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INTRODUCTION 

LET r be a finitely presentable group of which a surjective homomorphism CI to a (multipli- 

cative) free abelian group with generators t 1, . . , t, is specified. To each linear representa- 

tion 

p : 1- -+ CL,(R) 

of the group r over a unique factorization domain R we will assign a rational expression 

of the indeterminates tl,. . . , t, with coefficients in R called the twisted Alexander poly- 

nomial of I- associated to p. The twisted Alexander polynomial is well-defined up to a factor 

of Et;’ . . t:, where E E R” is a unit of R and e,, . . . , e, are integers. 

The twisted Alexander polynomial is a generalization of the Alexander polynomial 

(cf. [3]) in the following sense. Let I- be a finitely presentable group whose abelianization 

~1: r -+ (t) is of rank 1. Then the Alexander polynomial of r is written as 

A&) = (1 - t)&,,(t)> 

where p is the trivial, l-dimensional representation of r. 

We are mainly interested in the case where I- is the group of a knot or of a link and 

where c1 is the abelianization. As an invariant of a link we can refine the definition of the 

twisted Alexander polynomial so that it is well-defined up to a factor of Etyel . . . ty (E E Rx, 

el,. . . , e, E Z), where n is the dimension of the representation space of p. See Section 5 for 

the detail. 

The twisted Alexander polynomial is not an invariant of a knot or of a link by itself, for 

it depends not only on the group but also on the representation. One way to get a link 

invariant out of the twisted Alexander polynomial is to consider representations over 

a finite field IF,. These “discrete representations” have been studied extensively since [S]. 

The point here is that there are only finitely many homomorphisms of n1(S3 - K) to 

GL,(lF,). Therefore we may consider the collection of twisted Alexander polynomials as 

a link invariant. In Section 6, we show that Kinoshita-Terasaka and Conway’s 11 crossing 

knots are distinguished by the twisted Alexander polynomial in this way. 

In [7] X-S. Lin has defined a version of twisted Alexander polynomial for knots using 

regular Seifert surfaces. He defines the twisted Alexander polynomial as a generator of the 
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order ideal of the twisted Alexander module. Thus his definition of the twisted Alexander 

polynomial corresponds to the numerator of ours. His approach may allow more insight 

into geometry of knots while ours is toward easy calculations, and generalization to links 

and to arbitrary finitely presentable groups. 

1. TIETZE TRANSFORMATIONS 

By saying that 

(x1,. . . >X,I~l,~‘~,~J (1.1) 

is a presentation of a given group r, we mean that a specific surjective homomorphism 

c#J:F,+ I- 

of the free group F, = (x1,. . . , x,) to the group r is given and that the kernel of the 

homomorphism 4 is normally generated by the words ri, . . . , r, E F,. 
The Tietze transformation theorem [9] states that one presentation (1.1) of a given 

group r can be transformed to any other presentation of r by an application of a finite 

sequence of operations of the following types and their inverse operations, called Tietze 

transformations: 

I. To add a consequence r of the relators rl , . . . , r, to the set of relators. The resulting 

presentation is 

(xi,. . .,xslrlr.. .,rt,r). 

II. To add a new generator x and a new relator xw- i, where w is any word in 

x1,. . . > x,. Thus the resulting presentation is 

(xi,. . . ,x,,xJrl,. . . ,r,,xw-‘). 

We will first define the twisted Alexander polynomial for presentations, then prove its 

invariance under Tietze transformations. 

2. FREE DIFFERENTIAL CALCULUS 

Here we review some basic notions about group derivations, For a systematic treatment of 

the subject, the reader is referred to [l]. 

Let G be a group and ZG its integral group ring. A Z-linear map 

d:ZG+ V 

of ZG to a left ZG-module V is called a derivation if it satisfies the condition 

d(w) = du + udu (Vu, u E G). (2.1) 

From this we can easily obtain 

d(u-‘) = - u-‘du (Vu E G). (2.2) 

Let DG denote the left ideal of ZG generated by the elements of the form g - 1 (g E G). 

