Scissors Congruence &
Hilbert’s 3rd Problem

Abhijit Champanerkar
College of Staten Island CUNY

CSI Math Club Talk

April 14th 2010
A **polygonal decomposition** of a polygon P in the Euclidean plane is a finite collections of polygons P_1, P_2, \ldots, P_n whose union is P and which pairwise intersect only in their boundaries.
A **polygonal decomposition** of a polygon P in the Euclidean plane is a finite collections of polygons $P_1, P_2, \ldots P_n$ whose union is P and which pairwise intersect only in their boundaries.

Example: Tangrams
Scissors Congruence

Polygons P and Q are **scissors congruent** if there exist polygonal decompositions P_1, \ldots, P_n and Q_1, \ldots, Q_n of P and Q respectively such that P_i is congruent to Q_i for $1 \leq i \leq n$. In short, two polygons are scissors congruent is one can be cut up and reassembled into the other. Let us denote scissors congruence by \sim_{sc}. We will write $P \sim_{sc} P_1 + P_2 + \ldots + P_n$.

Example: All the polygons below are scissors congruent.
Polygons P and Q are **scissors congruent** if there exist polygonal decompositions P_1, \ldots, P_n and Q_1, \ldots, Q_n of P and Q respectively such that P_i is congruent to Q_i for $1 \leq i \leq n$. In short, two polygons are scissors congruent if one can be cut up and reassembled into the other. Let us denote scissors congruence by \sim_{sc}. We will write $P \sim_{sc} P_1 + P_2 + \ldots + P_n$.

Example: All the polygons below are scissors congruent.
The idea of scissors congruence goes back to Euclid. By “equal area” Euclid meant scissors congruent (not in that terminology). In fact Euclid’s proof of the Pythagorean Theorem partitions the three squares into triangles with equal areas. Euclid’s “geometric algebra” will also remind you of scissors congruence (groups).
The idea of scissors congruence goes back to Euclid. By “equal area” Euclid meant scissors congruent (not in that terminology). In fact Euclid’s proof of the Pythagorean Theorem partitions the three squares into triangles with equal areas. Euclid’s “geometric algebra” will also remind you of scissors congruence (groups).
Scissors Congruent proof of the Pythagorean Theorem.
Properties of Scissors Congruence

- If $P \sim_{sc} Q$ then $\text{Area}(P) = \text{Area}(Q)$.

Transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$.

Properties of Scissors Congruence

- If $P \sim_{sc} Q$ then $\text{Area}(P) = \text{Area}(Q)$.
- \sim_{sc} is an equivalence relation on the set of all polygons in the Euclidean plane.
 - (Reflexive) $P \sim_{sc} P$.
 - (Symmetric) $P \sim_{sc} Q$ then $Q \sim_{sc} P$.
 - (Transitive) $P \sim_{sc} Q$ and $Q \sim_{sc} R$ then $P \sim_{sc} R$.

Transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$.

Properties of Scissors Congruence

- If $P \sim_{sc} Q$ then $\text{Area}(P) = \text{Area}(Q)$.
- \sim_{sc} is an equivalence relation on the set of all polygons in the Euclidean plane.
 - (Reflexive) $P \sim_{sc} P$.
 - (Symmetric) $P \sim_{sc} Q$ then $Q \sim_{sc} P$.
 - (Transitive) $P \sim_{sc} Q$ and $Q \sim_{sc} R$ then $P \sim_{sc} R$.

Transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$.
Properties of Scissors Congruence

- If $P \sim_{sc} Q$ then $\text{Area}(P) = \text{Area}(Q)$.

- \sim_{sc} is an equivalence relation on the set of all polygons in the Euclidean plane.
 - (Reflexive) $P \sim_{sc} P$.
 - (Symmetric) $P \sim_{sc} Q$ then $Q \sim_{sc} P$.
 - (Transitive) $P \sim_{sc} Q$ and $Q \sim_{sc} R$ then $P \sim_{sc} R$.

Transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$.
Properties of Scissors Congruence

- If $P \sim_{sc} Q$ then $\text{Area}(P) = \text{Area}(Q)$.
- \sim_{sc} is an equivalence relation on the set of all polygons in the Euclidean plane.
 - (Reflexive) $P \sim_{sc} P$.
 - (Symmetric) $P \sim_{sc} Q$ then $Q \sim_{sc} P$.
 - (Transitive) $P \sim_{sc} Q$ and $Q \sim_{sc} R$ then $P \sim_{sc} R$.

Transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$.

![Diagram](image)
Properties of Scissors Congruence

- If $P \sim_{sc} Q$ then $\text{Area}(P) = \text{Area}(Q)$.
- \sim_{sc} is an equivalence relation on the set of all polygons in the Euclidean plane.
 - (Reflexive) $P \sim_{sc} P$.
 - (Symmetric) $P \sim_{sc} Q$ then $Q \sim_{sc} P$.
 - (Transitive) $P \sim_{sc} Q$ and $Q \sim_{sc} R$ then $P \sim_{sc} R$.

Transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$.

![Diagram of scissors congruence](image)
Properties of Scissors Congruence

Theorem (Bolyai-Gerwien 1833)

Any two polygons with the same area are scissors congruent.
Properties of Scissors Congruence

Theorem (Bolyai-Gerwien 1833)
Any two polygons with the same area are scissors congruent.

An important consequence is that area determines scissors congruence!
Properties of Scissors Congruence

Theorem (Bolyai-Gerwien 1833)

Any two polygons with the same area are scissors congruent.

An important consequence is that area determines scissors congruence!

We will see two proofs of this theorem.
Step 1: Every polygon has a polygonal decomposition into triangles, in fact into acute angled triangles.
Step 1: Every polygon has a polygonal decomposition into triangles, in fact into acute angled triangles.

Proof:
Step 1: Every polygon has a polygonal decomposition into triangles, in fact into acute angled triangles.

Proof:

For a polygon, choose a line of slope m which is distinct from the slopes of all its sides. Lines of slope m through the vertices of the polygon decompose it into triangles and trapezoids, which again can be decomposed into acute angled triangles.
Step 2: Any two parallelograms with same base and height are scissors congruent. The same is true for triangles.

Proof: Let $ABCD$ be a rectangle with base AB and height AD. Let $ABXY$ be a parallelogram with height AD. Assume $|DY| \leq |DC|$. Then

$$ABCD \sim_{sc} AYD + ABCY \sim_{sc} ABCY + BXC \sim_{sc} ABXY.$$
If $|DY| > |DC|$, then cutting along the diagonal BY and regluing the triangle BXY, we obtain the scissors congruent parallelogram $ABYY_1$ such that $|DY_1| = |DY| - |DC|$. Continuing this process k times, for $k = \lceil |DY|/|DC| \rceil$, we obtain the parallelogram $ABY_{k-1}Y_k$ such that $|DY_k| < |DC|$, which is scissors congruent to $ABCD$ as above.
Since any triangle is scissors congruent to a parallelogram with the same base and half height, this implies that any two triangles with same base and height are scissors congruent. ■
First Proof

Step 3: Any two triangles with same area are scissors congruent.

Proof: By Step 2, we can assume both the triangles are right angles triangles.

\[\text{Area}(\triangle ABC) = \text{Area}(\triangle AXY)\]
\[\Rightarrow \frac{|AB|}{|AC|} = \frac{|AY|}{|AX|}\]
\[\Rightarrow \frac{|AY|}{|AC|} = \frac{|AB|}{|AX|}\]
\[\Rightarrow \triangle ABY \sim \triangle AXC\]

This implies \(BY \) is parallel to \(XC \). Hence triangles \(\triangle BYC \) and \(\triangle BYX \) have same base and same height which implies by Step 2 that they are scissors congruent.

\[\triangle ABC \sim \text{sc} \triangle ABY + \triangle BYC \sim \text{sc} \triangle ABY + \triangle BYX \sim \text{sc} \triangle AXY.\]

\[\blacksquare\]
Step 3: Any two triangles with same area are scissors congruent.

