Summary of Derivative tests and curve sketching

Calculus I, MTH 231
Instructor: Abhijit Champanerkar
Topic: Sections 4.3-4.4-4.5

1. Increasing/Decreasing Test Let f be differentiable on (a, b). Then

- $f^{\prime}(x)>0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- $f^{\prime}(x)<0$ on $(a, b) \Longrightarrow f$ is decreasing on (a, b).

2. First derivative Test for critical points Let f be differentiable and let c be a critical point of $f(x)$. Then

- $f^{\prime}(x)$ changes from + to - at $c \Longrightarrow f(c)$ local maximum.
- $f^{\prime}(x)$ changes from - to + at $c \Longrightarrow f(c)$ local minimum.

To find Monotonicity Compute $f^{\prime}(x) \rightarrow$ Solve $f^{\prime}(x)=0$ to get critical points \rightarrow Find intervals of increase/decrease using Increasing/Decreasing Test \rightarrow Analyse critical points using First derivative Test.
3. Concavitiy Test Assume $f^{\prime \prime}(x)$ exists on (a, b). Then

- $f^{\prime \prime}(x)>0$ on $(a, b) \Longrightarrow f$ is concave up (CU) on (a, b).
- $f^{\prime \prime}(x)<0$ on $(a, b) \Longrightarrow f$ is concave down (CD) on (a, b).

4. Inflection point Test Assume $f^{\prime \prime}(c)$ exists. Then

- $f^{\prime \prime}(c)=0$ and $f^{\prime \prime}(x)$ changes sign at $c \Longrightarrow f(x)$ has an inflection point at $x=c$.

To find Concavity Compute $f^{\prime \prime}(x) \rightarrow$ Solve $f^{\prime \prime}(x)=0 \rightarrow$ Find intervals of concavity using Concavity Test \rightarrow Find inflection points using Inflection point Test.
5. Second derivative Test for critical points Let c be a critical point of $f(x)$. If $f^{\prime \prime}(c)$ exists, then

- $f^{\prime \prime}(c)>0 \Longrightarrow f(c)$ is local minimum.
- $f^{\prime \prime}(c)<0 \Longrightarrow f(c)$ is local maximum.
- $f^{\prime \prime}(c)=0 \Longrightarrow$ inconclusive, use First derivative test.

Curve sketching

A transition point is a point in the domain of f at which either f^{\prime} changes sign (local min or max) or $f^{\prime \prime}$ changes sign (point of inflection).

Steps in curve sketching:

- Step 1: Determine signs of f^{\prime} and $f^{\prime \prime}$.
- Step 2: Note transition points and sign combinations of f^{\prime} anf $f^{\prime \prime}$.
- Step 3: Determine asymptotes of f.
- Step 4: Draw arcs of appropriate shape and asympototes.

Figure 1: (a) The four basic shapes (b) Graph of a function with transition points .

