Calculus I, MTH 231, Spring 2019 Instructor: Abhijit Champanerkar

- Exam 2 will be held in class on Wednesday April 3rd. Review will be held on Monday April 1st.
- Syllabus for Exam 2: Chapters 3, 4.1, 4.2.
- Solutions to Webwork problems on Chapter 3 will be posted on March 30th.
- Best way to prepare for the midterm is to read the book, solve the sample problems and webwork problems.
- 1. Write the definition of derivate f'(x) of f(x). Compute the derivatives of the following functions using the definition of the derivative.

(a)
$$f(x) = 2x^2 + 3x + 1$$
 (b) $f(x) = \frac{2}{x+1}$ (c) $f(x) = \sqrt{x+3}$

- 2. Calculate y'. (a) $y = x^3 + \sqrt{x} - \frac{2}{x^4}$ (b) $y = \frac{e^x + x^5}{\sin x}$ (c) $y = (x^4 - 3x^2 + 5)^3$ (d) $y = (2^x + 3)(x^2 + 1)$ (e) $y = \tan^{-1}(x^6)$ (f) $y = e^{4x} \tan(1 + x)$ (g) $y = e^{4x} \tan(1 + x)$ (h) $xy^2 + x^2y = x + 2y$ (i) $y = 7^{1-\cos x}$ (j) $y = x^{\sqrt{x}}$
- 3. Find the equation of tangent to the given curve at the given point.
 - (a) $y = x + \sqrt{x}$ at x = 1 (b) $y = \sin^2 x + (x \pi/4)^2$ at $x = \pi/4$ (c) $x \sin y + y \cos x = 0$ at $(\pi/2, 0)$
- 4. Use implicit differentiation to compute the derivative of the following inverse functions.

(a)
$$y = \sin^{-1} x$$
 (b) $y = \tan^{-1} x$ (c) $y = \ln x$

- 5. (a) f(x) = 3x²³⁷ + 5x¹²³ 7. Find f⁽²³⁷⁾(x).
 (b) f(x) = sin(3x). Find f^{'''}(x).
 (c) f(x) = e^{5x}. Guess f⁽ⁿ⁾(x) by computing first few derivatives.
- 6. The side of a cube is increasing at the rate of $10 \ cm^3/min$. Find the rate at which the volume and surface area of the cube is increasing when the radius is $50 \ cm$.

- 7. The angle of elevation of the Sun is decreasing at the rate of 0.25 rad/h. How fast is the shadow cast by a 400 ft tall building increasing when the angle of elevation of the Sun is $\pi/6$?
- 8. Find the linearization of the function at the given point.

(a)
$$v(t) = 32t - 4t^2$$
, $a = 2$ (b) $f(x) = e^{-x^2/2}$, $a = 1$

- 9. A spherical balloon has a radius of 6 inches. Use differentials to estimate the change in volume and surface area if the radius increases by 0.3 in.
- 10. Use linear approximation to approximate $\sqrt[3]{27.05} 3$.
- 11. Find critical points and extreme values of the following functions on the given intervals.
 - (a) $f(x) = 6x^4 4x^6$ on [-2, 2]
 - (b) $g(\theta) = \sin^2 \theta \cos \theta$ on $[0, 2\pi]$
 - (c) $y = \sin x \cos x$ on $[0, 2\pi]$.
 - (d) $y = x^2 \ln x$
 - (e) $y = x^3 6x^2$
- 12. The graph of y = f(x) is given below.

Find f'(0), f'(1), f'(1.5), f'(2.5), f'(3), f'(3.5)

13. The graph of y = f(x) is given below.

Indicate the points which have horizontal tangents, the points where f(x) is not differentiable and sketch the graph of f'(x) (on the same graph).

14. * The graph of y = f(x) is given along with its tangent line at (4, 2).

- Use the graph to approximate f(4.55).
- 15. * Find the points on the curve $4x^2 + y^2 = 8$ where the tangent line is parallel to the line y = 2x + 10.