The Z-linear map 

d:ZG+DG 

given by dg = g - 1 for g E G is a derivation of ZG, and is called the universal derivation. It 

is universal in the following sense: For any derivation 

f:ZG-t V 
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of ZG, there is a unique ZG-module homomorphism 

h:DG+ I’ 

such that hod = f: In fact h is simply the restriction off to DC. 
Let us consider the universal derivation of the free group F,, 

d: ZF, + DF,. 

Since every element w E F, is a product of x1’ I, . . . , x” ‘, one can apply (2.1) and (2.2) 
repeatedly to dw and express it as a ZF,-linear combination of dxl, . . . , dx, as 

dw = ~ aMidxi. 
i=l axi 

(2.3) 

The coefficient g E ZF, is called the free derivative of w with respect to xi. In fact the 
module DF, is freely generated by dxl , . . . , dx, over ZF,. According to the definition of the 
universal derivation the formula (2.3) means 

w - 1 = f: “(xi - 1). 
i=i axi 

(2.4) 

3. TWISTED ALEXANDER POLYNOMIAL FOR GROUPS 

Suppose that we are given a finitely presentable group I and a surjective homomorphism 

tl:l--+ T * 

of r to the free abelian group T, = (tl, . . . , t,I titj = tjti(Vi,j)) of rank r 2 1. The group 
ring of the free abelian group T, over a commutative ring R is called the Laurent polynomial 
ring of ti,. . . , t,, and is denoted by R [t: I, . . , tr’ ‘3. The homomorphism cc induces 
a ring homomorphism of the integral group ring 

cr:Zl-+Z[t:‘,. . . ,t”]. 

Let 

P = (Xi,. . . ,X,/t-l,. . . ,I,) (3.1) 

be a presentation of I, and 

f$:F,-* r 

the associated homomorphism of the free group F, to I. Extending the homomorphism 
4 linearly to the integral group rings, we obtain a ring homomorphism 

Let p be a representation of I on a finitely generated free module I’ over some unique 
factorization domain R; for instance, a finite dimensional vector space V over some field R. 
Choosing a basis for I’, we may regard p as a homomorphism 

p : I- + CL,(R), 

where n is the rank of the representation space K The corresponding ring homomorphism of 
the integral group ring ZI to the matrix algebra M,(R) of degree n over R is denoted by 

p”:zr + M,(R). 
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The composition of the ring homomorphism 4 and the tensor product homomorphism 

p@cc:Zl--,M”(R[t:‘,. . . ,trk’]) 

will be used so often that we introduce a new symbol 

~=(~~‘)o~:ZF,-,M,(R[t:‘,. . . ,$‘I). (3.2) 

We remark that this composition Q is also a ring homomorphism. 

Let us consider the “big” t x s matrix M whose (i,j) component is the n x n matrix 

EM,(R[t:‘,... 9 t” ‘I). 

This matrix M is called the Alexander matrix of the presentation (3.1) associated to the 

representation p. The following proposition, though not needed in the proof of our theorem, 

illustrates the meaning of the Alexander matrix. 

PROPOSITION 1. Consider the matrix M as a linear map of the module 
(R[t:‘,. . . ,t”])““to(R[t:‘,. . . , tr* ‘I)“*. Then there is a natural one-to-one correspond- 
ence between the kernel of M and the set of derivations of I- with values in 
(R[t:‘,. . . , t’ ‘I)“, which is regarded as a ZT-module via ti @ cl. 

Proof Every derivation 

f:Zr-+(R[t;‘,. . . ,t”]) 

defines a derivation of F,, 

fo~:ZF,-,(R[t:‘,...,t+‘])“. 

By the universal property of the derivation 

d: ZF, + DF,, 

there is a ZF,-module homomorphism 

h:DF,+(R[tf’,. . . ,t,*‘]) 

such that hod =fi 6. Since DF, is freely generated by dxI, . . . , dx, over ZF,, such 

a ZF,-module homomorphism h is determined exactly by the images 

vi=h(dxi)E(R[tl”,...,tr*‘])” (i=l,..., s). 

