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We study a twisted Alexander polynomial naturally associated
to a hyperbolic knot in an integer homology 3-sphere via a lift of
the holonomy representation to SL(2, C ). It is an unambiguous
symmetric Laurent polynomial whose coefficients lie in the trace
field of the knot. It contains information about genus, fibering,
and chirality, and moreover, is powerful enough to sometimes
detect mutation.

We calculated this invariant numerically for all 313 209 hyper-
bolic knots in S3 with at most 15 crossings, and found that in
all cases it gave a sharp bound on the genus of the knot and
determined both fibering and chirality.

We also study how such twisted Alexander polynomials vary
as one moves around in an irreducible component X 0 of the
SL(2, C )-character variety of the knot group. We show how to
understand all of these polynomials at once in terms of a poly-
nomial whose coefficients lie in the function field of X 0. We use
this to help explain some of the patterns observed for knots in
S3, and explore a potential relationship between this universal
polynomial and the Culler–Shalen theory of surfaces associated
to ideal points.

1. INTRODUCTION

A fundamental invariant of a knot K in an integral
homology 3-sphere Y is its Alexander polynomial ΔK .
While ΔK contains information about genus and fiber-
ing, it is determined by the maximal metabelian quo-
tient of the fundamental group of the complement M =
Y \ K, and so this topological information has clear lim-
its. In 1990, Lin introduced the twisted Alexander polyno-
mial associated to K and a representation α : π1(M) →
GL(n, F ), where F is a field. These twisted Alexander
polynomials also contain information about genus and
fibering and have been studied by many authors (see the
survey [Friedl and Vidussi 10]). Much of this work has fo-
cused on those α that factor through a finite quotient of
π1(M), which is closely related to studying the ordinary
Alexander polynomial in finite covers of M . In contrast,
we study here a twisted Alexander polynomial associated
to a representation coming from hyperbolic geometry.
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Suppose that K is hyperbolic, i.e., the complement
M has a complete hyperbolic metric of finite volume,
and consider the associated holonomy representation
α : π1(M) → Isom+(H 3). Since Isom+(H 3) ∼= PSL(2, C ),
there are two simple ways to get a linear representa-
tion so that we can consider the twisted Alexander
polynomial: compose α with the adjoint representation
to get π1(M) → Aut(sl2C ) ≤ SL(3, C ), or alterna-
tively lift α to a representation π1(M) → SL(2, C ).
The former approach is the focus of the recent paper
[Dubois and Yamaguchi 09]; the latter method is what
we use here to define an invariant TK (t) ∈ C [t±1 ], called
the hyperbolic torsion polynomial.

The hyperbolic torsion polynomial TK is surprisingly
little studied. To our knowledge, it has previously been
looked at only for 2-bridge knots, in [Morifuji 08, Kim
and Morifuji 10, Hirasawa and Murasugi 08, Silver and
Williams 09]. Here we show that it contains a great deal of
topological information. In fact, we show that TK deter-
mines genus and fibering for all 313 209 hyperbolic knots
in S3 with at most 15 crossings, and we conjecture this
to be the case for all knots in S3 .

1.1. Basic Properties

More broadly, we consider here knots in Z2-homology
3-spheres. The ambient manifold Y containing the knot
K will always be oriented, not just be orientable, and
TK depends on that orientation. Following Turaev, we
formulate TK as a Reidemeister–Milnor torsion, since
this reduces its ambiguity; in that setting, we work
with the compact core of M , namely the knot exterior
X := Y \ int(N(K)) (see Section 2 for details). By fixing
certain conventions for lifting the holonomy representa-
tion α : π1(X) → PSL(2, C ) to α : π1(X) → SL(2, C ), we
construct in Section 4 a well-defined symmetric polyno-
mial TK ∈ C [t±1 ]. The first theorem summarizes its basic
properties:

Theorem 1.1. Let K be a hyperbolic knot in an oriented
Z2-homology 3-sphere. Then TK has the following prop-
erties:

(a) TK is an unambiguous element of C [t±1 ] that satisfies
TK (t−1) = TK (t). It does not depend on an orienta-
tion of K.

(b) The coefficients of TK lie in the trace field of K. If K
has integral traces, the coefficients of TK are algebraic
integers.

(c) TK (ξ) is nonzero for every root of unity ξ. In partic-
ular, TK �= 0.

(d) If K∗ denotes the mirror image of K, then TK ∗(t) =
TK (t), where the coefficients of the latter polynomial
are the complex conjugates of those of TK .

(e) If K is amphichiral, then TK is a real polynomial.

(f) The values TK (1) and TK (−1) are mutation-
invariant.

Moreover, TK both determines and is determined by
a sequence of C -valued torsions of finite cyclic covers of
X. Specifically, let Xm be the m-fold cyclic cover coming
from the free abelianization of H1(X; Z). For the restric-
tion αm of α to π1(Xm ), we consider the correspond-
ing C -valued torsion τ(Xm ,αm ). A standard argument
shows that TK determines all the τ(Xm ,αm ) (see Theo-
rem 3.1). More interestingly, the converse holds: the tor-
sions τ(Xm ,αm ) determine TK (see Theorem 4.3). This
latter result follows from work in [Fried 86] (see also
[Hillar 05]) and [Menal-Ferrer and Porti 10].

Remark 1.2. Conjecturally, the torsions τ(Xm ,αm ) can
be expressed as analytic torsions and as Ruelle zeta
functions defined using the lengths of prime geodesics.
[Ray and Singer 71, Cheeger 77, Cheeger 79, Müller 78,
Park 09] for details and background material. We hope
that this point of view will be helpful in the further study
of TK .

The torsions τ(Xm ,αm ) are interesting invariants
in their own right. For example, it is shown in
[Menal-Ferrer and Porti 10] that τ(Xm ,αm ) is nonzero
for every m. Furthermore, J. Porti showed us in a pri-
vate communication (2009) that τ(X1 , α1) = τ(X,α) =
TK (1) is not obviously related to hyperbolic vol-
ume. More precisely, using a variation on [Porti 97,
Théorème 4.17], one can show that there exists a se-
quence of knots Kn whose volumes converge to a
positive real number, but the numbers TKn

(1) con-
verge to zero. See [Porti 97, Menal-Ferrer and Porti 10,
Menal-Ferrer and Porti 11] for further results.

1.2. Topological Information: Genus and Fibering

We define x(K) to be the Thurston norm of a gener-
ator of H2(X, ∂X; Z) ∼= Z; if K is null-homologous in
Y , then x(K) = 2 · genus(K) − 1, where genus(K) is the
least genus of all Seifert surfaces bounding K. Also, we
say that K is fibered if X fibers over the circle.

A key property of the ordinary Alexander polynomial
ΔK is that

x(K) ≥ deg(ΔK ) − 1.
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When K is fibered, this is an equality, and moreover,
the leading coefficient of ΔK is 1 (here we normalize ΔK

so that the leading coefficient is positive). As with any
twisted Alexander/torsion polynomial, we get similar in-
formation out of TK :

Theorem 1.3. Let K be a knot in an oriented Z2-homology
sphere. Then

x(K) ≥ 1
2

deg(TK ).

If K is fibered, this is an equality and TK is monic, i.e.,
has leading coefficient 1.

Theorem 1.3 is an immediate consequence of the def-
initions below and of [Friedl and Kim 06, Theorem 1.1]
(for the genus bound) and of [Goda et al. 05] (for the
fibered case); see also [Cha 03, Kitano and Morifuji 05,
Pajitnov 07, Kitayama 09, Friedl and Kim 06] and
[Friedl and Vidussi 10, Theorem 6.2].

1.3. Experimental Results

The calculations in [Cha 03, Goda et al. 05, Friedl and
Kim 06]gave evidence that when one can freely choose
the representation α, the twisted torsion polynomial is
very successful at detecting both x(K) and nonfibered
knots. Moreover, [Friedl and Vidussi 01] shows that
collectively, the twisted torsion polynomials of represen-
tations coming from homomorphisms to finite groups
determine whether a knot is fibered. However, it is not
known whether all twisted torsion polynomials together
always detect x(K).

Instead of considering many different representations
as in the work just discussed, we focus here on a single, al-
beit canonical, representation. Despite this, we find that
TK alone is a very powerful invariant. In Section 6, we
describe computations showing that the bound on x(K)
is sharp for all 313 209 hyperbolic knots with at most 15
crossings; in contrast, the bound from ΔK is not sharp
for 2.8% of these knots. Moreover, among such knots,
TK was monic only when the knot was fibered, whereas
4.0% of these knots have monic ΔK but are not fibered.
(Here we computed TK numerically to a precision of 250
decimal places; see Section 6.7 for details.)

Given all this data, we are compelled to propose the
following conjecture, even though on its face it feels
quite implausible, given the general squishy nature of
Alexander-type polynomials.

Conjecture 1.4. For a hyperbolic knot K in S3 , the hyper-
bolic torsion polynomial TK determines x(K), or equiv-

alently its genus. Moreover, the knot K is fibered if and
only if TK is monic.

We have not done extensive experiments for knots in
manifolds other than S3 , but so far, we have not encoun-
tered any examples in which TK does not contain perfect
genus and fibering information.

1.4. Topological Information: Chirality and Mutation

When K is amphichiral, TK is a real polynomial (The-
orem 1.1(e)). This turns out to be an excellent way to
detect chirality. Indeed, among hyperbolic knots in S3

with at most 15 crossings, the 353 knots for which TK is
real are exactly the amphichiral knots (Section 6.3).

Also, hyperbolic invariants often do not detect muta-
tion, for example the volume [Ruberman 87], the invari-
ant trace field [Maclachlan and Reid 03, Corollary 5.6.2],
and the birationality type of the geometric component of
the character variety [Cooper and Long 96, Tillmann 00,
Tillmann 04]. The ordinary Alexander polynomial ΔK is
also mutation-invariant for knots in S3 . However, x(K)
can change under mutation, and given that x(K) deter-
mines the degree of TK for all 15 crossing knots, it follows
that TK can change under mutation; we discuss many
such examples in Section 6.4. However, sometimes muta-
tion does preserve TK , and we do not know of any exam-
ples of two knots with the same TK that are not mutants.

1.5. Adjoint Torsion Polynomial

As we mentioned earlier, there is another natural
way to obtain a torsion polynomial from the holon-
omy α : π1(M) → PSL(2, C ), namely by considering the
adjoint representation of PSL(2, C ) on its Lie alge-
bra. The corresponding torsion polynomial was stud-
ied in [Dubois and Yamaguchi 09], partly building on
[Porti 97]. We refer to this invariant here as the adjoint
torsion polynomial and denote it by T adj

K . We also numer-
ically calculated this invariant for all knots with at most
15 crossings. In contrast to what we found for TK , the
degree of T adj

K was not determined by the genus for 8 252
of these knots. Moreover, we found 12 knots for which the
genus bound from T adj

K was not sharp even after account-
ing for the fact that x(K) is necessarily an odd integer.
The differing behaviors of these two polynomials seems
very mysterious to us; understanding what is behind it
might shed light on Conjecture 1.4. See Sections 5.1 and
6.6 for the details on what we found for T adj

K .

1.6. Character Varieties

So far, we have focused on the twisted torsion polyno-
mial of (a lift of) the holonomy representation of the
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hyperbolic structure on M . However, this representa-
tion is always part of a complex curve of representations
π1(M) → SL(2, C ), and it is natural to study how the
torsion polynomial changes as we vary the representa-
tion. In Sections 7 and 8, we describe how to understand
all of these torsion polynomials at once, and use this to
help explain some of the patterns observed in Section 6.
For the special case of 2-bridge knots, how the torsion
polynomial varies with the representation had previously
been studied in [Morifuji 08, Kim and Morifuji 10], and
our results here extend some of that work to more general
knots.

Consider the character variety

X(K) := Hom
(
π1(M),SL(2, C )

)
//SL(2, C ),

which is an affine algebraic variety over C . We show in
Section 7 that each χ ∈ X(K) has an associated torsion
polynomial T χ

K . These T χ
K vary in an understandable way,

in terms of a polynomial with coefficients in the ring of
regular functions C [X0 ]:

Theorem 1.5. Let X0 be an irreducible component of
X(K) that contains the character of an irreducible repre-
sentation. There is a unique TK

X 0 ∈ C [X0 ][t±1 ] such that
for all χ ∈ X0 , one has T χ

K (t) = TK
X 0 (χ)(t). Moreover,

TK
X 0 is itself the torsion polynomial of a certain repre-

sentation π1(M) → SL(2, F ), and thus has all the usual
properties (symmetry, genus bound, etc.).

