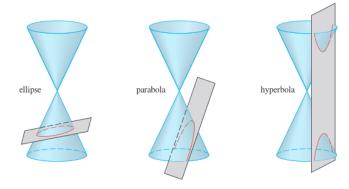
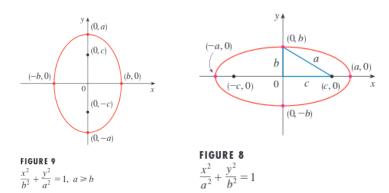
Worksheet on 12.6: Quadric surfaces

Calculus III, MTH 233

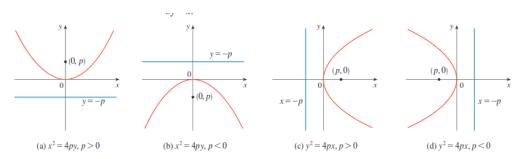
Identify the surface by looking at its traces in the co-ordinate planes or planes parallel to them (i.e planes $x = c_1$, $y = c_2$ or $z = c_3$). Write if the traces are ellipses, parabolas or hyperbolas. Refer to the equations of quadric surfaces and conic sections on the other side.

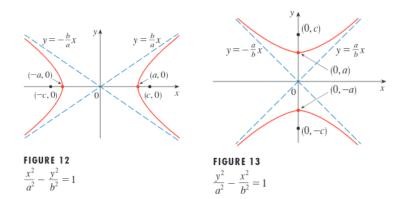

Equation	xy-traces $(z = constant)$	yz-traces $(x = constant)$	xz-traces $(y = constant)$	Surface
$x^2 + y^2 = 2z^2$				
$z = x^2 + 3y^2$				
$x^2 + 4y^2 + 9z^2 = 1$				
$x^2 + 2y^2 = z^2 + 1$				
$x = 2z^2 - y^2$				
$y^2 + 2z^2 = x^2 - 1$				
$y^2 + 4z^2 = 1$				
x - 3y + 4z = 7				

Classification of planes and quadric surfaces


Note that the equations are based on z-axis, but they can also be based on x- or y-axis.

Equation	xy-traces (z = constant)	yz-traces $(x = constant)$	xz-traces $(y = constant)$	Surface
ax + by + cz = d	Lines	Lines	Lines	Plane
$(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$	Ellipses	Ellipses	Ellipses	Ellipsoid
$z = (x/a)^2 + (y/b)^2$	Ellipses	Parabolas	Parabolas	Elliptic Paraboloid
$z = (x/a)^2 - (y/b)^2$	Hyperbolas	Parabolas	Parabolas	Hyperbolic Paraboloid saddle surface
$(x/a)^2 + (y/b)^2 = (z/c)^2 + 1$	Ellipses	Hyperbolas	Hyperbolas	Hyperboloid (one sheet)
$(x/a)^2 + (y/b)^2 = (z/c)^2 - 1$	Ellipses	Hyperbolas	Hyperbolas	Hyperboloid (two sheets)
$(x/a)^2 + (y/b)^2 = (z/c)^2$	Ellipses	Lines	Lines	Cone
f(x,y) = k	Level curve of f	Lines	Lines	Cylinder based on level curve


Conic Sections


Ellipse

Parabola

Hyperbola