The derivation h 0 d of F, determined by Q’S descends to a derivation of r if and only if 

h(dr,) = . . * = h(dr,) = 0, 

namely if and only if 

s w @ 2 vj = 0 (i = 1, . . . , t). 0 

j= 1 J 

For 1 5 j I s, let us denote by Mj the t x (s - 1) matrix obtained from M by removing 

the j-th column. Now regard Mj as a tn x(s - 1)n matrix with coefficients in 

R[tf’, . . . , t,* ‘1. For an (s - l)n-tuple of indices, 

I = (iI,. . . , i(s_ljn) (1 I il < ... < i(S-lj. I tn), 

we denote by M,! the (s - 1)n x (s - 1)n matrix consisting of the ik-th rows of the matrix Mj 
wherek=l,...,(s-1)n. 
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The following two lemmas form the foundation of our definition of twisted Alexander 

polynomial. 

LEMMA 2. det @( 1 - Xj) # 0 for some j. 

Proof. We can take a generator xj such that a(xj) = t;‘... tfr # 1, since the homomor- 
phism a is subjective. Then 

det@(l - xi) = det(1 - t;‘...t,“po&(x,)) 

is some non-zero Laurent polynomial. 0 

LEMMA 3. (det Mf)(det @( 1 - x&) = f. (det M,‘)(det @( 1 - xj))for 1 I j < k I s andfor 
any choice of the indices 1. The sign in the formula is always a + if the degree of the 
representation p is even. 

Proof By interchanging columns if necessary, we may assume that j = 1 and k = 2. 

Notethatfori=l,... , t, the formula (2.4) implies 

hence 

Q g @(l - X1) = - i CD 2, @(l - Xj)e 

() 1 j=2 ( ) J 

(3.3) 

Let us denote by A?, the matrix obtained from M2 by altering the first n columns by 

replacing the blocks m(g) with m(z) @(l - x,).Thus we have 

det 4: = (det M:)(det a(1 - x1)), 

where II?: is the matrix consisting of the rows of the matrix fi, indicated by I. By (3.3) we 
may regard the first n columns of-G2 as consisting of the blocks - c3,2a?(&) @(l - xj). 

To each of the first n columns of M2, we can add a linear combination of the other (s - 2)n 
columns and reduce the matrix fi, to II?, whose first n columns consist of the blocks 

- Q(z) O(1 - x2). The matrix II?, can also be obtained by multiplying the first n columns 
of the matrix Ml by - a(1 - x2) from the right. Therefore, 

det 6: = det A?: 

= _+ (det M:)(det @(l - x2)). 

This completes the proof of Lemma 3. 0 

COROLLARY 4. Zfdet cD(1 - xj) and det @(l - x,J are non-zero Laurent polynomials, then 

det Mf 

det cD(1 - Xj) = * 

det ML 
det @( 1 - x,J 

The sign in theformula is always a + if the degree of the representation p is even. 

WedenotebyQj(tl,. . . ,t,)ER[tf’,. . . , t,’ ‘1 the greatest common divisor of det Mf 
for all the choices of the indices I. We remark that the Laurent polynomial ring 
R[t: I,. . . , tr’ ‘1 over a unique factorization domain R is again a unique factorization 
domain. The Laurent polynomial Qj(t 1, . . . , t,) is well-defined up to a factor of .a:’ . . . t,’ 

where EER~ is a unit of R and eI,. . . , e, are integers. If t < s - 1 then we define 

Qj(tl>. . . 3 t*) to be the zero polynomial. 
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COROLLARY 5. Zf det @( 1 - Xj) and det a(1 - xk) are non-zero Laurent polynomials, then 

QAtly . . . 3 G) = Etei.. . pQJtlr ’ . ’ ’ “) 
detQ(1 - Xi) 1 det @,(l - xk) 

(& E R x, el, . . . , e, E Z). 