Proof: By Step 2, we can assume both the triangles are right angles triangles.

\[
\text{Area}(ABC) = \text{Area}(AXY)
\]
\[
\frac{|AB||AC|}{2} = \frac{|AY||AX|}{2}
\]
\[
|AY| = |AB|
\]
\[
|AC| = |AX|
\]
\[
\implies ABY \sim AXC \text{ SAS test}
\]
First Proof

Step 3: Any two triangles with same area are scissors congruent.
Proof: By Step 2, we can assume both the triangles are right angles triangles.

\[
\text{Area}(ABC) = \text{Area}(AXY) \\
\Rightarrow \frac{|AB||AC|}{2} = \frac{|AY||AX|}{2} \\
\Rightarrow \frac{|AY|}{|AC|} = \frac{|AB|}{|AX|} \\
\Rightarrow ABY \sim AXC \text{ SAS test}
\]

This implies BY is parallel to XC. Hence triangles BYC and BYX have same base and same height which implies by Step 2 that they are scissors congruent.

\[
ABC \sim_{sc} ABY + BYC \sim_{sc} ABY + BYX \sim_{sc} AXY.
\]
First Proof

To complete the proof, any triangle T is scissors congruent to a right triangle with height 2 and base equal to the area of T, which is scissors congruent to a rectangle with unit height and base equal to area of T. Let's denote such a rectangle by R_x where x is its area (= length of the base).
To complete the proof, any triangle T is scissors congruent to a right triangle with height 2 and base equal to the area of T, which is scissors congruent to a rectangle with unit height and base equal to area of T. Let's denote such a rectangle by R_x where x is its area (= length of the base).

Thus for any polygon P,

\[
P \sim_{sc} T_1 + \ldots + T_n \text{ by Step 1} \\
\sim_{sc} R_{\text{Area}(T_1)} + \ldots + R_{\text{Area}(T_n)} \text{ by Step 3} \\
\sim_{sc} R_{\text{Area}(T_1)} + \ldots + \text{Area}(T_n) \text{ by laying rectangles side by side} \\
\sim_{sc} R_{\text{Area}(P)} \text{ by Step 1}
\]
First Proof

To complete the proof, any triangle T is scissors congruent to a right triangle with height 2 and base equal to the area of T, which is scissors congruent to a rectangle with unit height and base equal to area of T. Let's denote such a rectangle by R_x where x is its area ($=\text{length of the base}$).

Thus for any polygon P,

$$P \sim_{sc} T_1 + \ldots + T_n \text{ by Step 1}$$
$$\sim_{sc} R_{\text{Area}(T_1)} + \ldots + R_{\text{Area}(T_n)} \text{ by Step 3}$$
$$\sim_{sc} R_{\text{Area}(T_1)+\ldots+\text{Area}(T_n)} \text{ by laying rectangles side by side}$$
$$\sim_{sc} R_{\text{Area}(P)} \text{ by Step 1}$$

Thus polygons with equal area are scissors congruent to the same rectangles and hence to each other.
Second Proof

Step 1 & 2 same as before.

Step 3: A rectangle is scissors congruent to a square of the same area.

Proof:

![Diagram of a rectangle and a square with labels a, b, x, y, and x](image)

where

\[x = a - \frac{\sqrt{a(b - a)}}{a}(b - \sqrt{a(b - a)}), \quad y = \sqrt{ab} \]

We need to verify the equation

\[
\frac{x\sqrt{a(b - a)}}{\sqrt{ab}} + \sqrt{(b - \sqrt{a(b - a)})^2 + (a - x)^2} = \sqrt{ab}
\]
From Steps 1, 2 & 3 we know that any triangle T is scissors congruent to a square, denoted by say $S_{\text{Area}}(T)$. So for any polygon P,

\[P \sim_{sc} T_1 + \ldots + T_n \text{ by Step 1} \]
\[\sim_{sc} S_{\text{Area}}(T_1) + \ldots + S_{\text{Area}}(T_n) \text{ by Step 3} \]
\[\sim_{sc} S_{\text{Area}}(T_1) + \ldots + \text{Area}(T_n) \text{ by Pythagorean Theorem} \]
\[\sim_{sc} S_{\text{Area}}(P) \text{ by Step 1} \]

Thus polygons with equal area are scissors congruent to the same square and hence to each other.

