than the reflected shock structure if d > 0,
meaning that

A

L>» —.
> (M —1)2

The value of ¢ in (5.1) may be estimated from the numerical data in Table 4.1. The
supersonic region is easier to observe for larger values of ¢, and the largest value of
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c for the results obtained here is ¢ ~ 6 x 107° for @ = 0.5. For smaller values of
a, the reflected shock becomes very weak and thick, while for larger values of a, the
supersonic region becomes extremely small. The mean free path in argon at standard
conditions is approximately A = 6 x 107> mm. Therefore, for a shock reflection in
argon with @ = 0.5, we estimate that the supersonic region separates from the viscous
profile of the reflected shock when L > (M — 1)~?mm. Even for a relatively strong
weak shock with M = 1.1, this estimate gives L > 100 mm. Thus, in order to observe
the supersonic region in a shock tube experiment, the test section of the tube would
have to be significantly longer than 100 mm.

It is striking that such a complex inviscid structure forms on a length scale that
is comparable with, or less than, the viscous shock thickness in typical experiments.

6. Conclusion. We have presented numerical evidence of a structure of reflected
shocks and expansion waves and a sequence of triple points and supersonic patches in
a tiny region behind the leading triple point of an inviscid weak shock Mach reflection.
The presence of the expansion fans at the triple points resolves the von Neumann para-
dox of weak shock reflection. Qualitative arguments, based on the well-posedness of
mixed-type boundary value problems, suggest that there may be an infinite sequence
of triple points and patches in an inviscid reflection, but a proof or disproof of this
suggestion is lacking. The numerical solutions provide an estimate of the size of the
supersonic region, which may enable its experimental detection.
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