Definition. By Lemma 2 we can always choose an index i such that det @(l - xi) # 0. 
Then we define the twisted Alexander polynomial of the group r associated to the 
representation p to be the rational expression 

&,Jtl, . . . , t,) = 
Qj(tly . * . 3 tr) 
det cD(1 - Xi) ’ 

This definition is obviously an abuse of the terminology “polynomial”; I will give some 
excuses later. Up to a factor of Et;’ . . . t? (E E R ‘, el , . . . , e, E Z), the Alexander polynomial 
is in fact an invariant of the group r, the associated homomorphism a, and the representa- 
tion p. Namely, let l-r and r2 be finitely presentable groups with surjective homomorphisms 
CQ : rl -+ T, and CQ : r2 + T, respectively. If there is an isomorphism 

such that a1 = az 0 II/, then for any representation 

of l-r, we have 

p: l-i + CL,(R) 

Arl,Jtl ,..., t,)=~t~‘...t,e,A~~,~~~_~(t~ ,..., t,) (eERX,eI ,..., e,EZ). 

This is due to the following: 

THEOREM 1. The twisted Alexander polynomial Ar,p(tlr. . . , t,) is independent of the 
choice of the presentation. 

Proof: Suppose that we start from the presentation (3.1), define the Alexander Matrix 
M by using (3.2), then from it compute the twisted Alexander polynomial Ar,,,(tr, . . . , t,). 

Now suppose instead that we use the presentation 

P’=(xl ,..,, x,Jrl ,..., rr,r) (3.4) 

obtained from the presentation (3.1) by applying the Tietze transformation of type I. 
Namely 

P 

r= n wkrf;wil, 

k=l 

where 1 I ik I t, wk E F,, and &k = f 1 for 1 I k 5 p. Applying (2.1) and (2.2) we can easily 
obtain 

dr = 2 ‘z w &,I - ’ w, (ukdri* i- (1 - wkrf;w; ‘)dwk), 
k=l I=1 

where 

wk if &k = 1, 
uk = 

-1 
- Wkrir if &k = - 1. 

Hence 

E = jJ (:c w&;w;‘)(,,$ + (1 - wkr$wil)z). 
l3Xj k=l I 1 
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Since @(ri) = 1 for all i, we obtain 

(3.5) 

Let us denote by M’ the Alexander matrix obtained from the presentation (3.4). Then the 

first tn rows of M’ are exactly the matrix M, and (3.5) above shows that the last n rows of the 

matrix M’ are linear combinations of the first nt rows of M. We can then easily see that the 

twisted Alexander polynomial computed from the matrix M’ is the same as the one 

computed from M. 
Next suppose that we perform the Tietze transformation of type II to the presentation 

(3.1) to obtain 

P’ =(x1,. . . ,xs,x(rl,. . . ,r,,xw-‘), 

where w E F,. The Alexander matrix M’ obtained from this presentation P’ is of the form 

M’ = 

Suppose that det Q(1 - Xj) # 0. Then the determinant of the matrix M;J consisting of the 

rows of Mj indicated by the sn-tuple 

J = (iI,. . . ) i,,) (1 I i, < . . . < i,, I (t + 1)n) 

can be non-zero only if J is of the form 

J = (i1, . . . , i,,_ lJn, tn + 1, . . . , (t + l)n), 

and then 

det M;:’ = det Mf 

whereI=(i,,. . . ,ics_ Ijn), It is then obvious that the Alexander polynomial computed from 

the matrix M’ is the same as Ar,Jtlr . . . , t,). This completes the proof of the theorem. 0 

Before closing this section, let us remark that the twisted Alexander polynomial does not 

depend on the choice of the basis for the representation space V: Two representations p and 

p’ are said to be equivalent if there is an automorphism $ of the representation space Vsuch 

that p’(y) = $0 p(y) 0 $ - ’ for all y E I-. Then the twisted Alexander polynomials for p and p’ 

are the same; 

4. EXAMPLES 

A few examples show what the twisted Alexander polynomial is like. Our first example is 

quite simple; namely the infinite cyclic group r = (t). The abelianization is the identity 

map; c1 = id : r --* (t). Every complex linear representation 

p : I- + CL,(C) 

is determined exactly by the image A = p(t) E CL,(C) of the generator of I-. It is easy to see 

that 

Ar,p(O = 
1 

det (1 - tA) ’ 

(This is the zeta function of the linear transformation A E CL,(C).) 
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A not so simple example is the following. Consider a group I- given by 

I- = (x, y 1 xyx = yxy). 

