Solutions to Sample Problems for Exam 2
Calculus I, MTH 231
Instructor: Abhijit Champanerkar
1.

$$
\begin{aligned}
& \text { 1. Use } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \text { a) } f(x, h)-f+1)=2(x+h)^{2}+3(x+h)+1-\left(2 x^{2}+3 x+1\right)=2\left(x^{2}+2 x+h^{h}\right)+3(x+h)+1-\left(2 x^{2}+3 x+1\right) \\
& =4 x h+4 h^{2}+3 h \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}\left(4 x h+4 h^{2}+3 h\right) / h=4 x+3
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } f(x+h)-f(x)=\frac{2}{x(h+1}-\frac{2}{x+1}=\frac{2(x+1)-2(x+h+1)}{(x+h+1)(x+1)}=-2 h(2+h+1)(x+1) \\
& f(x)=\lim _{h \rightarrow 0} \frac{f(x+1)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-2 h}{h(x+h+1)(x+1)}=-2(x+1)^{2} \\
& \text { c) } f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+3}-\sqrt{x-3}}{h} \text { rationalize }=\lim _{h \rightarrow 0} \frac{(x+1+1)-(x+1)}{(x+h+3+\sqrt{x+3}) h}=\frac{1}{2 \sqrt{x+3}}
\end{aligned}
$$

2.
3. a) $3 x^{2}+1 / 2 \sqrt{x}+8 / x^{5}$
b) $\left(\sin x\left(e^{2}+5 x^{f}\right)-\left(e^{2}+x^{9}\right) \cos x\right) / \sin ^{2} x$
c) $3\left(x^{4}-3 x^{2}+5\right)^{2}\left(4 x^{3}-6 x\right)$
d) $\left(2^{x}+3\right)(2 x)+\left(x^{2}+1\right)\left(2^{x} \ln 2\right)$
e) $\frac{6 x^{5}}{\left(1-x^{12}\right.}$ f) $e^{4 x} \sec ^{2}(1+x)+4 e^{4 x} \tan (1+x)$
9) $\frac{2 x+\cos x}{x^{2}+\sin x}$
h) $\left(1-y^{2}-2 x y\right)\left(2 x y+x^{2}-2\right)$
i) $7^{1-\cos x} \ln 7 \sin x \quad$ j) $x^{\sqrt{x}}\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)$
3.
4. a) $y^{\prime}=1+1 / 2 \sqrt{x}$, slope $=3 / 2, p t=(1,2), y=\frac{3 x}{2}+\frac{1}{2}$
b) $y^{\prime}=2 \sin x \cos x+2(x-\pi / 4)$, slope $=1$, pt $=(\pi / 4,1 / 2), y=x-\pi / 4+1 / 2$
c) $\sin y+x \cos y y^{\prime}-y \sin x+\cos x y^{\prime}=0, y^{\prime}=\frac{y \sin x-\sin y}{x \cos y+\cos x}$, slope $=0, p t=(\pi / 2,0)$ $y=0$
5. Done in class. See in book.
6.

$$
\text { 6. a) } 3 \times 23!
$$

b) $-27 \cos 3 x$
c) $f^{(n)}(x)=5^{n} e^{5 x}$
6.

$$
\begin{aligned}
& \text { 8. } V=x^{3}, A=6 x^{2}, \frac{d V}{d t}=3 x^{2} d x / d t, d A / d t=12 x d x / d t \\
& d v / d t=75000 \mathrm{~cm}^{3} / \min , d A / d t=6000 \mathrm{~cm}^{2} / \text { /hin }
\end{aligned}
$$

7.
8. $d \theta / d t=-0.25 \mathrm{radh}, \tan \theta=400 / \mathrm{x}$
$\left.\sec ^{2} \theta \frac{d \theta}{d t}=-\frac{400}{x^{2}} d x / d t\right) \frac{d x}{d t}=\frac{x^{2} \sec \theta}{-400} \frac{d \theta}{d t}$
 $\frac{d x}{d t}=400 \sqrt{3} f t h$
9.

