Sample Problems for Exam 1

Calculus I, MTH 231, Spring 2019

- Exam 1 will be held in class on Wednesday Feb 27th.
- Review for Exam 1 will be held on Monday Feb 25th.
- Syllabus for Exam 1: Sections covered from Chapters 1, 2, 3.1, 3.2.
- Best way to prepare for the midterm is to solve the Classworks, Sample problems and Webwork Problems.

1. (a) Find the equation of the line passing through points $(3,-4)$ and $(5,1)$. Is the point $(2,-1)$ on this line ?
(b) Find the equation of the line passing through point $(1,2)$ and parallel to the line $4 x-2 y=3$.
2. Find the functions $f \circ g, g \circ f, f \circ f, g \circ g$ where $f(x)=\cos x$ and $g(x)=x^{2}-9$.
3. Compute the following limits if they exist.
(a) $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x^{2}+3 x+2}$
(g) $\lim _{t \rightarrow 0} \frac{(t+3) \sin 3 t}{5 t}$
(b) $\lim _{t \rightarrow 9} \frac{\sqrt{t}-3}{t-9}$
(h) $\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}$
(c) $\lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h}$
(i) $\lim _{x \rightarrow 0} \frac{\tan 7 x}{2 x}$
(d) $\lim _{x \rightarrow 0} \frac{\sin 5 x \sin 3 x}{2 x^{2}}$
(j) $\lim _{x \rightarrow 0} \frac{\left(x^{2}-2\right)(1-\cos 2 x)}{4 x}$
4. Compute the following limits at infinity.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+3 x+2}$
(c) $\lim _{s \rightarrow-\infty} \frac{s^{5}+3 s^{3}+s}{1-5 s^{2}}$
(b) $\lim _{t \rightarrow-\infty} \frac{3 t^{3}-7 t+5}{4 t^{5}-13}$
(d) $\lim _{h \rightarrow-\infty} \frac{\sqrt{2 h^{2}+1}}{3 h-1}$
5. Show that $\lim _{x \rightarrow-1} \frac{|x+1|}{x+1}$ does not exist.
6. Let

$$
f(x)= \begin{cases}a x^{2}+1 & \text { if } x \leq 2 \\ x-4 & \text { if } x>2\end{cases}
$$

Find the value of a if $f(x)$ is continuous for all real numbers.
7. Let

$$
f(x)= \begin{cases}\sqrt{|x|} & \text { if } x<0 \\ 3-x & \text { if } 0 \leq x<3 \\ (x-3)^{2} & \text { if } x>3\end{cases}
$$

Evaluate each limit if it exists.
(i) $\lim _{x \rightarrow 0^{+}} f(x)$
(ii) $\lim _{x \rightarrow 0^{-}} f(x)$
(iv) $\lim _{x \rightarrow 3^{-}} f(x)$
(v) $\lim _{x \rightarrow 3^{+}} f(x)$
(iii) $\lim _{x \rightarrow 0} f(x)$
(vi) $\lim _{x \rightarrow 3} f(x)$

Where is f discontinuous?
8. The graph of $y=f(x)$ is given below.

(a) Find $\lim _{x \rightarrow-2^{+}} f(x), \lim _{x \rightarrow-2^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$, $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow-1^{-}} f(x), \lim _{x \rightarrow-1^{+}} f(x)$
(b) Where is f discontinuous and why ?
9. The graph of $y=g(x)$ is given below.

(a) Find $\lim _{x \rightarrow-3^{+}} g(x), \lim _{x \rightarrow-3^{-}} g(x), \lim _{x \rightarrow 3^{+}} g(x)$, $\lim _{x \rightarrow 3^{-}} g(x), \lim _{x \rightarrow-\infty} g(x), \lim _{x \rightarrow \infty} g(x)$
(b) Find the vertical and horizontal asymptotes of g.
10. Compute the derivative using the definition of the derivative.
(a) $f(x)=2 x^{2}+3 x+1$
(c) $f(x)=\sqrt{x+3}$
(b) $f(x)=\frac{2}{x+1}$
(d) $f(x)=3 x-5$
11. Calculate y^{\prime}.
(a) $y=x^{3}+3 x+\sqrt[3]{x}$
(c) $y=\frac{x^{4}-3 x^{2}+5}{x^{2}}$
(b) $y=\frac{x^{5}+4}{\sqrt{x}}$
(b) $y=e^{x}+1+x^{2}$
12. Find the equation of tangent to the given curve at the given point.
(a) $y=x+\sqrt{x} ;(1,2)$
(b) $y=(x-3)(x+5) ; \quad(2,-7)$
13. Find the x-coordinate of the points where the tangent to the given curve is horizontal.
(a) $y=x^{3}-6 x^{2}$
(b) $y=x\left(3 x^{2}+12 x-20\right)$
14. Find the points on the curve $y=e^{x}$ where the tangent is parallel to the line $x-4 y=1$.
15. Find f and a so that the given limits are $f^{\prime}(a)$
(a) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{2 x}$
(c) $\lim _{t \rightarrow 1} \frac{t^{500}-1}{t-1}$
(b) $\lim _{x \rightarrow 0} \frac{\tan x}{3 x}$
(d) $\lim _{x \rightarrow 2} \frac{3^{x}-9}{x-2}$
16. The graph of $y=f(x)$ is given below.

Indicate the points which have horizontal tangents, the points where $f(x)$ is not differentiable and sketch the graph of $f^{\prime}(x)$ (on the same graph).

17. Write down precise definitions of the following:
(a) Function
(b) Continuity of $f(x)$ at $x=a$.
(c) Derivative of $f(x)$ at $x=a$.
(d) Vertical asymptote to $y=f(x)$.
(e) Horizontal asymptote to $y=f(x)$.