This group r is isomorphic to the group of the trefoil knot 3 1. It is also known as the braid 

group B3 of 3 strings. 

It is often more convenient to deal with relations rather than relators for computation 

purposes. A relation u = v (u, v E FS) corresponds to the relator UV-~. From d(uv-‘) 

= du - (uv-‘)dv, we easily get 

Q(&(uv-l))=@(&(u-v)) (j=l,...,s). 

This shows that we may use I = u - v instead of r = uv-l for the computation of the 

Alexander matrix. 

Going back to the example, let us write 

The free derivatives of r are 

r = xyx - yxy. 

ar 
-=1-y+xy, 
dX 

and 

i% 

ay= - 1 +x--x. 

As the associated homomorphism we take the abelianization 

cI:I-+ (t). 

It is given by U(X) = a(y) = t. 

First, let us consider the trivial, l-dimensional representation over Z, 

po :I-+ G_&,(Z). 

Namely, pa(x) = pa(y) = 1. The corresponding Alexander matrix is 

(@(EL) @(is)) = (1 - t + P, - 1 + t - P). 

We also have 

Q(l - x) = @(I - y) = 1 - t. 

Therefore, the twisted Alexander polynomial of I’ associated to p. is 

Ar,Jt) = ’ ; yt t2. 
Next, we consider the 2-dimensional representation 

p:r+ GL,(Z[s”]) 

of I- over the Laurent polynomial ring Z[s * ‘1 known as the reduced Burau representation 

of the braid group B3. It is given by 

and P(Y) = 
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We have 

and 
l+st --t 

detcD(1 - x) = det 
0 l-t > 

= (1 - t)(l + st). 

Therefore, the twisted Alexander polynomial of r associated to p is 

Ar,,(t) = 1 - st2. 

5. TWISTED ALEXANDER POLYNOMIAL FOR LINKS 

Let L c S3 be an oriented link in the oriented 3-sphere. Recall that the Wirtinger presenta- 
tion of the link group XL = n1(S3 - L) is defined as follows: Given a regular projection of 
the link L, assign to each overpass a generator Xi, and to each crossing as in Fig. 1, a relator 
XiXjXk ’ X? ‘. (Th e orientation of the undercrossing arc is irrelevant.) 

Thus we obtain a presentation of nL with s generators and s relators, 

(xl,. . . ,x,,lrl,. . . ,rs). (5.1) 

After some reordering of the indices, the relators satisfy 

ifi Ii’ ’ = 1. (5.2) 

This implies that any one of the relators rl, . . . , rs is a consequence of the other s - 1 
relators. We remove one of the relators, say rs, and call the resulting presentation 

(xl,. . . , x,, I II,. . . , rs- I) 

the Wirtinger presentation of nL. 

The abelianization of the link group nL, 

CI:nL+ H,(P - L) 

is given by assigning to each generator Xi the meridian element t, E H1(S3 - L) of the 
corresponding component c of L. 

Let p be a linear representation of the group nL over an integral domain R. In this case, 
since the matrix Mj is a square matrix we can simply put 

Qj(tl,. . . 3 t,) = det Mj. 

Fig. 1. 
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Definition. Choose an index j (1 < j < s). Then we call the rational expression 

&Al, . . . , tr) = 
det Mj 

det (1 - xj) (5.3) 

obtained from the Wirtinger presentation the twisted Alexander polynomial for the link 

L associated to the representation p. 

This is, of course, nothing but the twisted Alexander polynomial for the link group XL. 
The aim of this definition is the following: 

THEOREM 2. As an invariant of the oriented link type of L, the twisted Alexander 
polynomial AL,p(tl,. . . , t,) is well-defined up to a factor of Ety’ . . . ty(c E R ‘, e,, . . . , e, E Z), 

where n is the degree of the representation p. 
Furthermore, if p is a unimodular representation, i.e. a homomorphism to the special linear 

group SL,(R), then the twisted Alexander polynomial for the link L is well-defined up to 
a factor of + tl” . . ’ t:” if n is odd, and up to only ty’ . . ’ t:” if n is even. 