(3) a) $v(2)=48, v^{\prime}(t)=32-8 t, v^{\prime}(2)=32-16=16$

Linemization $L_{a}(t)=16(t-2)+48=16 t+16$
b) $f(1)=e^{-1 / 2}=1 / \sqrt{e}, f^{\prime}(x)=-x e^{-x^{2} / 2}, f^{\prime}(1)=-e^{-1 / 2}=-1 / \sqrt{e}$

Linearization $L_{a}(k)=-\frac{1}{\sqrt{2}}(x-1)+\frac{1}{\sqrt{e}}=\frac{-x}{\sqrt{e}}+\frac{2}{\sqrt{e}}$
9.
(4) Volume $=V=\frac{4}{3} \pi r^{3}, \Delta V \approx d V=V^{\prime}(r) d r, r=6, d r=03, V^{\prime}(r)=4 n r^{2}$
$\Delta V \approx d V=4 \pi \sigma^{2} \times 0.3=135.6 \mathrm{in}^{3}$
Surface A rea $=A=4 \pi r^{2}, \Delta A \approx d A=A^{\prime}(r) d r, r=6, d r=0.3, A^{\prime}(r)=8 \pi r$
$\Delta A \approx d A=8 \pi \times 6 \times 0.3=45.2 \mathrm{in}^{2}$
10.
(5) $\sqrt[3]{27.05}-3=\sqrt[3]{27.05}-\sqrt[3]{27}=\Delta f, f(x)=\sqrt[3]{x}, a=27, \Delta x=0.05, f^{\prime}(x)=1 / 3 x^{2 / 3}$
$\Delta f \approx f^{\prime}(a) \Delta x=1 / 3(27)^{3 / 3} \times 0.05=0.0055$
11.
(7) a.) $f^{\prime}(x)=24 x^{3}-24 x^{5}=24 x^{3}\left(1-x^{2}\right)=0 \Rightarrow x=0,1,-1$ critical pts candidits: $-2,2,0,1,-1 f(x):-160,-160,0,2,2$
abs max: $f(1)=f(-1)=2, a b s \min : f(-2)=f(2)=-160$
(b) $g^{\prime}(\theta)=2 \sin \theta \cos \theta+\sin \theta=\sin \theta(2 \cos \theta+1)=0 \Rightarrow \sin \theta-0$ or $\cos \theta=-1 / 2$

In $[0,2 \pi], \theta=0, \pi, 2 \pi, 2 \pi / 3,4 \pi / 3$ critical pls $g(\theta):-1,1,-1,5 / 4,5 / 4$
abs max: $g(2 \pi / 3)=g(47 / 3)=5 / 4$, abs min: $g(0)=g(4 \pi)=-1$
5 a) $y^{\prime}=3 x^{2}-12 x=0, x=0,4$ b) $y^{\prime}=\cos x+\sin x=0$, $\tan x=-1, x=-\pi / 4+n \pi$
c) $y^{\prime}=x+2 x \ln x=0, x=e^{-1 / 2}, 0$
12.

Discussed in clas after Exam 1.
13.

14.
(6) Eqn of tangent line: slope $=\frac{4-2}{10-4}=\frac{1}{3}$, point $=(4,2)$

Eqn $y-2=\frac{1}{3}(x-4), y=\frac{x}{3}+\frac{2}{3}$, so linearization $L(x)=\frac{x}{3}+\frac{2}{3}$
$f(4.55) x L(455)=\frac{4.55}{3}+\frac{2}{3}=2.1833$
15. Using Implicit differentiation $y^{\prime}=-4 x / y$. Since tangent is parallel to $y=2 x+10$, $y^{\prime}=-4 x / y=2 \Longrightarrow y=-2 x$. In order to get the points, we need to substitute this back in the equation i.e.

$$
4 x^{2}+(-2 x)^{2}=8 \Longrightarrow 8 x^{2}=8 \Longrightarrow x^{2}=1 \Longrightarrow x= \pm 1 .
$$

Since $y=-2 x$, this gives $x=1, y=-2$ and $x=-1, y=2$. The points are $(1,-2)$ and $(-1,2)$.