■
A polyhedron is a solid in \mathbb{E}^3 whose faces are polygons.

A polyhedral decomposition of a polyhedron P is a finite collections of polyhedra $P_1, P_2, \ldots P_n$ whose union is P and which pairwise intersect only in their boundaries (faces or edges).
A **polyhedron** is a solid in \mathbb{R}^3 whose faces are polygons.

A **polyhedral decomposition** of a polyhedron P is a finite collections of polyhedra $P_1, P_2, \ldots P_n$ whose union is P and which pairwise intersect only in their boundaries (faces or edges).

Scissors Congruence

Two polyhedra P and Q are **scissors congruent** if there exist polyhedral decompositions P_1, \ldots, P_n and Q_1, \ldots, Q_n of P and Q respectively such that P_i is congruent to Q_i for $1 \leq i \leq n$. In short, two polyhedra are scissors congruent if one can be cut up and reassembled into the other. As before, let us denote scissors congruence by \sim_{sc}. We will also write $P \sim_{sc} P_1 + P_2 + \ldots + P_n$.
If \(P \sim_{sc} Q \) then \(\text{Volume}(P) = \text{Volume}(Q) \).
Scissors Congruence in 3 dimensions

- If $P \sim_{sc} Q$ then $\text{Volume}(P) = \text{Volume}(Q)$.
- \sim_{sc} is an equivalence relation on the set of all polyhedra \mathbb{E}^3
 - (Reflexive) $P \sim_{sc} P$.
 - (Symmetric) $P \sim_{sc} Q$ then $Q \sim_{sc} P$.
 - (Transitive) $P \sim_{sc} Q$ and $Q \sim_{sc} R$ then $P \sim_{sc} R$.

As before, transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$. This is harder to visualize or draw. Anybody interested in making an animation of this? Please let me know.
If \(P \sim_{sc} Q \) then \(\text{Volume}(P) = \text{Volume}(Q) \).

\(\sim_{sc} \) is an equivalence relation on the set of all polyhedra \(\mathbb{F}^3 \)

- (Reflexive) \(P \sim_{sc} P \).
- (Symmetric) \(P \sim_{sc} Q \) then \(Q \sim_{sc} P \).
- (Transitive) \(P \sim_{sc} Q \) and \(Q \sim_{sc} R \) then \(P \sim_{sc} R \).

As before, transitivity follows by juxtaposing the two decompositions of \(Q \) and using the resulting common sub-decomposition of \(Q \) to reassemble into \(P \) and \(R \), thus showing that \(P \sim_{sc} R \). This is harder to visualize or draw.

Anybody interested in making an animation of this? Please let me know.
Scissors Congruence in 3 dimensions

- If $P \sim_{sc} Q$ then $\text{Volume}(P) = \text{Volume}(Q)$.
- \sim_{sc} is an equivalence relation on the set of all polyhedra \mathbb{R}^3
 - (Reflexive) $P \sim_{sc} P$.
 - (Symmetric) $P \sim_{sc} Q$ then $Q \sim_{sc} P$.
 - (Transitive) $P \sim_{sc} Q$ and $Q \sim_{sc} R$ then $P \sim_{sc} R$.

As before, transitivity follows by juxtaposing the two decompositions of Q and using the resulting common sub-decomposition of Q to reassemble into P and R, thus showing that $P \sim_{sc} R$. This is harder to visualize or draw.

Anybody interested in making an animation of this? Please let me know
Hilbert’s Third Problem

In a famous lecture delivered at the International Congress of Mathematics at Paris in 1900, Hilbert posed 23 problems.
In a famous lecture delivered at the International Congress of Mathematics at Paris in 1900, Hilbert posed 23 problems.