Before proving the theorem, let us introduce three new transformations for group 

presentations: 

Ia. To replace one of the relators, ri, by its inverse r;‘. 
Ib. To replace one of the relators, ri, by its conjugate writ-i(w E FJ. 
Ic. To replace one of the relators, ri, by rirk (k # i). 

If a presentation is transformable to another by a finite sequence of operations of types Ia, 

Ib, Ic, the Tietze transformation of type II, and their inverse operations, we say that the two 

presentations are strongly Tietze equivalent. This is in fact a stronger equivalence of group 

presentations; under these transformations the difference between the number of generators 

and the number of relators remains unchanged. 

First, we prove: 

LEMMA 6. All the Wirtinger presentations of a given link L are strongly Tietze equivalent 
to each other. 

Proof We first remark that the Wirtinger presentations obtained from (5.1) by remov- 

ing one relator are all strongly Tietze equivalent. This follows easily from (5.2). 

The proof of the Lemma is based on the Reidemeister moves for oriented links, which can 

be stated as follows: A regular projection of a link L can be transformed to any other regular 

projection of L by applying a finite sequence of local operations of types shown in 

Fig. 2 called Reidemeister moves. 

Let us consider the Reidemeister move of type (1). Let 

(x1,. . . > ~~,x,ylr~,. . . ,rs-l,~x-l) (5.4) 

be the Wirtinger presentation of a link L associated to a projection containing a part which 

looks like the one in the left of Fig. 2(l). If we replace the part of the projection by the middle 

of Fig. 2(l), the Wirtinger presentation changes to 

(xl,. . . ,.x-l,xlr;,. . . ,rl-d, (5.5) 

where the relators r: (i = 1, . . . , s - 2) are obtained from ri by replacing all the occurrences 

of the letter y by the letter x. 

The presentation (5.4) is transformable to (5.5) by the operations of types Ia, Ib, Ic, and II 

as follows: Suppose that the relator ri contains the letter y, and is written as 

ri=Uy”V (U,VE(Xl,..., X,_z,X,y)). 
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Pb) 

(3) 

Fig. 2. Reidemeister moves for oriented links 

By applying the operation of type Ia if necessary, we may assume that the relator ri is of the 

form 

We apply the operations of types Ib and Ic and replace ri by 

U-‘((UriU-l)~X-l)U = UXmlU. 

This shows that we can change any occurrences of y to x in the relators rl, . . . , rs_ 2 by the 

operations of types Ia, Ib and Ic. Thus we can transform (5.4) to 

(xl,. . . ,xs-l,x,ylr;,. . . ,Chyx-‘). 

We can then apply the inverse operation of the Tietze transformation of type II to reduce it 

to (5.5). 

The proofs for the other cases are as straightforward as the above, and are left as an 

exercise for the reader. 0 

Proof of Theorem 2. Let M denote the Alexander matrix associated to the representa- 

tion p of a presentation 

(xi,. . . ,xslrl,. . . ,r,-l). (5.6) 

If we apply the operation of type Ia and replace a relator ri by its inverse r; I, then the rows 

of the matrix M corresponding to the blocks Q(g) (j = 1, . . . , s) are replaced by @( - 2). 

Therefore, det Mj changes to ( - 1)” det Mj, where n is the degree of the matrix O(g), 

namely, the degree of the representation p. 

Next, consider applying the operation of type Ib. Suppose that we replace ri by 

WliW- ’ (W E F,). Since 

~(~(WriW-‘))=~~W)~(~) (j= 1,. . . ,s), 
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det Mj is replaced by (det@(w))det Mj. Notice that E = det(po4(w)) is a unit of R since 
p 0 q%(w) E GL,(R), and tlo 4(w) = ti’. . . t:* for some integers e, , . . . , e,. Hence, 

det m(w) = (a0 +(w))“det(po 4(w)) 

= &ye’ . . . t:e,. 