Corollary 1.6. Let K be a knot in an integral homology
3-sphere. Then the following hold:

(a) The set {χ ∈ X(K) | deg(T χ
K ) = 2x(K)} is Zariski

open.

(b) The set {χ ∈ X(K) | T χ
K is monic} is Zariski

closed.

It is natural to focus on the component X0 of X(K)
that contains the (lift of) the holonomy representation of
the hyperbolic structure, which we call the distinguished
component. In this case, X0 is an algebraic curve, and we
show that the following conjecture is implied by Conjec-
ture 1.4.

Conjecture 1.7. Let K be a hyperbolic knot in S3 , and
X0 the distinguished component of its character variety.
Then 2x(K) = deg(TK

X 0 ), and TK
X 0 is monic if and only

if K is fibered.

At the very least, Conjecture 1.7 is true for many 2-
bridge knots, as we discuss in Section 7.2. We also give

several explicit examples of TK
X 0 in Section 8 and use

these to explore a possible avenue for bringing the Culler–
Shalen theory of surfaces associated to ideal points of
X(K) to bear on Conjecture 1.7.

1.7. Other Remarks and Open Problems

For simplicity, we have restricted ourselves here to the
study of knots, especially those in S3 . However, we
expect that many of the results and conjectures are valid
for more general 3-manifolds. In the broader settings,
the appropriate question is whether the twisted torsion
polynomial detects the Thurston norm and fibered
classes (see [Friedl and Kim 06, Friedl and Kim 08,
Friedl and Vidussi 08] for more details).

We conclude this introduction with a few questions
and open problems:

1. Does TK determine the volume of the comple-
ment of K? Some calculational evidence is given
in [Friedl and Jackson 11] and in Section 6.4 in
this paper.

2. If two knots in S3 have the same TK , are they
necessarily mutants? See Section 6.4 for more on
this.

3. Does the invariant TK contain information about
symmetries of the knot besides information on
chirality?

4. Does there exist a hyperbolic knot with TK (1) =
1?

5. If TK is a real polynomial, is K necessarily am-
phichiral?

6. For an amphichiral knot, is the top coefficient of
TK always positive?

7. For fibered knots, why is the second coefficient
of TK so often real? This coefficient is the sum of
the eigenvalues of the monodromy acting on the
twisted homology of the fiber. See Section 6.5
for more.

8. Why is |TK (−1)| > |TK (1)| for 99.99% of the
knots considered in Section 6.5?

2. TWISTED INVARIANTS OF 3-MANIFOLDS

In this section, we review torsions of twisted homol-
ogy groups and explain how they are used to define
the twisted torsion polynomial of a knot together with
a representation of its fundamental group to SL(2, C ).
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We then summarize the basic properties of these torsion
polynomials, including how to calculate them.

2.1. Torsion of Based Chain Complexes

Let C∗ be a finite chain complex over a field F . Sup-
pose that each chain group Ci is equipped with an or-
dered basis ci and that each homology group Hi(C∗)
is also equipped with an ordered basis hi . Then there
is an associated torsion invariant τ(C∗, c∗, h∗) ∈ F× :=
F \ {0}, as described in the various excellent exposi-
tions [Milnor 66, Turaev 01, Turaev 02, Nicolaescu 03].
We will follow the convention of Turaev, which is the mul-
tiplicative inverse of Milnor’s invariant. If the complex C∗
is acyclic, then we will write τ(C∗, c∗) := τ(C∗, c∗, ∅).

2.2. Twisted Homology

For the rest of this section, fix a finite CW complex X

and set π := π1(X). Consider a representation α : π →
GL(V ), where V is a finite-dimensional vector space over
F . We can thus view V as a left Z[π]-module. To define
the twisted homology groups Hα

∗ (X;V ), consider the uni-
versal cover X̃ of X. Regarding π as the group of deck
transformations of X̃ turns the cellular chain complex
C∗(X̃) := C∗(X̃; Z) into a left Z[π]-module. We then give
C∗(X̃) a right Z[π]-module structure via c · g := g−1 · c
for c ∈ C∗(X̃) and g ∈ π, which allows us to consider the
tensor product

Cα
∗ (X;V ) := C∗(X̃) ⊗Z[π ] V.

Now Cα
∗ (X;V ) is a finite chain complex of vector spaces,

and we define Hα
∗ (X;V ) to be its homology.

We call two representations α : π → GL(V ) and β :
π → GL(W ) conjugate if there exists an isomorphism Ψ :
V → W such that α(g) = Ψ−1 ◦ β(g) ◦ Ψ for all g ∈ π.
Note that such a Ψ induces an isomorphism of Hα

∗ (X;V )
with H∗

β(X;W ).

2.3. Euler Structures, Homology Orientations, and
Twisted Torsion of CW Complexes

To define the twisted torsion, we first need to introduce
certain additional structures on which it depends. (In
our final application, most of these will come out in the
wash.) First, fix an orientation of each cell of X. Then
choose an ordering of the cells of X so that we can enu-
merate them as cj ; only the relative order of cells of the
same dimension will be relevant, but it is notationally
convenient to have only one subscript.

An Euler lift for X associates to each cell cj of X

a cell c̃j of X̃ that covers it. If c̃′j is another Euler lift,

then there are unique gj ∈ π such that c̃′j = gj · c̃j . We
say that these two Euler lifts are equivalent if∏

j

g
(−1)dim(cj )

j

represents the trivial element in H1(X; Z). An equiva-
lence class of Euler lifts is called an Euler structure on
X. The set of Euler structures on X, denoted by Eul(X),
admits a canonical free transitive action by H1(X; Z);
see [Turaev 90, Turaev 01, Turaev 02, Friedl et al. 11] for
more on these Euler structures. Finally, a homology ori-
entation for X is just an orientation of the R -vector space
H∗(X; R ).

Now we can define the torsion τ(X,α, e, ω) associ-
ated to X, a representation α, an Euler structure e, and
a homology orientation ω. If Hα

∗ (X;V ) �= 0, we define
τ(X,α, e, ω) := 0, and so now assume that Hα

∗ (X;V ) =
0. Up to sign, the torsion we seek will be that of the
twisted cellular chain complex Cα

∗ (X;V ) with respect
to the following ordered basis. Let {vk} be any ba-
sis of V , and {c̃j} any Euler lift representing e. Or-
der the basis {c̃j ⊗ vk} for Cα

∗ (X;V ) lexicographically,
i.e., c̃j ⊗ vk < c̃j ′ ⊗ vk ′ if either j < j′ or both j = j′ and
k < k′. We thus have a based acyclic complex Cα

∗ (X;V ),
and we can consider

τ(Cα
∗ (X;V ), c∗ ⊗ v∗) ∈ F×.

When dim(V ) is even, this torsion is in fact indepen-
dent of all the choices involved, but when dim(V ) is
odd, we need to augment it as follows to remove a sign
ambiguity.

Pick an ordered basis hi for H∗(X; R ) representing our
homology orientation ω. Since we have ordered the cells
of X, we can consider the torsion

τ
(
C∗(X; R ), c∗, h∗

)
∈ R ×.

We define βi(X) =
∑i

k=0 dim
(
Hk (X; R )

)
and γi(X) =∑i

k=0 dim
(
Ck (X; R )

)
, and then set N(X) =

∑
i βi(X) ·

γi(X). Following [Friedl et al. 11], which generalizes the
ideas in [Turaev 86, Turaev 90], we now define

τ(X,α, e, ω)

:= (−1)N (X )·dim(V ) · τ
(
Cα

∗ (X;V ), c∗ ⊗ v∗
)

· sign
(
τ
(
C∗(X; R ), c∗, h∗

))dim(V )
.

A straightforward calculation using the basic properties
of torsion shows that this invariant does not depend on
any of the choices involved, i.e., it is independent of the
ordering and orientation of the cells of X, the choice
of representatives for e and ω, and the particular basis
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for V . Similar elementary arguments prove the following
lemma. Here −ω denotes the opposite homology orienta-
tion to ω, and note that (det ◦α) : π → F factors through
H1(X; Z).

Lemma 2.1. If β is conjugate to α, then given h ∈
H1(X; Z) and ε ∈ {−1, 1}, one has

τ(X,β, h · e, ε · ω)=εdim(V ) ·
(
(det ◦α)(h)

)−1 ·τ(X,α, e, ω).

2.4. Twisted Torsion of 3-Manifolds

Let N be a 3-manifold whose boundary is empty or
consists of tori. We first recall some facts about Spinc -
structures on N ; see [Turaev 02, Section XI.1] for de-
tails. The set Spinc(N) of such structures admits a free
and transitive action by H1(N ; Z). Moreover, there ex-
ists a map c1 : Spinc(N) → H1(N ; Z) that has the prop-
erty that c1(h · s) = 2h + c1(s) for every h ∈ H1(N ; Z)
and s ∈ Spinc(N).

Now consider a triangulation X of N . By [Turaev 02,
Section XI], there exists a canonical bijection
Spinc(N) → Eul(X) that is equivariant with respect to
the actions by H1(N ; Z) = H1(X; Z). Given a represen-
tation α : π1(N) → GL(V ), an element s ∈ Spinc(N),
and a homology orientation ω for N , we define

τ(N,α, s, ω) := τ(X,α, e, ω),

where e is the Euler structure on X corresponding to s.
It follows from [Turaev 86, Turaev 90] that τ(N,α, s, ω)
is independent of the choice of triangulation and hence
is well defined. See also [Friedl et al. 11] for more details
about τ(N,α, s, ω).

2.5. Twisted Torsion Polynomial of a Knot

Let K be a knot in a rational homology 3-sphere Y .
Throughout, we write XK := Y \ int(N(K)) for the knot
exterior, which is a compact manifold with torus bound-
ary. We define an orientation of K to be a choice of
oriented meridian μK ; if Y is oriented, instead of just
orientable, this is equivalent to the usual notion. Sup-
pose now that K is oriented. Let πK := π1(XK ) and take
φK : πK → Z to be the unique epimorphism such that
φ(μK ) > 0. There is a canonical homology orientation ωK

for XK as follows: take a point as a basis for H0(XK ; R )
and take {μK } as the basis for H1(XK ; R ). We will drop
K from such notation if the knot is understood from the
context.

For a representation α : π → GL(n,R) over a com-
mutative domain R, we define a torsion polynomial
as follows. Consider the left Z[π]-module structure on

Rn ⊗R R[t±1 ] ∼= R[t±1 ]n given by

g · (v ⊗ p) :=
(
α(g) · v

)
⊗
(
tφ(g)p

)
for g ∈ π and v ⊗ p ∈ Rn ⊗R R[t±1 ]. Put differently, we
get a representation α ⊗ φ : π → GL(n,R[t±1 ]). We de-
note by Q(t) the field of fractions of R[t±1 ]. The repre-
sentation α ⊗ φ allows us to view R[t±1 ]n and Q(t)n as
left Z[π]-modules. Given s ∈ Spinc(X), we define

τ(K,α, s) := τ(XK ,α ⊗ φ, s, ωK ) ∈ Q(t)

to be the twisted torsion polynomial of the oriented knot
K corresponding to the representation α and the Spinc -
structure s. Calling τ(K,α, s) a polynomial even though
it is defined as a rational function is reasonable given
Theorem 2.4 below.

Remark 2.2. The study of twisted polynomial invari-
ants of knots was introduced in [Lin 01]. The invari-
ant τ(K,α, s) can be viewed as a refined version of
the twisted Alexander polynomial of a knot and of
Wada’s invariant. We refer to [Wada 94, Kitano 96,
Friedl and Vidussi 10] for more on twisted invariants of
knots and 3-manifolds.

