Sample Problems for Exam 3

Calculus I, MTH 231, Spring 2019 Instructor: Abhijit Champanerkar

- Exam 3 will be held in class on Monday May 13th.
- Review for Exam 3 will be held on Wednesday May 8th.
- Syllabus for Exam 3: Sections 4.6, 4.7, 5.1 5.5, 5.7
- Best way to prepare for the exam is to solve the Classworks, Sample problems and Webwork Problems.
- 1. For the functions below:
 - (a) Find intervals of increase and decrease.
 - (b) Find intervals of concavity.
 - (c) Find the transition points.
 - (d) Find asymptotes if any.
 - (e) Sketch the graph using all this information.
 - (a) $f(x) = x^3 2x^2 + 3$ (b) $f(x) = \frac{2x - 2}{4 - x}$ (c) $f(x) = x - 2\sin x$ on $[0, \pi]$ (d) $f(x) = xe^x$
- 2. Use L'Hopital's Rule to evaluate the limit.

(a)
$$\lim_{x \to \infty} \frac{3x^2 + 4}{3 - 7x^2}$$
 (c) $\lim_{x \to 0^+} \sqrt{x \ln x}$

- (b) $\lim_{x \to \infty} \frac{x^3 + 3x^2 + 5x 1}{e^{4x + 1}}$ (d) $\lim_{x \to 0} \frac{e^x 1}{\sin x}$
- 3. A farmer wants to contruct a rectangular enclosure of area 1000 square feet of land which has a river on one of the sides (no fencing along the river). Find the dimensions which will minimize the fencing.
- 4. A box with a square base (and top) is constructed out of two types of metal. The metal for the top and bottom cost $1/ft^2$ and the metal on the sides costs $2/ft^2$. Find the dimensions that minimize cost if the box has a volume of 20 ft^3 .
- 5. Compute the following Riemann sums.
 - (a) R_3 and L_3 for $f(x) = x^2 + 4x$ on the interval [1, 4]. Write endpoints of subintervals and Δx .
 - (b) R_6 and L_6 for $f(x) = (1 + x^2)^{-1}$ on the interval [0, 1]. Write endpoints of subintervals and Δx .

- 6. Find R_N for $f(x) = 3x^2 + 2$ from [0,3] and use it to evaluate $\int_0^3 f(x) dx$. Use the summation identities $\sum_{i=1}^n j^2 = \frac{n(n+1)(2n+1)}{6}$.
- 7. Evaluate the following indefinite integrals. (a) $\int \cos(4-7t) dt$

(e)
$$\int \frac{7s^4 + 2s}{\sqrt{s}} ds$$

- (f) $\int \cos y \sin^3 y \, dy$ (Substitution)
- (c) $\int \frac{2}{5u+2} du$ (Substitution)
- (d) $\int \sin x \sqrt{4 \cos x} \, dx$ (Substitution)
- 8. Evaluate the following definite integrals. (a) $\int_0^1 (4x^3 - 2x^5) dx$
 - (b) $\int_{1}^{4} r^{-2} dr$
 - (c) $\int_0^{\pi/4} \sec t \tan t \, dt$
 - (d) $\int_6^2 \sqrt{4y+1} \, dy$ (Substitution)

(g) $\int x^2 e^{x^3} dx$ (Substitution)

(h)
$$\int \frac{\ln x}{x} dx$$

(e)
$$\int_{1}^{e} \frac{\ln x}{x} dx$$
 (Substitution)

(f)
$$\int_1^2 t\sqrt{t^2+2} dt$$
 (Substitution)

(g)
$$\int_{-4}^{-2} \frac{12x}{(x^2+2)^3} dx$$
 (Substitution)

(h)
$$\int_0^1 (3x^2+1)(x^3+x-1)^5 dx$$
 (Substitution)

- 9. Find y'. (a) $y = \int_3^x \sin(t^3) dt$ (b) $y = \int_0^{\sin x} t^3 dt$ (c) $y = \int_{4-2}^9 \frac{1}{t} dt$
- 10. Graphs of functions f, g and h are given below. Evaluate the following integrals:
 - (a) $\int_{0}^{6} f(x) dx$ (b) $\int_{2}^{8} g(x) dx$ (c) $\int_{-1}^{4} h(x) dx$ $\int_{0}^{1} \frac{y}{y} \frac{1}{2} + \frac{y}{y} \frac{1}{2$