Suppose that we replace a relator ri by rirk (k # i) and denote by M’ the corresponding 
Alexander matrix. Since 

we can obtain the matrix M’ simply by adding the rows corresponding to rk to the ones 
corresponding to ri. We have therefore 

det Mj = det Mj, 

Lastly, let M’ denote the Alexander matrix of the presentation obtained from (5.6) by 
applying the Tietze transformation of type II. As shown in the proof of Theorem 1, we have 

det MI = det Mj, 

Combining the above results with Corollary 4 and Lemma 6, we see that the twisted 
Alexander polynomial for L defined by (5.3) is well-defined up to a factor of + cty’ .. . t:“, 

where.sERX and el,. . . ,e,EZ. 
If p is a unimodular representation, then since 

det Q(w) = (a0 4(w))“, 

the twisted Alexander polynomial for L is well-defined up to a factor of 

( - l)nktyl... t:” (k, ei, . . . , e, E Z). 

This completes the proof of Theorem 2. 0 

This proof also shows: 

COROLLARY 7. The twisted Alexander polynomial for a link L may be computed from any 
presentation which is strongly Tietze equivalent to the Wirtinger presentation. 

It still remains to justify the terminology “polynomial.” 

PROPOSITION 8. Let K c S3 be a knot, and 

p : rcK --) GL,(R) 

be a representation of the knot group ZK satisfyng the following condition 

(C) There is an element y of the commutator subgroup of nK such that 1 is not an 
eigenvalue of p(y). 

Then, the twisted Alexander polynomial Ak,r(t) is a Laurent polynomial with coe@cients in the 
field of quotients of R. 

Proof Let 
(xi,. . . ,xsIrI,. . . ,rs-J 

be a Wirtinger presentation for the knot K, and M the associated Alexander matrix. Choose 
an element w E F, such that 4(w) = y. The presentation 

(xi,. . . ,xs,xlrl,. ..,rs-bwx) 
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is easily seen to be strongly Tietze equivalent to the above Wirtinger presentation. We 

denote the Alexander matrix of this presentation by M’; it is of the form 

We have 

Q(w) = P(Y) E %(R), 

for y is an element of the commutator subgroup of nK. Since 1 is not an eigenvalue of this 

matrix, 

det@(l - w) = detp”(1 - y) 

is a non-zero element of R. The twisted Alexander polynomial is then written as 

AK&) = 
det M: 

detF(1 - y)’ 

and is therefore a Laurent polynomial. 0 

PROPOSITION 9. If L is a link with two or more components, then for any representation 

p : nL -+ CL,(R), 

the twisted Alexander polynomial ALJt,, . . . , t,) is a Laurent polynomial with coeficients in 
the jeld of quotients of R. 

Proof: Let 

(xi,. . . ,xslrI,. . . ,rs-J 

be a Wirtinger presentation for the link L, and M the associated Alexander matrix. Suppose 

that Xj and xk correspond to distinct components of L whose meridian elements in 

H,(S3 - L) are t, and tb respectively. Lemma 3 asserts that the polynomial 

(det Mj)(det a(1 - xk)) is divisible by the polynomial det O(1 - Xj). Since det a(1 - Xj) is 

a Laurent polynomial in t, while det @( 1 - xk) is one in tb, their greatest common divisor 

6 is an element of R. It follows that 

6 det Mj 

det a(1 - Xj) 

is a Laurent polynomial. 0 

6. KINOSHITA-TERASAKA AND CONWAY’S KNOTS 

Kinoshita-Terasaka 11 crossing knot KT shown in Fig. 3(a) is one of the classical examples 

of knots with trivial Alexander polynomial ([6]). In [2] J. Conway classified the 11 crossing 

knots and found another 11 crossing knot C shown in Fig. 3(b) with trivial Alexander 

polynomial. 

Besides their appearance, these two knots have a remarkable similarity. For instance, 

their Jones [S] and Homfly [4] polynomials coincide. In [IS] R. Riley distinguished the two 

knots by computing some homology invariants of nonabelian coverings of the knot 

complement associated with homomorphisms of the knot group to PSL,(lF,). However, he 

could not distinguish these knots by merely counting the homomorphisms of the knot 

groups to PSL,(lF& for primes p I 31. Recently, I wrote a computer program which 
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(a) Kinoshita-Terasaka knot KT 

Fig. 3. 

