Sample Problems for Exam 2

Calculus I, MTH 231, Spring 2019
THE OTry unveratr
College of Instructor: Abhijit Champanerkar

- Exam 2 will be held in class on Wednesday April 3rd. Review will be held on Monday April 1st.
- Syllabus for Exam 2: Chapters 3, 4.1, 4.2.
- Solutions to Webwork problems on Chapter 3 will be posted on March 30th.
- Best way to prepare for the midterm is to read the book, solve the sample problems and webwork problems.

1. Write the definition of derivate $f^{\prime}(x)$ of $f(x)$. Compute the derivatives of the following functions using the definition of the derivative.
(a) $f(x)=2 x^{2}+3 x+1$ (b) $f(x)=\frac{2}{x+1}$ (c) $f(x)=\sqrt{x+3}$
2. Calculate y^{\prime}.
(a) $y=x^{3}+\sqrt{x}-\frac{2}{x^{4}}$
(f) $y=e^{4 x} \tan (1+x)$
(b) $y=\frac{e^{x}+x^{5}}{\sin x}$
(g) $y=\ln \left(x^{2}+\sin x\right)$
(c) $y=\left(x^{4}-3 x^{2}+5\right)^{3}$
(h) $x y^{2}+x^{2} y=x+2 y$
(d) $y=\left(2^{x}+3\right)\left(x^{2}+1\right)$
(i) $y=7^{1-\cos x}$
(e) $y=\tan ^{-1}\left(x^{6}\right)$
(j) $y=x^{\sqrt{x}}$
3. Find the equation of tangent to the given curve at the given point.
(a) $y=x+\sqrt{x}$ at $x=1$ (b) $y=\sin ^{2} x+(x-\pi / 4)^{2}$ at $x=\pi / 4$
(c) $x \sin y+y \cos x=0$ at $(\pi / 2,0)$
4. Use implicit differentiation to compute the derivative of the following inverse functions.
(a) $y=\sin ^{-1} x$ (b) $y=\tan ^{-1} x$ (c) $y=\ln x$
5. (a) $f(x)=3 x^{237}+5 x^{123}-7$. Find $f^{(237)}(x)$.
(b) $f(x)=\sin (3 x)$. Find $f^{\prime \prime \prime}(x)$.
(c) $f(x)=e^{5 x}$. Guess $f^{(n)}(x)$ by computing first few derivatives.
6. The side of a cube is increasing at the rate of $10 \mathrm{~cm}^{3} / \mathrm{min}$. Find the rate at which the volume and surface area of the cube is increasing when the radius is 50 cm .
7. The angle of elevation of the Sun is decreasing at the rate of $0.25 \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a 400 ft tall building increasing when the angle of elevation of the Sun is $\pi / 6 ?$
8. Find the linearization of the function at the given point.
(a) $v(t)=32 t-4 t^{2}, a=2$ (b) $f(x)=e^{-x^{2} / 2}, a=1$
9. A spherical balloon has a radius of 6 inches. Use differentials to estimate the change in volume and surface area if the radius increases by 0.3 in .
10. Use linear approximation to approximate $\sqrt[3]{27.05}-3$.
11. Find critical points and extreme values of the following functions on the given intervals.
(a) $f(x)=6 x^{4}-4 x^{6}$ on $[-2,2]$
(b) $g(\theta)=\sin ^{2} \theta-\cos \theta$ on $[0,2 \pi]$
(c) $y=\sin x-\cos x$ on $[0,2 \pi]$.
(d) $y=x^{2} \ln x$
(e) $y=x^{3}-6 x^{2}$
12. The graph of $y=f(x)$ is given below.

Find $f^{\prime}(0), f^{\prime}(1), f^{\prime}(1.5)$,
$f^{\prime}(2.5), f^{\prime}(3), f^{\prime}(3.5)$

13. The graph of $y=f(x)$ is given below.

Indicate the points which have horizontal tangents, the points where $f(x)$ is not differentiable and sketch the graph of $f^{\prime}(x)$ (on the same graph).

14. * The graph of $y=f(x)$ is given along with its tangent line at $(4,2)$.

Use the graph to approximate $f(4.55)$.

15. * Find the points on the curve $4 x^{2}+y^{2}=8$ where the tangent line is parallel to the line $y=2 x+10$.