2.6. The SL(2, F ) Torsion Polynomial of a Knot

Our focus in this paper is on 2-dimensional representa-
tions, and we now give a variant of τ(K,α, s) that does
not depend on s or the orientation of K. Specifically, for
an unoriented knot K in a Q HS and a representation
α : π → SL(2, F ), we define

T α
K := tφ(c1 (s)) · τ(K,α, s) ( 2–1)

for every s ∈ Spinc(X) and choice of oriented meridian μ

and prove the following result.

Theorem 2.3. For α : π → SL(2, F ), the invariant T α
K is

a well-defined element of F (t) that is symmetric, i.e.,
T α

K (t−1) = T α
K (t).

We will call T α
K ∈ F (t) the twisted torsion polynomial

associated to K and α.

Proof. That the right-hand side of (2–1) is independent
of the choice of s follows easily from Lemma 2.1 using
the observation that det ((α ⊗ φ)(g)) = t2φ(g) for g ∈ π

and the properties of c1 given in Section 2.4.
The choice of meridian μ affects the right-hand side of

(2–1) in two ways: it is used to define the homology ori-
entation ω and the homomorphism φ : π → Z. The first
doesn’t matter, by Lemma 2.1, but switching φ to −φ is
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equivalent to replacing t with t−1 . Hence being indepen-
dent of the choice of meridian is equivalent to the final
claim that T α

K is symmetric.
Now any SL(2, F )-representation preserves the bilin-

ear form on F 2 given by (v, w) → det(v w). Using this
observation, it is shown in [Friedl et al. 11, Theorem 7.3],
generalizing [Hillman et al. 10, Corollary 3.4] and build-
ing on work in [Turaev 86, Turaev 90], that in our con-
text, we have

τ(K,α, s)
(
t−1) = t2φ(c1 (s)) · τ(K,α, s),

which establishes the symmetry T α
K and hence the

theorem.

While in general, T α
K is a rational function, it is fre-

quently a Laurent polynomial or can be computed in
terms of the ordinary Alexander polynomial ΔK .

Theorem 2.4. Let K be a knot in a Q HS and let α : πK →
SL(2, F ) be a representation.

(a) If α is irreducible, then T α
K lies in F [t±1 ].

(b) If α is reducible, then T α
K = TK

β , where β is the di-
agonal part of α, i.e., a diagonal representation such
that tr

(
β(g)

)
= tr

(
α(g)

)
for all g ∈ π.

(c) If α is reducible and factors through

H1(XK ; Z)/(torsion),

then

T α
K (t) =

ΔK (zt) · ΔK (z−1t)
t − (z + z−1) + t−1 ,

where z, z−1 are the eigenvalues of α(μK ), and ΔK

is the symmetrized Alexander polynomial.

When the ambient manifold Y is a ZHS, then the
torsion polynomial of any reducible representation α to
SL(2, F ) can be computed by combining (b) and (c);
when H1(Y ; Z) is finite but nontrivial, then T α

K is the
product of the torsion polynomials of two 1-dimensional
representations, but it may not be directly related to ΔK .

Proof. Part (a) is due to [Kitano and Morifuji 05] and
is seen as follows. Since α is irreducible, there is a
g ∈ [π, π] such that α(g) does not have trace 2 (see,
e.g., [Culler and Shalen 83, Lemma 1.5.1] or the first part
of the proof of [Kitano and Morifuji 05, Theorem 1.1]).
Then take a presentation of π for which g is a genera-
tor and apply Proposition 2.5 below with xi = g; since
φ(g) = 0 and tr

(
α(g)

)
�= 2, the denominator in (2–2) lies

in F×, and hence T α
K is in F [t±1 ].

For part (b), conjugate α so that it is upper diagonal:

α(g) =

(
a(g) b(g)
0 a(g)−1

)
for all g ∈ π.

The diagonal part of α is the representation β given by

g →
(

a(g) 0
0 a(g)−1

)
.

It is easy to see, for instance using (2–2), that T α
K = TK

β .
Finally, part (c) follows from a straightforward calcula-
tion with (2–2); see, e.g., [Turaev 01, Turaev 02].

2.7. Calculation of Torsion Polynomials Using
Fox Calculus

Suppose we are given a knot K in a Q HS and a rep-
resentation α : π1(XK ) → SL(2, F ). In this section, we
give a simple method for computing T α

K . As usual, we
write π := π1(XK ) and φ = φK . We can extend the group
homomorphism α ⊗ φ : π → GL(2, F [t±1 ]) to a ring ho-
momorphism Z[π] → M(2, F [t±1 ]), which we also denote
by α ⊗ φ. Given a k × l matrix A = (aij ) over Z[π],
we denote by (α ⊗ φ)(A) the 2k × 2l matrix obtained
from A by replacing each entry aij by the 2 × 2 matrix
(α ⊗ φ)(aij ).

Now let F = 〈x1 , . . . , xn 〉 be the free group on n gener-
ators. By [Fox 53, Fox 54, Crowell and Fox 63] and also
[Harvey 05, Section 6], there exists for each xi a Fox
derivative

∂

∂xi
: F → Z[F ]

with the following two properties:

∂xj

∂xi
= δij and

∂(uv)
∂xi

=
∂u

∂xi
+ u

∂v

∂xi
for all u, v ∈ F .

We also need the involution of Z[F ] that sends g ∈ F

to g−1 and respects addition (this is not an algebra au-
tomorphism, since it induces an antihomomorphism for
multiplication). We denote the image of a ∈ Z[F ] under
this map by a, and if A is a matrix over Z[F ], then A

denotes the result of applying this map to each entry.
The following allows for the efficient calculation of T α

K ,
since π always has such a presentation (e.g., if K is a knot
in S3 , one can use a Wirtinger presentation).

Proposition 2.5. Let K be a knot in a Q HS, and
〈x1 , . . . , xn | r1 , . . . , rn−1〉 a presentation of πK of
deficiency one. Let A be the n × (n − 1) matrix with
entries aij = ∂rj

∂xi
. Fix a generator xi and consider the

matrix Ai obtained from A by deleting the ith row. Then
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there exists an l ∈ Z such that for every even-dimensional
representation α : π → GL(V ), one has

T α
K (t) = tl ·

det
(
(α ⊗ φ)

(
Ai

))
det
(
(α ⊗ φ)

(
xi − 1

)) ( 2–2)

whenever the denominator is nonzero.

The same formula also holds, up to a sign, when
dim(V ) is odd. An easy way to ensure a nonzero denom-
inator in (2–2) is to choose an xi such that φ(xi) �= 0;
then det

(
(α ⊗ φ)

(
xi − 1

))
is essentially the characteris-

tic polynomial of α(xi)−1 and hence nonzero.

Remark 2.6. Wada’s invariant (see [Wada 94]) is defined
to be

det
(
(α ⊗ φ)

(
At

i

))
det
(
(α ⊗ φ)

(
xi − 1

)) .
In [Friedl and Vidussi 10, p. 53], it is erroneously claimed
that up to multiplication by a power of t, the tor-
sion polynomial T α

K agrees with Wada’s invariant. Since
there seems to be some confusion in the literature re-
garding the precise relationship between twisted torsion
and Wada’s invariant, we discuss it in detail in Sec-
tion 2.8. In that section, we will also see that for rep-
resentations into SL(2, F ), Wada’s invariant does in fact
agree with T α

K (t). In particular, the invariant studied in
[Kim and Morifuji 10] agrees with T α

K (t).

Proposition 2.5 is an immediate consequence of the
following.

Proposition 2.7. Let K,π,A be as above. For each gen-
erator xi, there is an s ∈ Spinc(XK ) such that for every
even-dimensional representation β : π → GL(V ), one has

τ(XK , β, s) =
det
(
β(Ai)

)
det (β(xi − 1))

( 2–3)

whenever the denominator is nonzero.

The homology orientation ω is suppressed in (2–3) be-
cause by Lemma 2.1, it doesn’t affect τ , since dim(V ) is
even.

Proof of Proposition 2.7. Let X be the canonical 2-
complex corresponding to the presentation of π, i.e., X

has one cell of dimension zero, n cells of dimension one,
and n − 1 cells of dimension two. Since the Whitehead
group of π is trivial [Waldhausen 78], it follows that X

is simple-homotopy equivalent to every other CW de-
composition of XK ; in particular, it is simple-homotopy

equivalent to a triangulation. By standard results (see,
e.g., [Turaev 01, Section 8]), we can now use X to calcu-
late the torsion of XK .

Consider the Euler structure e for X that is given by
picking an arbitrary lift of the vertex of X to the universal
cover X̃ and then taking the lift of each xi that starts at
this base point. Reading out the words rj in x1 , . . . , xn

starting at the base point gives a canonical lift for the 2-
cells corresponding to the relators. With respect to this
basing, the chain complex C∗(X̃) is isomorphic to the
chain complex

0 → Z[π]n−1 ∂2−→ Z[π]n ∂1−→ Z[π] → 0.

The bases of C2(X̃) and C1(X̃) are abusively denoted by
{rj} and {xi}, and the basis of C0(X̃) is the lifted base
point b. Thus

∂2(rj )=
∑

i

∂rj

∂xi
xi =

∑
i

aij xi and ∂1(xi) = (xi − 1)b.

Now fix a basis {vk} for V . If we then view ele-
ments v ∈ V as vertical vectors and β(g) as a matrix,
the left Z[π]-module structure on V is given by g · v =
β(g)v. Thus in the complex C∗

β(X;V ) = C∗(X̃) ⊗Z[π ] V ,
we have

∂2(rj ⊗ vk ) =
∑

i

(aijxi ⊗ vk ) =
∑

i

(xi · aij ⊗ vk )

=
∑

i

(xi ⊗ aij · vk ) =
∑

i

(xi ⊗ β(aij )vk ) .

Thus with the basis-ordering conventions of Section 2.3,
the twisted chain complex C∗

β(X;V ) is given by

0 → V n−1 β (A)−−−→ V n (β (x1 −1),...,β (xn −1))−−−−−−−−−−−−−−→ V → 0, ( 2–4)

where as usual, matrices act on the left of vertical vectors.
From now on, we assume that det (β(xi − 1)) �= 0,

since otherwise, there is nothing to prove. First, consider
the case that det

(
β(Ai)

)
= 0. We claim in this case that

C∗
β(X;V ) is not acyclic, and thus (2–3) holds by the defi-

nition of τ . Consider any v ∈ V n−1 that is in the kernel of
Ai ; because β(xi − 1) is nonsingular, the fact that ∂2 = 0
forces v to be in the kernel of A. Hence H2

β(X;V ) �= 0,
as needed.

When instead, det
(
β(Ai)

)
�= 0, then both boundary

maps in (2–4) have full rank, and hence the complex is
acyclic. Following [Turaev 01, Section 2.2], we can use a
suitable matrix τ -chain to compute the desired torsion.
Specifically, [Turaev 01, Theorem 2.2] gives

τ(X,β, e) =
det
(
β(Ai)

)
det (β(xi − 1))

. ( 2–5)
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Here we are using that dim(V ) is even, which forces the
sign discussed in [Turaev 01, Remark 2.4] to be positive.
Also, the convention of [Turaev 01] is to record a basis as
the rows of a matrix, whereas we use the columns; this is
irrelevant, since the determinant is transpose-invariant.
Given (2–5), if we take s be the Spinc -structure corre-
sponding to e, we have established (2–3).

2.8. Connection to Wada’s Invariant

We now explain why the formula (2–2) differs from the
one used to define Wada’s invariant [Wada 94], and how
Wada’s invariant also arises as a torsion of a suitable
chain complex. To start, suppose we have a representa-
tion β : π → GL(d, F ), where as usual, π is the funda-
mental group of a knot exterior. The representation β

makes V := F d into both a left and a right Z[π]-module.
The left module β V is defined by g · v := β(g)v, where
v ∈ V is viewed as a column vector, and the right mod-
ule Vβ is defined by v · g := vβ(g), where now v ∈ V is
viewed as a row vector.

Given a left Z[π]-module W , we denote by W op the
right Z[π]-module given by w · f := f · w. Similarly, we
can define a left module W op for a given right Z[π]-
module W . In Section 2, we started with the left modules
C∗(X̃) and β V and used the chain complex

C∗
β(X̃, F d) := C∗(X̃)op ⊗Z[π ] β V

in defining the torsion.
One could instead consider the chain complex

Vβ ⊗Z[π ] C∗(X̃).