(b) Conway’s knot C 

outputs all the homomorphisms of a given knot group to SL,(JF&, 

p : 7cK -+ SL,(lF&, 

whose image of a meridian of K is a matrix with trace 2; such homomorphisms are called 

parabolic representations. The results of application of the program to the knots KT and 

C endorse Riley’s results. The number of equivalence classes of parabolic representations of 

the groups of these knots to SL*(IF,) are exactly the same for all primes p I 181. 

Here, we compute the twisted Alexander polynomial of the two knots associated to 

parabolic representations to SL2(IFp). The Wirtinger presentation for nKTis strongly Tietze 

equivalent to the one with generators x1, x2, xj, x4 and relations 

: 

-1 _ 
x1x.2x1 

-1 -1 
- x4x2x4x2 x4 , 

x4x2x4 
-1 =x-1 -1 -1 

2 x3x~x;1x2x~x;1x3x~ x3 x2, 
(6.1) 

x1x3x1 -’ = x4x3x4x; lx, l. 

That for ZC is strongly Tietze equivalent to the presentation with generators x1, x2, x3, x4 

and relations 

I 

-1 
x1x2x1 

-1 -1 
= x4x2x4x2 x4 , 

-1 
x4x2x4 

-1 -1 -1 
=x2 x3 x1 

-1 -1 -1 -1 
~3~1~3~2~1~2 x3 x1 x3 x1x3x2, (6.2) 

Xl x3x1 -l = x4x;lx1x3xq l. 

These knots KT and C are in fact 3-bridge knots, and their groups are generated by 

three elements; in both (6.1) and (6.2), it is easy to see that one can use the first two relations 

to write x4 in terms of the other three generators. Therefore we can, if we like, reduce the 

presentations to ones with only three generators; but with much lengthier relations. 

There are two non-trivial parabolic representations O1 and O2 of the group ST to 
SL,(lF,), up to equivalence of representations. These representations, the images of the 

longitude / commuting with 4(x1), and the twisted Alexander polynomials are as follows: 

~lW1)) = :, : 3 ( 1 &(9ux,N = ; ; 7 

( ) 

f%(&x3)) = ; :, 9 

( ) 

e,(Nx,)) = (; ;), e,(t) = (; ;), 
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AKT,el(t) = 6 + 3t t 4tZ + 6t3 + 4t4 + 3ts + 6t6 

= 6(1 + t’)‘(l + 4t + t2), 

e2(@3)) = :, ; 3 

( ) 

e,(b(x,)) = (; ;)v e2(e) = (; ;)j 

A KT,e,(t) = 6 + 2t2 + 5t3 + 2t4 + 6t6 

= 6(6 + t)‘(l + 4t + t2). 

Notice that the twisted Alexander polynomials above are defined up to multiplication by 

a power of t2. 

The group nC of the knot C also has two nontrivial parabolic representations 0; and 

0; up to equivalence. These representations and their twisted Alexander polynomials are 

given by 

w4w) = A : , ( 1 wm,)) = i y , ( 1 e;kb(x,)) = ; ‘: 7 ( > 
eiwx,)) = (i l), we) = (z i), 

Ac,ei(t) = 6 + 2t + 6t3 + 4t4 + 3ts + 4t6 + 6t7 + 2t9 + 6t” 

= 6(1 + 4t + t2)(2 + 5t + 5t2 + 2t3 + t4)(4 + t + 6t2 + 6t3 + t4), 

AcJt) = 6 + 5t + 6t2 + 3t4 + 2ts + 3t6 + 6t8 + 5t9 + 6t” 

= 6(3 + t)2(5 + t)2(6 + t)4(1 + 4t + t2). 

Thus the groups nKT and nC are not isomorphic to each other. 

Finding all the parabolic presentations of a group like the above to SL,(IF,) for primes 

p up to, say 31 takes several seconds on a Macintosh’ IIfx. To compute the twisted 

Alexander polynomials, we used Mathematica$; it takes about 10 seconds to compute one 

for the knot K T, and about 20 seconds for the knot C. 
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