Here, if {vk} is a basis for V and {c̃j} is a Z[π]-basis
for C∗(X̃), then we endow Vβ ⊗Z[π ] C∗(X̃) with the basis
{vk ⊗ c̃j} ordered reverse lexicographically, i.e., vk ⊗ c̃j <

vk ′ ⊗ c̃j ′ if either j < j′ or both j = j′ and k < k′.
Suppose now we want to compute the torsion of Vβ ⊗

C∗(X̃) using the setup of the proof of Theorem 2.7. Then
we have

∂2(vk ⊗ rj ) =
∑

i

(vk ⊗ aijxi) =
∑

i

(vk ⊗ aij · xi)

=
∑

i

(vk · aij ⊗ xi) =
∑

i

(vk β(αij ) ⊗ xi) .

Since we are focusing on a right module Vβ , it is natural
to write the matrices for the boundary maps in Vβ ⊗Z[π ]

C∗(X̃) as matrices that act on the right of row vectors.
With these conventions, one gets the chain complex

0 → V n−1 β (At )−−−→ V n (β (x1 −1),...,β (xn −1))t

−−−−−−−−−−−−−−→ V → 0,

where here At denotes the transpose of A, and so At is
an (n − 1) × n matrix over Z[π]. As in the proof of The-
orem 2.7, in the generic case, [Turaev 01, Theorem 2.2]
gives that

τ
(
Vβ ⊗Z[π ] C∗(X̃)

)
=

det
(
β(At

i)
)

det (β(xi − 1))
.

Up to the sign of the denominator, this is precisely the
formula for Wada’s invariant given in [Wada 94].

It is important to note here that β(At) is not neces-
sarily the same as

(
β(A)

)t , and hence Wada’s invariant
may differ from our τ(X,β). However, note that there
exists a canonical isomorphism

Vβ ⊗Z[π ] C∗(X̃) → C∗(X̃)op ⊗Z[π ]
(
Vβ

)op

v ⊗ σ → σ ⊗ v

that moreover, respects the ordered bases. Thus these
chain complexes have the same torsion invariant. It is
easy to see that the left module (Vβ )op is isomorphic to
β ∗V , where β∗ : π → GL(d, F ) is the representation given
by β∗(g) :=

(
β(g)−1

)t . Thus Wada’s invariant for β is our
torsion τ(X,β∗).

Our focus in this paper is on β of the form α ⊗ φ,
where α : π → SL(2, F ) and φ : π → Z is the usual epi-
morphism. Note that α∗ is conjugate to α (see, e.g.,
[Hillman et al. 10]), and hence (α ⊗ φ)∗ is conjugate to
α∗ ⊗ (−φ). Since we argued in Section 2.6 that T α is in-
dependent of the choice of φ, it follows that in this case,
our T α is exactly Wada’s invariant for α.

3. TWISTED TORSION OF CYCLIC COVERS

As usual, let K be a knot in a Q HS with exterior X

and fundamental group π. For an irreducible representa-
tion α : π → SL(2, C ), in this section we relate the tor-
sion polynomial T α

K to a sequence of C -valued torsions
of finite cyclic covers of X. We show that the latter de-
termines the former, and will use this connection in Sec-
tion 4 to prove nonvanishing of the hyperbolic torsion
polynomial.

To start, pick an orientation of K to fix the homo-
morphism φ : π → Z. For each m ∈ N , we denote by Xm

the m-fold cyclic cover corresponding to πm := φ−1(mZ).
We denote by αm the restriction of α to πm = π1(Xm ).
Since the dimension is even and the image of αm lies
in SL(2, C ), it follows from Lemma 2.1 that the tor-
sion τ(Xm ,α, s, ω) ∈ C does not depend on the choice
of Spinc -structure or homology orientation; therefore, we
denote it by τ(Xm ,αm ). We also let µm be the set of all
mth roots of unity in C . The first result of this section
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is the following (see [Dubois and Yamaguchi 09, Corol-
lary 27] for a related result).

Theorem 3.1. Let K be a knot in a Q HS with exterior X
and fundamental group π. Let α : π → SL(2, C ) be an ir-
reducible representation. Then for every m ∈ N , we have∏

ζ∈µm

T α
K (ζ) = τ(Xm ,αm ).

Note here that since α is irreducible, the torsion poly-
nomial T α

K is in C [t±1 ] by Theorem 2.4(a), and so T α
K (ξ) is

well defined for every ξ ∈ C ×. Our proof of Theorem 3.1
is inspired by an argument from [Turaev 86, Section 1.9].
Combining Theorem 3.1 with a (generalization of) a re-
sult of [Fried 86], we will prove the following.

Theorem 3.2. If τ(Xm ,αm ) is nonzero for every m ∈ N ,
then the τ(Xm ,αm ) determine T α

K (t) ∈ C (t).

To state the key lemmas, we first need some notation.
We denote by γm the representation π → GL

(
C [Zm ]

)
that is the composite of the epimorphism π

φ→ Z →
Zm with the regular representation of Zm on C [Zm ].
Given ξ ∈ C ×, we denote by λξ the representation π →
GL(1, C ) that sends g ∈ π to ξφ(g) . We first prove Theo-
rem 3.1 assuming the following lemmas.

Lemma 3.3. τ(Xm ,αm ) = τ(X,α ⊗ γm ).

Lemma 3.4. For every ξ ∈ C × and s ∈ Spinc(X), we have

τ(X,α ⊗ φ, s)(ξ) = τ(X,α ⊗ λξ , s). (3−1)

Proof of Theorem 3.1. Using Lemma 3.3 and the fact
that γm and

⊕
ζ∈µm

λζ are conjugate representations of
π, we have

τ(Xm ,αm ) = τ(X,α ⊗ γm ) =
∏

ζ∈µm

τ(X,α ⊗ λζ , s).

Note here that while the other terms do not depend on
s, those in the product at the right do, since α ⊗ λζ is
no longer a special linear representation. We now apply
Lemma 3.4 to find that

τ(Xm ,αm )

=
∏

ζ∈µm

τ(X,α ⊗ λζ , s) =
∏

ζ∈µm

τ(X,α ⊗ φ, s)(ζ)

=
∏

ζ∈µm

(ζ)−φ(c1 (s))T α
K (ζ) =

∏
ζ∈µm

T α
K (ζ),

where the last two equalities follow from (2–1) and the
fact that

∏
ζ = 1.

Proof of Lemma 3.3. The idea is that for suitable
choices, one gets an isomorphism

Cαm
∗ (Xm ;V ) → Cγm ⊗α

∗
(
X; C [Zm ] ⊗C V

)
as based chain complexes over C , and hence their torsions
are the same.

Fix a triangulation for X with an ordering cj of its
cells, as well as an Euler lift cj → c̃j of the cells to the
universal cover X̃. Let φm : π → Zm be the epimorphism
whose kernel is πm = π1(Xm ), and fix g ∈ π, where g =
φm (g) generates Zm .

Consider the triangulation of Xm that is pulled back
from that of X, and let c′j be the cell in Xm that is the
image of c̃j under X̃ → Xm . Then each cell of Xm has a
unique expression as gk · c′j for k in {0, . . . , k − 1}, where
here gk acts on Xm as a deck transformation.

We order these cells so that gk · c′j < gk ′ · c′j ′ if j < j′

or both j = j′ and k < k′. In computing torsion, we shall
use the Euler lift gk · c′j → gk · c̃j for Xm .

Let V denote C 2 with the π-module structure given
by α, and let {v1 , v2} be an ordered basis for V . Consider
the map

f : C∗(X̃) ⊗Z[πm ] V → C∗(X̃) ⊗Z[π ]
(
C [Zm ] ⊗C V

)
( 3–2)

induced by c̃ ⊗ v → c̃ ⊗ (1 ⊗ v); this is well defined, since
for h ∈ πm , we have

f
(
(c̃ · h) ⊗ v

)
= (c̃ · h) ⊗ (1 ⊗ v) = c̃ ⊗

(
h · (1 ⊗ v)

)
= c̃ ⊗

(
(h · 1) ⊗ (h · v)

)
= c̃ ⊗

(
1 ⊗ (h · v)

)
= f

(
c̃ ⊗ (h · v)

)
,

where we have used h ∈ πm to see that h · 1 = 1 in C [Zm ].
Clearly, f is a chain map of complexes of C -vector spaces,
and it is an isomorphism, since it sends the elements
of the basis {(gk · c̃j ) ⊗ v�} to those of the basis {c̃k ⊗
(g−k ⊗ g−k · v�)}. Now choose {vk,� = g−k ⊗ g−k · v�} as
our basis for C [Zm ] ⊗C V and order them by vk,� < vk ′,� ′

if k < k′ or both k = k′ and � < �′. Then with the or-
dered bases used in Section 2.3, the map f in (3–2) is
an isomorphism of based chain complexes. In particular,
the complexes have the same torsion, which proves the
lemma.

Proof of Lemma 3.4. Since for every a ∈ Z[π], we have
(α ⊗ φ)(a)(ξ) = α ⊗ λξ (a), the result should follow by
computing both sides of (3–1) with Proposition 2.7. The
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only issue is that we need to ensure the nonvanish-
ing of the denominators in (2–3) for both α ⊗ φ and
α ⊗ λξ . Since α is irreducible, we can choose g ∈ [π, π]
so that tr(α(g)) �= 2 (see, e.g., [Culler and Shalen 83,
Lemma 1.5.1]). Notice then that

α ⊗ φ
(
g−1 − 1

)
= α ⊗ λξ

(
g−1 − 1

)
= α

(
g−1 − 1

)
,

and since tr(α(g)) �= 2, we have det
(
α(g−1 − 1)

)
�= 0.

Hence if we take a suitable presentation of π where g is a
generator, then we can apply Proposition 2.7 with xi = g

to both α ⊗ φ and α ⊗ λξ and so prove the lemma.

We turn now to the proof of Theorem 3.2, which
says that typically the torsions τ(Xm ,αm ) collectively
determine T α

K (by Theorem 3.1, the hypothesis that
τ(Xm ,αm ) �= 0 for all m is equivalent to no root of T α

K

being a root of unity). A polynomial p in C [t] of de-
gree d is palindromic if p(t) = tdp(1/t), or equivalently
if its coefficients satisfy ak = ad−k for 0 ≤ k ≤ d. For a
polynomial p ∈ C [t] and m ∈ N , we denote by rm (p) the
resultant of tm − 1 and p, i.e.,

rn (p) = Res(p, tm − 1) = (−1)mdRes(tm − 1, p)

= (−1)md
∏

ζ∈µm

p(ζ),

where here d is the degree of p. The following theorem
was proved in [Fried 86] for p ∈ R [t] and generalized in
[Hillar 05] to the case of C [t].

Theorem 3.5. Suppose p and q are palindromic polyno-
mials in C [t]. If rm (p) = rm (q) �= 0 for all m ∈ N , then
p = q.

Theorem 3.2 now follows easily from Theorems 3.1 and
3.5 and the symmetry of T α

K shown in Theorem 2.3.

Remark 3.6. We just saw that under mild assumptions,
the torsions τ(Xm ,αm ) of cyclic covers determine the
C (t)-valued torsion polynomial T a

K . It would be very
interesting if one could directly read off the degree
and the top coefficient of T α

K from the τ(Xm ,αm ). See
[Hillar and Levine 07] for some of what is known about
recovering a palindromic polynomial p from the sequence
rm (p); in particular, when p is monic and of even degree
d, Sturmfels and Zworski conjecture that one needs to
know rm (p) only for m ≤ d/2 + 1 to recover p.

4. TORSION POLYNOMIALS OF HYPERBOLIC
KNOTS

Let K be a hyperbolic knot in an oriented Z2-homology
sphere Y . In this section, we define the hyperbolic torsion
polynomial TK associated to a certain preferred lift to
SL(2, C ) of the holonomy representation of its hyperbolic
structure.

4.1. The Discrete and Faithful SL(2, C )
Representations

As usual, we write π = πK := π1(XK ), and let μ ∈ π be
a meridian for K. The orientation of μ, or equivalently
of K, will not matter in this section, but fix one so that
φ : π → Z is determined.

From now on, assume that M = Y \ K ∼= int(X) has
a complete hyperbolic structure. The manifold M inher-
its an orientation from Y , and so its universal cover M̃

can be identified with H 3 by an orientation-preserving
isometry. This identification is unique up to the action of
Isom+(H 3) = PSL(2, C ), and the action of π on M̃ = H 3

gives the holonomy representation α : π → PSL(2, C ),
which is unique up to conjugation.

Remark 4.1. By Mostow–Prasad rigidity, the complete
hyperbolic structure on M is unique. Thus α is deter-
mined, up to conjugacy, solely by the knot K and the
orientation of the ambient manifold Y . A subtle point is
that there are actually two conjugacy classes of discrete
faithful representations πK → PSL(2, C ); the other one
corresponds to reversing the orientation of Y (not K) or
equivalently complex-conjugating the entries of the im-
age matrices.

To define a torsion polynomial, we want a rep-
resentation into SL(2, C ) rather than PSL(2, C ).
Thurston proved that α always lifts to a representation
α : π → SL(2, C ); see [Thurston 97] and [Shalen 02,
Section 1.6] for details. In fact, there are exactly
two such lifts, the other being g → (−1)φ(g)α(g); the
point is that any other lift has the form g → ε(g)α(g)
for some homomorphism ε : π → {±1}, i.e., some el-
ement of H1(M ; Z2) = Z2 . Now α(μ) is parabolic,
and so tr

(
α(μ)

)
= ±2. Since Y is a Z2HS, we know

that φ(μ) is odd; hence there is a lift α such that
tr
(
α(μ)

)
= 2; arbitrarily, we focus on that lift and call

it the distinguished representation. This representation
is determined, up to conjugacy, solely by K (sans
orientation). We explain below the simple change that
results if we instead required the trace to be −2.
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4.2. The Hyperbolic Torsion Polynomial

For a hyperbolic knot K in an oriented Z2HS, we define
the hyperbolic torsion polynomial to be

TK (t) := T α
K (t),

where α : π → SL(2, C ) is the distinguished representa-
tion. Before proving Theorem 1.1, which summarizes
basic properties of TK (t), we give a few definitions.
The trace field F K of K is the field obtained by ad-
joining to Q the elements tr

(
α(g)

)
for all g ∈ π; this

is a finite extension of Q and an important number-
theoretic invariant of the hyperbolic structure on M ; see
[Maclachlan and Reid 03] for more. We say that K has
integral traces if every tr

(
α(g)

)
is an algebraic integer

(this is necessarily the case if M does not contain a closed
essential surface; see, e.g., [Maclachlan and Reid 03, The-
orem 5.2.2]). Also, we denote by K∗ the result of switch-
ing the orientation of the ambient manifold Y ; we call K∗

the mirror image of K. We call K amphichiral if Y has
an orientation-reversing self-homeomorphism that takes
K to itself; equivalently, K = K∗ in the category of knots
in oriented 3-manifolds.

Theorem 4.2. Let K be a hyperbolic knot in an oriented
Z2-homology 3-sphere. Then TK has the following prop-
erties:

(a) TK is an unambiguous element of C [t±1 ] that satisfies
TK (t−1) = TK (t). It does not depend on an orienta-
tion of K.

(b) The coefficients of TK lie in the trace field of K. If K
has integral traces, the coefficients of TK are algebraic
integers.

(c) TK (ξ) is nonzero for every root of unity ξ.

(d) If K∗ denotes the mirror image of K, then TK ∗(t) =
TK (t), where the coefficients of the latter polynomial
are the complex conjugates of those of TK .

(e) If K is amphichiral, then TK is a real polynomial.

(f) The values TK (1) and TK (−1) are mutation-
invariant.

For the special case of 2-bridge knots and ξ = ±1,
assertion (c) is also a consequence of [Hirasawa and
Murasugi 08] and [Silver and Williams 09].

Proof. Since the distinguished representation α is irre-
ducible, part (a) follows from Theorems 2.3 and 2.4(a).

Next, since M has a cusp, by [Neumann and Reid 92,
Lemma 2.6], we can conjugate α so that its image

lies in SL(2, F K ), where F K is the trace field; hence
TK ∈ F K [t±1 ], proving the first part of (b). To see the
other part, first using [Maclachlan and Reid 03, Theo-
rem 5.2.4], we can conjugate α so that α(π) ⊂ SL(2,OK ),
where here OK is the ring of algebraic integers in some
number field K (which might be a proper extension of
F K ). We now compute T α

K by applying Proposition 2.5
to a presentation of π in which μ is our preferred genera-
tor. Since α(μ) is parabolic with trace 2, the denominator
in (2–2) is

p(t) := det
(
(α ⊗ φ)(μ−1 − 1)

)
= (tk − 1)2 ,

where k = −φ(μ) �= 0. Thus by (2–2), we know that
p(t) · T α

K is in OK [t±1 ]. Then since p(t) ∈ Z[t±1 ] is monic,
the leading coefficient of T α

K must be integral. An easy
inductive argument now shows that all the other coeffi-
cients are also integral, proving part (b).

The proof of (c) uses Theorem 3.1, and we handle all
mth roots of unity at once. In the notation of Section 3,
we have ∏

ζ∈µm

TK (ζ) = τ(Xm ,αm ). (4−1)

By [Menal-Ferrer and Porti 10, Theorem 0.4],
which builds on [Raghunathan 65], we have that
Hαm∗ (Xm ; C 2) = 0, or equivalently, τ(Xm ,αm ) is
nonzero. Thus by (4–1), we must have TK (ζ) �= 0 for
every mth root of unity, establishing part (c).

For (d), the distinguished representation for the mir-
ror knot K∗ is α : π → SL(2, C ), where each α(g) is the
matrix that is the complex conjugate of α(g). Since our
choice of orientation for the meridian μ was arbitrary, we
can use the same φ in calculating both TK and TK ∗ . Thus
we have

TK ∗(t) = tφ(c1 (s))τ(X, α ⊗ φ) = tφ(c1 (s))τ(Xk, α ⊗ φ)
= TK (t),

proving (d). Next, claim (e) follows immediately
from (d). Finally, claim (f) is a recent result of
[Menal-Ferrer and Porti 11].

As in Section 3, we now consider the C -valued tor-
sions τ(Xm ,αm ) of finite cyclic covers of XK . Somewhat
surprisingly, these determine TK :

Theorem 4.3. Let K be a hyperbolic knot in a Z2HS with
distinguished representation α : πK → SL(2, C ). Then
TK is determined by the torsions τ(Xm ,αm ) ∈ C .
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Proof. As discussed in the proof of Theorem 1.1(c), every
τ(Xm ,αm ) in nonzero, so the result is immediate from
Theorem 3.2.

Remark 4.4. In choosing our distinguished representa-
tion, we arbitrarily chose the lift α : π → SL(2, C ), where
tr(α(μ)) = 2. As discussed, the other lift β is given by
g → (−1)φ(g)α(g). Note that given g ∈ π, we have(

(β ⊗ φ)(g)
)
(t) = β(g) · tφ(g) = α(g) · (−1)φ(g) · tφ(g)

= α(g) · (−t)φ(g) =
(
(α ⊗ φ)(g)

)
(−t).

It follows from Proposition 2.5 that TK
β(t) = T α

K (−t) =
TK (−t). Put differently, using β instead of α would sim-
ply replace t by −t.

Remark 4.5. When Y is not a Z2HS, the choice of lift α of
the holonomy representation can have a more dramatic
effect on T α . For example, consider the manifold m130 in
the notation of [Callahan et al. 99, Culler et al. 12]. This
manifold is a twice-punctured genus-1 surface bundle
over the circle, and since H1(M ; Z) = Z ⊕ Z8 , there are
four distinct lifts of the holonomy representation. Two of
these lifts give T α

K =
(
t2 + t−2

)
− 2i, and the other two

give

T α
K =

(
t2 + t−2)+

√
−8 − 8i

(
t1 + t−1)− 6i

for the two distinct square roots of −8 − 8i. In particular,
the fields generated by the coefficients are different; only
the latter two give the whole trace field.

5. EXAMPLE: THE CONWAY AND KINOSHITA–
TERASAKA KNOTS

The Conway and Kinoshita–Terasaka knots are a famous
pair of mutant knots both of which have trivial Alexander
polynomial. Despite their close relationship, they have
different genera. Thus they are a natural place to start

our exploration of TK , and we devote this section to ex-
amining them in detail.

The Conway knot C is the mirror of the knot 11n34 in
the numbering of [Hoste and Thistlethwaite 99, Hoste et
al. 98]. The program Snap [Goodman and Neumann 12,
Coulson et al. 00] finds that the trace field F of the hy-
perbolic structure on the exterior of C is the extension
of Q obtained by adjoining the root θ ≈ 0.1233737 −
0.5213097i of

p(x) = x11 − x10 + 3x9 − 4x8 + 5x7 − 8x6 + 8x5 − 5x4

+ 6x3 − 5x2 + 2x − 1.

Snap also finds the explicit holonomy representation
πC → SL(2, F ), and one can directly apply Proposi-
tion 2.5 to compute TC . If we set

η =
1
53
(
20θ10 + 9θ9 + 28θ8 + 3θ7 + θ6 + 19θ5 + 10θ4

+ 47θ3 + 6θ + 1
)
,

then
{
η, θ, θ2 , . . . , θ10

}
is an integral basis for OF , and

we obtain the result shown in Figure 1.
The Kinoshita–Terasaka knot is the mirror of 11n42.

Its trace field is the same as for the Conway knot (since
[F : Q ] is odd, the trace field is also the invariant trace
field, which is mutation-invariant), and one obtains the
result shown in Figure 2.

From the above, we see that TK is not invariant under
mutation. Since C and KT have genera 3 and 2 respec-
tively and deg(TC ) = 10 and deg(TKT ) = 6, we see that
Conjecture 1.4 holds for both knots. Also note that the
coefficients of these polynomials are not real, certifying
the fact that both knots are chiral.

Remark 5.1. It was shown in [Friedl and Kim 06, Sec-
tion 5] that twisted Alexander polynomials correspond-
ing to representations over finite fields detect the genus of
all knots with at most twelve crossings. For example, for

TC (t) =
(
−79θ10 − 35θ9 − 111θ8 − 11θ7 − 4θ6 − 71θ5 − 38θ4 − 187θ3 − 2θ2 − 24θ + 206η

) (
t5 + t−5)

+
(
257θ10 + 114θ9 + 361θ8 + 36θ7 + 13θ6 + 232θ5 + 124θ4 + 608θ3 + 6θ2 + 78θ − 671η

) (
t4 + t−4)

+
(
−372θ10 − 165θ9 − 523θ8 − 51θ7 − 21θ6 − 334θ5 − 183θ4 − 877θ3 − 11θ2 − 111θ + 972η

) (
t3 + t−3)

+
(
373θ10 + 162θ9 + 528θ8 + 40θ7 + 33θ6 + 312θ5 + 200θ4 + 866θ3 + 24θ2 + 99θ − 968η

) (
t2 + t−2)

+
(
−303θ10 − 115θ9 − 445θ8 + 14θ7 − 75θ6 − 152θ5 − 227θ4 − 649θ3 − 73θ2 − 29θ + 749η

) (
t1 + t−1)

+
(
116θ10 + 14θ9 + 200θ8 − 88θ7 + 116θ6 − 122θ5 + 204θ4 + 146θ3 + 124θ2 − 78θ − 220η

)
≈
(
4.89524 + 0.09920i

) (
t5 + t−5)+

(
−15.68571 − 0.29761i

) (
t4 + t−4)+

(
23.10363 − 0.07842i

) (
t3 + t−3)

+
(
−26.94164 + 4.84509i

) (
t2 + t−2)+

(
38.38349 − 24.49426i

) (
t1 + t−1)+

(
−43.32401 + 44.08061i

)
.

FIGURE 1. The hyperbolic torsion polynomial of the Conway knot.
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TKT (t) =
(
−55θ10 − 24θ9 − 78θ8 − 6θ7 − 5θ6 − 45θ5 − 29θ4 − 128θ3 − 5θ2 − 15θ + 142η

) (
t3 + t−3)

+
(
293θ10 + 126θ9 + 416θ8 + 28θ7 + 29θ6 + 236θ5 + 160θ4 + 678θ3 + 24θ2 + 75θ − 756η

) (
t2 + t−2)

+
(
−699θ10 − 291θ9 − 1001θ8 − 42θ7 − 95θ6 − 512θ5 − 419θ4 − 1585θ3 − 81θ2 − 149θ + 1785η

) (
t1 + t−1)

+
(
790θ10 + 314θ9 + 1146θ8 + 8θ7 + 150θ6 + 494θ5 + 532θ4 + 1738θ3 + 136θ2 + 126θ − 1986η

)
≈
(
4.41793 − 0.37603i

) (
t3 + t−3)+

(
−22.94164 + 4.84509i

) (
t2 + t−2)+

(
61.96443 − 24.09744i

) (
t1 + t−1)

+
(
−82.69542 + 43.48539i

)
.

FIGURE 2. The hyperbolic torsion polynomial of the Kinoshita-Terasaka knot.

the Conway knot, there is a representation α : π1(XC ) →
GL(4, F 13) such that the corresponding torsion polyno-
mial T α

C ∈ F 13 [t±1 ] has degree 14, and hence

x(C) ≥ 1
4

deg (T α
C ) = 3.5.

In particular, this shows that x(C) = 5, since x(C) =
2 genus(C) − 1 is an odd integer.

The calculation using the discrete and faithful
SL(2, C ) representation is arguably more satisfactory,
since it gives the equality

x(C) =
1
2

deg(TC )

on the nose, and not just after rounding up to odd
integers. Interestingly, we have not found an example
for which this rounding trick applies to TK ; at least
for knots with at most 15 crossings, one always has
x(K) = deg(TK )/2 (see Section 6).

5.1. The Adjoint Representation

For an oriented hyperbolic knot K with distinguished
representation α : π1(XK ) → SL(2, C ), we now consider
the adjoint representation

αadj : π1(XK ) → Aut
(
sl(2, C )

)
g → A → α(g)Aα(g)−1

associated to α. It is well known that this representa-
tion is also faithful and irreducible. Using sign-refined
torsion and the orientation on K, one gets an invari-
ant T adj

K ∈ C [t±1 ] that is well defined up to multi-
plication by an element of the form tk . We refer to
[Dubois and Yamaguchi 09] for details on this construc-
tion and for further information on T adj

K ; one thing that
is shown there is that T adj

K (t) = −T adj
K (t−1) up to a power

of t, and so T adj
K has odd degree.

For the Conway knot we calculate that

T adj
C (t) ≈

(
−0.2788 + 16.4072i

) (
t13 − 1

)
+
(
−3.9858 − 20.1706i

) (
t12 − t

)

+
(
−4.2204 − 60.5497i

) (
t11 − t2

)
+
(
52.0953 + 134.5013i

) (
t10 − t3

)
+
(
−147.7856 − 46.07448i

) (
t9 − t4

)
+
(
897.2087 + 62.3265i

) (
t8 − t5

)
+
(
−2465.8556 − 1308.0110i

) (
t7 − t6

)
,

and for the Kinoshita-Terasaka knot we obtained

T adj
KT (t) ≈

(
−0.7378 + 12.4047i

) (
t7 − 1

)
+
(
29.9408 − 56.5548i

) (
t6 − t

)
+
(
−655.7823 − 173.0400i

) (
t5 − t2

)
+
(
2056.7509 + 1678.4875i

) (
t4 − t3

)
.

Since dim
(
sl(2, C )

)
= 3, it follows from [Friedl and Kim

06, Theorem 1.1] that

x(K) ≥ 1
3

deg
(
T adj

K (t)
)

(5−1)

and hence

x(C) ≥ 13
3

and x(KT ) ≥ 7
3
. (5−2)

Thus using that x(K) is an integer, we get x(C) ≥ 5 and
x(KT ) ≥ 3, which are sharp. Intriguingly, in contrast to
the case of TK , one does not have equality in (5–1) and
(5–2) for these two knots. Below, in Section 6.6, we de-
scribe some knots for which T adj

K fails to give a sharp
bound on x(K) even after one takes into account that
x(K) is an odd integer.

6. KNOTS WITH AT MOST 15 CROSSINGS

There are 313 231 prime knots with 15 or fewer cross-
ings [Hoste et al. 98], of which all but 22 are hyperbolic.
For each of these hyperbolic knots, we computed a high-
precision numerical approximation to TK (see Section 6.7
for details), and this section is devoted to describing the
various properties and patterns we found.
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6.1. Genus

The genus bound from TK given in Theorem 1.3 is sharp
for all 313 209 hyperbolic knots with 15 or fewer cross-
ings; that is, x(K) = deg(TK )/2 for all these knots. In
contrast, the ordinary Alexander polynomial fails to de-
tect the genus for 8 834 of these knots, which is 2.8% of
the total.

We showed that the genus bound from TK is sharp
using the following techniques to give upper bounds on
the genus. First, for the alternating knots (36% of the
total), the genus is simply determined by the Alexan-
der polynomial [Murasugi 58, Crowell 59]. For the non-
alternating knots, we first did 0-surgery on the knot K

to get a closed 3-manifold N ; by [Gabai 87], the genus
of K is the same as that of the simplest homologically
nontrivial surface in N . We then applied the method of
[Dunfield and Ramakrishnan 10, Section 6.7] to a trian-
gulation of N to quickly find a homologically nontrivial
surface. Since this surface need not be of minimal genus,
when necessary we randomized the triangulation of N

until we found a surface whose genus matched the lower
bound from TK .

6.2. Fibering

We also found that TK gives a sharp obstruction to fiber-
ing for all hyperbolic knots with at most 15 crossings.
In particular, the 118 252 hyperbolic knots for which
TK is monic are all fibered. In contrast, while the or-
dinary Alexander polynomial always certifies nonfiber-
ing for alternating knots [Murasugi 63, Gabai 86], among
the 201 702 nonalternating knots there are 7 972, or
4.0%, whose Alexander polynomials are monic but do
not fiber.

To confirm fibering when TK is monic, we
used a slight generalization of the method of
[Dunfield and Ramakrishnan 10, Section 6.11]. Again by
[Gabai 87], it is equivalent to show that the 0-surgery
N is fibered. Starting with the minimal-genus surface S

found as above, we split N open along S, and tried to sim-
plify a presentation for the fundamental group of N \ S

until it was obviously that of a surface group. If it was,
then it followed that N \ S = S × I and N was fibered.
The difference with [Dunfield and Ramakrishnan 10] is
that we allowed S to be a general normal surface instead
of the restricted class of [Dunfield and Ramakrishnan 10,
Figure 6.13]. We handled this by splitting the manifold
open along S and triangulating the result using Regina
[Burton 09].

6.3. Chirality

For hyperbolic knots with at most 15 crossings, we found
that a knot is amphichiral if and only if TK has real coef-
ficients. In particular, there are 353 such knots with TK

real, and SnapPy [Culler et al. 12] easily confirms that
they are all amphichiral. (This matches the count of am-
phichiral knots from [Hoste et al. 98, Table A1].)

In contrast, the numbers TK (1) and TK (−1) do not
always detect chirality. For example, the chiral knot
10153 = 10n10 has TK (1) = 4, and 10157 = 10n42 has
TK (−1) = 576. Moreover, the knot 14a506 has both
TK (1) and TK (−1) real. (This last claim was checked to
the higher precision of 10 000 decimal places.)

6.4. Knots with the Same TK

While we saw in Section 5 that TK is not mutation-
invariant, there are still pairs of knots with the same
TK . In particular, among knots with at most 15 cross-
ings, there are 2 739 groups of more than one knot that
share the same TK , namely 2 700 pairs and 39 triples.
Here we do not distinguish between a knot and its mir-
ror image, and having the same TK means that the co-
efficients agree to 5 000 decimal places. Stoimenow found
that there are 34 349 groups of mutant knots among those
with at most 15 crossings, involving some 77 680 distinct
knots [Stoimenow 12]. Thus there are many examples in
which mutation changes TK . However, all of the examples
we found of knots with the same TK are in fact mutants.

As mentioned, it is shown in [Menal-Ferrer and
Porti 11] that the evaluations TK (1) and TK (−1) are
mutation-invariant. We found 38 pairs of nonmutant
knots with the same TK (1) and the same TK (−1).
Suggestively, several of these pairs (including the five
pairs shown in [Dunfield et al. 10, Figure 3.9]; see also
[Stoimenow and Tanaka 09, Tables 2 and 3]) are known
to be genus-2 mutants. We also found a triple of mutu-
ally nonmutant knots {10a121, 12a1202, 12n706} where
TK (+1) = −4, and a similar sextet

{10n10, 12n881, 13n592, 13n2126, 15n9378, 15n22014}

where TK (+1) = 4; however, within these groups, the
value TK (−1) did not agree.

6.5. Other Patterns

We found two other intriguing patterns that we are un-
able to explain. The first is that the second-highest coef-
ficient of TK is often real for fibered knots. In particular,
this is the case for 53.1% (62 763 of 118 252) of the fibered
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knots in this sample. In contrast, the second coefficient
is real for only 0.2% (364 of 194 957) of nonfibered knots.
(Arguably, the right comparison is with the leading co-
efficient of TK for nonfibered knots; even fewer (0.05%)
of these are real.) For fibered knots, the twisted homol-
ogy of the universal cyclic cover can be identified with
that of the fiber; hence the action of a generator of the
deck group on this homology of the cover can be thought
of as the action of the monodromy of the bundle on the
twisted homology of the fiber. The second coefficient of
TK is then just the sum of the eigenvalues of this mon-
odromy, but it is unclear why this should often be a real
number.

The second observation is that |TK (−1)| > |TK (1)| for
all but 22 (less than 0.01%) of these knots. The excep-
tions are nonalternating, and all but one (15n151121) is
fibered.

6.6. Adjoint Polynomial

As discussed in Section 5.1, a torsion polynomial T adj
K

constructed by composing the holonomy representation
with the adjoint representation of PSL(2, C ) on its Lie
algebra was studied in [Dubois and Yamaguchi 09]. We
also numerically calculated this invariant for all knots
with at most 15 crossings. In contrast to what we found
for TK , there was not always an equality in the bound of
(5−1) and (5−2). In fact, some 8 252 of these knots had
x(K) > 1

3 deg(T adj
K ). All such knots were nonalternating,

and were among the 8 834 knots for which ΔK fails to give
a sharp bound on x(K). However, using the trick from
Section 5.1 that x(K) is an odd integer, we showed that
the bound on x(K) from T adj

K is effectively sharp in all
but 12 cases. The 12 knots for which T adj

K fails to deter-
mine the genus are as follows: there are seven knots where
x(K) = 7 (i.e., genus 4) but deg(T adj

K ) = 15, namely

{15n75595, 15n75615, 15n75858, 15n75883, 15n75948,

15n99458, 15n112466},

and five knots with x(K) = 9 (i.e., genus 5) but
deg(T adj

K ) = 21, namely

{15n59545, 15n62671, 15n68947, 15n109077, 15n85615}.

In these 12 cases, we computed T adj
K to the higher

accuracy of 10 000 decimal places.
Intriguingly, the polynomial T adj

K did better at pro-
viding an obstruction to fibering; just as for TK , it was
monic only for those knots in the sample that are actually
fibered.

6.7. Computational Details

The complete software used for these computations, as
well as a table of TK for all these knots, is available
at http://dunfield.info/torsion. The software runs within
Sage,1 and makes use of SnapPy [Culler et al. 12] and
t3m [Culler and Dunfield 10]. It finds very high precision
solutions to the gluing equations, in the manner of Snap
[Goodman and Neumann 12, Coulson et al. 00], and ex-
tracts from this a high-precision approximation to the
distinguished representation. Except as noted above, we
did all computations with 250 decimal places of preci-
sion. Even at this accuracy, TK is fast to compute for
these knots, taking only a couple of seconds each on a
late-2010 high-end desktop computer. However, to save
space, only 40 digits were saved in the final table.

To guard against error, two of the authors indepen-
dently wrote programs that computed TK , and the out-
puts of these programs were then compared for all non-
alternating knots with 14 crossings.

7. TWISTED TORSION AND THE CHARACTER
VARIETY OF A KNOT

As usual, consider a hyperbolic knot K in a Z2HS,
and let π := π1(XK ). So far, we have focused on the
torsion polynomial of the distinguished representation
α : π → SL(2, C ) coming from the hyperbolic structure.
However, this representation is always part of a complex
curve of representations π → SL(2, C ), and it is natural
to ask whether there is additional topological information
in the torsion polynomials of these other representations.
In this section, we describe how to understand all of these
torsion polynomials at once, and use this to help explain
some of the patterns observed in Section 6. For the spe-
cial case of 2-bridge knots, it had previously been stud-
ied in [Morifuji 08, Kim and Morifuji 10] how the torsion
polynomial varies with the representation, and we extend
here some of those results to more general knots.

To state our results, we must first review some
basics about character varieties; throughout, see the
classic paper [Culler and Shalen 83] or the survey
[Shalen 02] for details. Consider the representation
variety R(K) := Hom

(
π,SL(2, C )

)
, which is an affine

algebraic variety over C . The group SL(2, C ) acts on
R(K) by conjugating each representation; the algebro-
geometric quotient X(K) := R(K)//SL(2, C ) is called
the character variety. More concretely, X(K) is the set

1 Available at http://www.sagemath.org.
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Dunfield et al.: Twisted Alexander Polynomials of Hyperbolic Knots 345

of characters of representations α ∈ R(K), i.e., functions
χα : π → C of the form χα (g) = tr (α(g)) for g ∈ π.
When α is irreducible, the preimage of χα under the
projection R(K) → X(K) is just all conjugates of α, but
distinct conjugacy classes of reducible representations
can sometimes have the same character. Still, it makes
sense to call a character irreducible or reducible depend-
ing on which kind of representations it comes from.

The character variety X(K) is also an affine algebraic
variety over C ; its coordinate ring C [X(K)], which con-
sists of all regular functions on X(K), is simply the sub-
ring C [R(K)]SL(2,C ) of regular functions on R(K) that
are invariant under conjugation. We start by showing
that it makes sense to define a torsion polynomial T χ

K

for χ ∈ X(K) via T χ
K := T α

K for every α with χα = χ.

Lemma 7.1. If α, β ∈ R(K) have the same character, then
T α

K = TK
β .

Proof. As discussed, if α is irreducible, then β must be
conjugate to α; hence they have the same torsion poly-
nomial. If instead α is reducible, then Theorem 2.4(b)
shows that T α

K depends only on the diagonal part of α,
which can be recovered from its character. Since β must
also be reducible and has the same character as α, we
again get T α

K = TK
β .

An irreducible component X0 of X(K) has dimC (X0)
≥ 1, since the exterior of K has boundary a torus. There
are two possibilities for X0 : either it consists entirely of
reducible characters, or it contains an irreducible char-
acter. In the latter case, it turns out that irreducible
characters are Zariski open in X0 , and every character
in X0 is that of a representation with nonabelian im-
age. Since the torsion polynomials of reducible represen-
tations are boring (see Theorem 2.4 and the discussion
immediately following), we focus on those components
containing an irreducible character. We denote the union
of all such components by X(K)irr ; equivalently, X(K)irr

is the Zariski closure of the set of irreducible characters.
It is natural to ask how T χ

K varies as a function of χ.
We have obtained the following result.

Theorem 7.2. Let X0 be an irreducible component of
X(K)irr. There is a unique TK

X 0 ∈ C [X0 ][t±1 ] such that
for all χ ∈ X0 , one has T χ

K (t) = TK
X 0 (χ)(t). Moreover,

TK
X 0 is itself the torsion polynomial of a certain represen-

tation π → SL(2, F ) and thus has all the usual properties
(symmetry, genus bound, etc.).

We give several explicit examples of TK
X 0 later, in Sec-

tion 8. The following result is immediate from Theo-
rem 1.5.

Corollary 7.3. Let X0 be an irreducible component of
X(K)irr. Then

(a) For all χ ∈ X0 , we have deg (T χ
K ) ≤ deg

(
TK

X 0
)

with
equality on a nonempty Zariski-open subset.

(b) If TK
X 0 is monic, then T χ

K is monic for all χ ∈ X0 .
Otherwise, T χ

K is monic only on a proper Zariski-
closed subset.

In particular, when X0 is a curve, the genus bound
and fibering obstruction given by T χ

K are the same for all
χ ∈ X0 except on a finite set where T χ

K provides weaker
information. We can also repackage Corollary 7.3 as a
uniform statement on all of X(K).

Corollary 7.4. Let K be a knot in an integral homology
3-sphere. Then

(a) The set {χ ∈ X(K) | deg(T χ
K ) = 2x(K)} is Zariski

open.

(b) The set {χ ∈ X(K) | T χ
K is monic } is Zariski

closed.

Proof. It suffices to consider the intersections of these
sets with each irreducible component X0 of X(M). If X0

consists solely of reducible characters, the result is im-
mediate from Theorem 2.4(c). Otherwise, it follows from
Corollary 7.3 combined with the fact that deg(TK

X 0 ) ≤
2x(K).

We now turn to the proof of Theorem 1.5.

Proof of Theorem 1.5. By [Culler and Shalen 83, Propo-
sition 1.4.4], there is an irreducible component R0 of
R(K) such that the projection R0 → X(K) surjects onto
X0 . Consider the tautological representation

ρtaut : π → SL
(
2, C [R0 ]

)
,

which sends g ∈ π to the matrix ρtaut(g) of regular func-
tions on R0 so that

ρtaut(g)(α) = α(g) for all α ∈ R0 .

Since R0 is irreducible, C [R0 ] is an integral domain. Thus
we can consider its field of fractions, i.e., the field of ra-
tional functions C (R0). Working over C (R0), there is an
associated torsion polynomial T taut

K that is in C (R0)[t±1 ],
since ρtaut is irreducible. From Lemma 2.5, it is clear that
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for every α ∈ R0 , we have T α
K (t) = T taut

K (α)(t) in C [t±1 ].
Hence the coefficients of T taut

K have well-defined values
at every point α ∈ R0 , and so lie in C [R0 ]. Now, since
the torsion polynomial is invariant under conjugation,
each coefficient of T taut

K lies in C [X0 ] = C [R0 ]SL(2,C ) , and
hence T taut

K descends to an element of C [X0 ][t±1 ], which
is the TK

X 0 we seek.

7.1. The Distinguished Component

It is natural to focus on the component X0 of X(M) that
contains the distinguished representation. In this case,
X0 is an algebraic curve, and we refer to it as the distin-
guished component. By Corollary 7.3, the following con-
jecture that TK

X 0 detects both the genus and fibering of
K is implied by Conjecture 1.4.

Conjecture 7.5. Let K be a hyperbolic knot in S3 , and
X0 the distinguished component of its character variety.
Then 2x(K) = deg(TK

X 0 ), and TK
X 0 is monic if and only

if K is fibered.

As we explain in Section 7.2, this conjecture is true for
many 2-bridge knots.

One pattern in Section 6 is that TK never gave worse
topological information than the ordinary Alexander
polynomial ΔK . In certain circumstances, Corollary 7.3
allows us to relate ΔK to TK , as we now discuss. First,
we can sometimes show that TK

X 0 must contain at least
as much topological information as ΔK .

Lemma 7.6. Let K be a knot in a ZHS. Suppose X0 is a
component of X(K)irr that contains a reducible charac-
ter. Then deg(TK

X 0 ) ≥ 2 deg(ΔK ) − 2, and if ΔK is non-
monic, then so is TK

X 0 .

Proof. Let α be a reducible representation whose charac-
ter lies in X0 . By Theorem 2.4(c), the torsion polynomial
T α

K has degree 2 deg(ΔK ) − 2, and its leading coefficient
is the square of that of ΔK ∈ Z[t±1 ]. The result now fol-
lows from Corollary 7.3.

Now consider the distinguished representation α and
distinguished component X0 ⊂ X(K). We say that α

is sufficiently generic if deg(TK ) = deg(TK
X 0 ) and TK is

monic only if TK
X 0 is. Corollary 7.3 suggests that most

knots will have sufficiently generic distinguished repre-
sentations; however, because the distinguished character
takes on only values that are algebraic numbers, there
seems to be no a priori reason why this must always be
the case. Regardless, our intuition is that the hypothesis
of this next proposition holds quite often.

Proposition 7.7. Let K be a knot in a ZHS whose distin-
guished representation is sufficiently generic and whose
distinguished component of X(M) contains a reducible
character. Then deg(TK ) ≥ 2 deg(ΔK ) − 2, and if ΔK is
nonmonic, then so is TK .

7.2. 2-Bridge Knots

For 2-bridge knots in S3 , the torsion polyno-
mial as a function on X(M)irr was studied in
[Kim and Morifuji 10]. Since 2-bridge knots are alter-
nating, the ordinary Alexander polynomial ΔK deter-
mines the genus and whether K fibers [Murasugi 63,
Crowell 59, Murasugi 63, Gabai 86]. However, as men-
tioned, there seems to be no a priori reason that the same
must be true for TK

X 0 . We now sketch what is known
about this special case, starting with two results from
[Kim and Morifuji 10].

Theorem 7.8. [Kim and Morifuji 10, Theorem 4.2] Let K

be a hyperbolic 2-bridge knot. Then there exists a com-
ponent X0 ⊂ X(K)irr such that 2x(K) = deg(TK

X 0 ) and
TK

X 0 is monic if and only if K is fibered. In particular, if
X(K)irr is irreducible, then Conjecture 1.7 holds for K.

Proof. Since ΔK detects the genus, it is nonconstant and
so has a nontrivial root. For every knot in a ZHS, a
root of ΔK gives rise to a reducible representation πK →
SL(2, C ) with nonabelian image. In the case of 2-bridge
knots, the character of any such representation belongs
to a component X0 ⊂ X(M)irr (see [Hilden et al. 95, Re-
mark 1.9 and Corollary 2.9], originating in [Burde 90,
Proposition 2.3] and the comment following it), and
Lemma 7.6 now finishes the proof.

Theorem 7.9. [Kim and Morifuji 10, Lemma 4.8 and The-
orem 4.9] Let K = K(p, q) be a hyperbolic 2-bridge knot,
and let c be the leading coefficient of ΔK . Suppose there
exists a prime divisor � of p such that if c �= ±1, then
the reduction of c modulo � is not in {−1, 0, 1}. Then
Conjecture 1.7 holds for K.

Proof sketch. Let X0 be any component of X(K)irr .
First, one shows that X0 contains a character χ such
that tr(μK ) = 0. In [Kim and Morifuji 10, Lemma 4.6],
this is shown using the particular structure of πK , and it
also follows from the following more general fact.

Claim 7.10. Let K be a knot in S3 whose exterior con-
tains no closed essential surface. If X0 is a component
of X(M), then given a ∈ C , there is χ ∈ X0 such that
tr(μK ) = a.
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Two-bridge knots satisfy the hypothesis of Claim 7.10
by [Hatcher and Thurston 85], and the proof of the claim
is straightforward from the Culler–Shalen theory of sur-
faces associated to ideal points of X0 . Specifically, on
the smooth projective model of X0 , the rational function
tr(μK ) takes on the value a somewhere, and if this were
at an ideal point, the associated essential surface would
have either to be closed or have meridian boundary; the
latter situation also implies the existence of a closed es-
sential surface by [Culler et al. 87, Theorem 2.0.3].

The representation corresponding to a χ such that
tr(μK ) = 0 is irreducible but has metabelian image, and
in the 2-bridge case one can use this to calculate T χ

K

explicitly. In particular, in [Kim and Morifuji 10], the
authors find that, provided there exists a prime � as
in the hypothesis, the polynomial T χ

K is nonmonic and
deg T χ

K = 2x(K). We then apply Corollary 7.3 to see that
Conjecture 1.7 holds.

Another interesting class of characters in X(M)irr

comprises those of representations for which μK is
parabolic (e.g., the distinguished representation); such
parabolic representations must occur on every compo-
nent X0 by Claim 7.10. For the 3 830 nonfibered 2-bridge
knots with q < p ≤ 287, we numerically computed T χ

K for
all such parabolic characters, using a precision of 150
decimal places. In every case, the polynomial T χ

K was
nonmonic and gave a sharp genus bound. Since 2-bridge
knots contain no closed essential surfaces, every compo-
nent of X(M) is a curve. Thus for all 2-bridge knots with
p ≤ 287, there are only finitely many χ ∈ X(M) such that
T χ

K is monic or deg(T χ
K ) < 2 deg(ΔK ) − 2, as conjectured

in [Kim and Morifuji 10].

8. CHARACTER VARIETY EXAMPLES

As with many things related to the character variety,
while TK

X 0 is a very natural concept, actually computing
it can be difficult. Here, we content ourselves with finding
TK

X 0 for three of the simplest examples. In each case,
there is only one natural choice for X0 , and moreover, it
is isomorphic to C \ {finite set}. Thus X0 is rational, and
C (X0) is just rational functions in one variable, which
makes it easy to express the answer. We do one fibered
example and two that are nonfibered; in all cases, the
simplest Seifert surface has genus 1.

8.1. Example: m003

We start with the sibling M of the figure-8 complement,
which is one of the two orientable cusped hyperbolic 3-

manifolds of minimal volume. The manifold is m003 in
the SnapPea census [Callahan et al. 99, Culler et al. 12],
and is the once-punctured torus bundle over the circle
with monodromy

( −2 1
1 −1

)
. Its homology is H1(M ; Z) =

Z ⊕ Z/5Z, and it is, for instance, the complement of a
null-homologous knot in L(5, 1). After randomizing the
triangulation a bit, SnapPy gives the following presenta-
tion:

π := π1(M) =
〈
a, b

∣∣ bab3aba−2 = 1
〉
.

We will view X(π) as a subvariety of X
(
〈a, b〉

)
, where

〈a, b〉 is the free group on {a, b}. Now X
(
〈a, b〉

) ∼= C 3 ,
where the coordinates are (x, y, z) =

(
tr(a), tr(b), tr(ab)

)
;

this is because the trace of every word w ∈ 〈a, b〉 can
be expressed in terms of these coordinates using the
fundamental relation tr(UV ) = tr(U)tr(V ) − tr(UV −1)
for U, V ∈ SL(2, C ). Since π is defined by the single
relator R = bab3aba−2 , the character variety X(π) is
cut out by the polynomials corresponding to tr(R) = 2,
tr
(
[a,R]

)
= 2, and tr

(
[b,R]

)
= 2. Using Gröbner bases

in SAGE to decompose X(π) into irreducible compo-
nents over Q , we found a unique component X0 that
contains an irreducible character, i.e., contains a point
such that tr

(
[a, b]

)
�= 2. Explicitly, the ideal of X0 is

〈yz − x − z, xz + 1〉, and hence X0 can be bijectively pa-
rameterized by

f : C \ {0} → X0 , where f(u) =
(
u, 1 − u2 ,−1/u

)
.

To compute TK
X 0 , we consider the curve R0 ⊂ R(π) lying

above X0 consisting of representations of the form

ρ(a) =

(
u 1
−1 0

)
and ρ(b) =

(
0 v

−v−1 1 − u2

)
,

where v + v−1 = u−1 . Such representations are parame-
terized by v ∈ C \ {0}, and hence C (R0) ∼= C (v), and we
have an explicit π → GL (2, C (v)), which is the restric-
tion of the tautological representation. Using Lemma 2.5,
we find that the torsion polynomial of this representation
is

t −
2
(
v4 + v2 + 1

)
v3 + v

+ t−1 .

Substituting in v = ±
(
1 −

√
−4u2 + 1

)/
2u to eliminate

v gives the final answer

TK
X 0 (t) = t +

2
(
u2 − 1

)
u

+ t−1 .

8.2. Example: m006

The census manifold M = m006 can also be described
as 5/2 surgery on one component of the Whitehead link
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L. (Here our conventions are such that +1 surgery on
either component of L gives the trefoil knot, whereas
−1 surgery gives the figure-8 knot.) Thus M is, for in-
stance, the complement of a null-homologous knot in
the lens space L(5, 2), and again H1(M ; Z) = Z ⊕ Z/5Z.
Using spun-normal surfaces, it is easy to check via
[Culler and Dunfield 10] that there is a Seifert surface in
M that has genus 1 with one boundary component.

SnapPy gives the presentation

π := π1(M) =
〈
a, b

∣∣ b2abab2a−2 = 1
〉
.

Changing the generators to anew = a−1 and bnew = ab

rewrites this as

π =
〈
a, b

∣∣ a3bab3ab = 1
〉
.

Using the same setup as in the previous example, we find
a single component X0 containing an irreducible charac-
ter. The ideal of X0 is

〈
x − y, y2z − z − 1

〉
, and hence we

can bijectively parameterize X0 by

f : C \ {1,−1} → X0 , where f(u)=
(
u, u, (u2 − 1)−1).

(8−1)

Considering the curve of representations given by

ρ(a) =

(
v 1
0 v−1

)
and ρ(b) =

(
v−1 0

3−2u2

u2 −1 v

)
,

where v + v−1 = u, and again directly applying
Lemma 2.5 and eliminating v gives

TK
X 0 (t) =

2u2 − 1
u2 − 1

(
t + t−1)+

2u3

u2 − 1
.

8.3. m037

The census manifold M = m037 has H1(M ; Z) = Z ⊕
Z/8Z, and so is not a knot in a Z/2-homology sphere.
However, this makes no difference in this character va-
riety context. Again, using spun-normal surfaces, one
easily checks that there is a Seifert surface in M that
has genus 1 with one boundary component. Now π =〈
a, b

∣∣ a3ba2ba3b−2 = 1
〉
, and this time, there are two

components of X(π) containing irreducible characters.
However, one of these consists entirely of metabelian rep-
resentations that factor through the epimorphism π →
Z/2 ∗ Z/2 =

〈
c, d

∣∣ c2 = d2 = 1
〉

given by a → c and
b → d. Focusing on the other component X0 , it turns out
that the ideal is

〈
xz − 2y, 4y2 − z2 − 4

〉
, and so we can

parameterize X0 by

f : C \ {−2, 0, 2} → X0 ,

where

f(u) =
(

u2 + 4
4u

,
u2 + 4
u2 − 4

,
8u

u2 − 4

)
,

and then calculate

TK
X 0 (t) =

(u + 2)4

16u2

(
t + t−1)

+
(u + 2)

(
u4 + 4u3 − 8u2 + 16u + 16

)
8 (u − 2)u2 .

8.4. The Role of Ideal Points

A key part of the Culler–Shalen theory is the associa-
tion of an essential surface in the manifold M to each
ideal point of a curve X0 ⊂ X(M). The details can be
found, for example, in [Shalen 02], but in brief, consider
the smooth projective model X̂0 with its rational map
X̂0 → X0 . Now X̂0 is a smooth Riemann surface, and
the finitely many points where X̂0 → X0 is undefined
are called the ideal points of X0 . To each such point x,
there is an associated nontrivial action of π := π1(M)
on a simplicial tree Tx . One then constructs a surface
S in M dual to this action, which can be taken to be
essential (i.e., incompressible, boundary incompressible,
and not boundary parallel). Since minimal complexity
Seifert surfaces often arise from an ideal point of some
X0 , a very natural idea is thus to try to use such an
ideal point x to say something about TK

X 0 . Moreover,
provided that X0 ⊂ X(M)irr , a surface associated to an
ideal point is never a fiber or semifiber, which suggests
that one might hope to prove nonmonotonicity of TK

X 0 by
examining TK

X 0 (x). Thus, we now compute what happens
to TK

X 0 at such ideal points in our two nonfibered exam-
ples m006 and m037. (Aside: It is known that even for
knots in S3 , not all boundary slopes need arise from ideal
points [Chesebro and Tillmann 07], so it is probably too
much to expect that there is always an ideal point that
gives a Seifert surface.)

8.5. Ideal Points of m006

If we view the parameterization (8−1) above as a rational
map from P 1(C ) → X0 , we have ideal points correspond-
ing to u ∈ {−1, 1,∞}. To calculate the boundary slopes
of the surfaces associated to each of these, we consider
the trace functions of SnapPy’s preferred basis μ, λ for
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π1(∂M). In our presentation for π, we calculate

tr(μ) = tr(a2bab) = x
(
z2 − z − 1

)
= −

u
(
u4 − u2 − 1

)
(u − 1)2(u + 1)2 ,

tr(λ) = tr(a3ba) = −x3 − xz + 2x

= −
u
(
u4 − 3u2 + 3

)
(u − 1)(u + 1)

,

tr(μλ) = x4 − 2x2 − z + 1 =

(
u2 − 2

)(
u4 − u2 + 1

)
(u − 1)(u + 1)

.

Now consider an ideal point x with associated surface S,
and pick a simple closed curve γ on π1(∂M). Then the
number of times γ intersects ∂S is twice the order of the
pole of tr(γ) at x (here if tr(γ) has a zero of order m at
x, this counts as a pole of order 0, not one of order −m).
The above formulas thus show that the points u = 1 and
u = −1 give surfaces with boundary slope μλ2 , whereas
u = ∞ gives one with boundary slope μ3λ−1 . The latter
is the homological longitude, and since there is only one
spun-normal surface with that boundary slope and each
choice of spinning direction, it follows that the surface
associated to ξ = ∞ must be the minimal-genus Seifert
surface. Thus we are interested in

TK
X 0 (u = ∞)(t) = 2

(
t + t−1)+ (simple pole)t0 .

8.6. Ideal Points of m037

This time, we have four ideal points corresponding to
u = −2, 2, 0,∞. We obtain

tr(μ) = tr(a2ba3) =
u8 − 48u6 + 96u4 − 768u2 + 256

64(u − 2)(u + 2)u3 ,

tr(λ) = tr(a−1ba3b)

= − 1
256 (u − 2)2 (u + 2)2u4

×
(
u12 − 72u10 + 1264u8 − 12032u6 + 20224u4

− 18432u2 + 4096
)
,

tr(μλ) = −u8 − 16u6 + 352u4 − 256u2 + 256
4(u − 2)3(u + 2)3u

.

Hence {2,−2} give surfaces with boundary slope μ2λ−1 ,
and {0,∞} give surfaces with boundary slope μ4λ3 . In
fact, the homological longitude is μ2λ−1 , and again using
spun-normal surfaces, one easily checks that surfaces as-
sociated to {2,−2} are the minimal-genus Seifert surface.
Thus, we care about

TK
X 0 (u = 2)(t) = 4

(
t + t−1)+ (simple pole)t0

and

TK
X 0 (u = −2)(t) = 0.

8.7. General Picture for Ideal Points

Based on the preceding examples and a heuristic calcula-
tion for tunnel-number-one manifolds, we conjecture the
following:

Conjecture 8.1. Let K be a knot in a rational homology
3-sphere, and X0 a component of X(K)irr. Suppose x is
an ideal point of X0 that gives a Seifert surface (hence
K is nonfibered). Then the leading coefficient of TK

X 0 has
a finite value at x.

Unfortunately, Conjecture 8.1 does not seem particu-
larly promising as an attack on Conjecture 1.7 for dis-
tinguishing fibered versus nonfibered cases. Moreover, in
terms of looking at such Seifert ideal points to show that
TK

X 0 determines the genus, the second ideal point u = −2
in Section 8.6 where TK

X 0 vanishes is not a promising sign.
However, in trying to use an ideal point x of X0 that

gives a Seifert surface to understand TK
X 0 , it may be

wrong to focus on just the value of TK
X 0 at x. After

all, there is no representation of π corresponding to x.
Rather, as in the construction of the surface associated
to x, perhaps one should view x as giving a valuation
on C (R0), where R0 is a component of R(M) surjecting
onto X0 .

If we unwind the definition of the associated surface
and its properties, we are left with the following abstract
situation. There is a field F with an additive valuation
v : F× → Z with a representation ρ : π → SL(2, F ) such
that for each γ ∈ π, we have v (tr(γ)) ≥ |φ(γ)|, where φ :
π → Z is the usual free abelianization homomorphism.

This alone is not enough, because even in the fibered
case, one always has such a setup by looking at an ideal
point of a component of X(M) consisting of reducible
representations. Thus it seems that the key to such an ap-
proach must be to exploit the fact that since X0 contains
an irreducible character, there is a γ ∈ π with φ(γ) = 0,
yet v (tr(γ)) is arbitrarily large.
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