Hilbert’s Third Problem

Are polyhedra in \mathbb{R}^3 of same volume scissors congruent?
In a famous lecture delivered at the International Congress of Mathematics at Paris in 1900, Hilbert posed 23 problems.

Hilbert’s Third Problem

Are polyhedra in \mathbb{R}^3 of same volume scissors congruent?

Hilbert made clear that he expected a negative answer.
The negative answer to Hilbert's Third problem was provided in 1902 by Max Dehn. Dehn showed that the regular tetrahedron and the cube of the same volume were not scissors congruent.
Solution to Hilbert’s Third Problem

The negative answer to Hilbert’s Third problem was provided in 1902 by Max Dehn.
Solution to Hilbert’s Third Problem

The negative answer to Hilbert’s Third problem was provided in 1902 by Max Dehn.

Dehn showed that the regular tetrahedron and the cube of the same volume were not scissors congruent.
Dehn’s solution

Volume is an invariant of scissors congruence i.e. two scissors congruent objects have the same volume.
Dehn’s solution

Volume is an invariant of scissors congruence i.e. two scissors congruent objects have the same volume.

Dehn defined a new invariant of scissors congruence, now known as the Dehn invariant.

Dehn invariant

For an edge \(e \) of a polyhedron \(P \), let \(\ell(e) \) and \(\theta(e) \) denote its length and dihedral angles respectively. The Dehn invariant \(\delta(P) \) of \(P \) is

\[
\delta(P) = \sum_{\text{all edges } e \text{ of } P} \ell(e) \otimes \theta(e) \in \mathbb{R} \otimes (\mathbb{R}/\pi \mathbb{Q})
\]
Dehn’s solution

Volume is an invariant of scissors congruence i.e. two scissors congruent objects have the same volume.

Dehn defined a new invariant of scissors congruence, now known as the Dehn invariant.

Dehn invariant

For an edge e of a polyhedron P, let $\ell(e)$ and $\theta(e)$ denote its length and dihedral angles respectively. The Dehn invariant $\delta(P)$ of P is

\[
\delta(P) = \sum_{\text{all edges } e \text{ of } P} \ell(e) \otimes \theta(e) \in \mathbb{R} \otimes (\mathbb{R}/\pi \mathbb{Q})
\]

The \otimes symbol takes care that $\delta(P)$ does not change when you cut along an edge or cut along an angle i.e. $\delta(P)$ is an invariant of scissors congruence.
Dehn’s solution

- In $\delta(P)$, dihedral angles which are rationals multiples of π are 0!
Dehn’s solution

- In $\delta(P)$, dihedral angles which are rationals multiples of π are 0!
- $\delta(\text{unit cube}) = 12 \times 1 \otimes (\pi/2) = 0$ since $\pi/2 = 0 \in \mathbb{R}/\pi\mathbb{Q}$
Dehn’s solution

- In $\delta(P)$, dihedral angles which are rationals multiples of π are 0!
- $\delta(\text{unit cube}) = 12 \times 1 \otimes (\pi/2) = 0$ since $\pi/2 = 0 \in \mathbb{R}/\pi \mathbb{Q}$
- For a regular tetrahedra with unit volume, the lengths of all its sides is some positive number a and all its dihedral angles are α where $\cos(\alpha) = 1/3$.

\[\delta(\text{unit cube}) \neq 6 \times a \otimes \arccos\left(\frac{1}{3}\right) = \delta(\text{tetrahedra})\]

Thus the unit cube and the unit tetrahedra are not scissors congruent!
Dehn’s solution

- In $\delta(P)$, dihedral angles which are rationals multiples of π are 0!
- $\delta(\text{unit cube}) = 12 \times 1 \otimes (\pi/2) = 0$ since $\pi/2 = 0 \in \mathbb{R}/\pi\mathbb{Q}$
- For a regular tetrahedra with unit volume, the lengths of all its sides is some positive number a and all its dihedral angles are α where $\cos(\alpha) = 1/3$.
- $\delta(\text{tetrahedra}) = 6 \times a \otimes \arccos(\frac{1}{3})$
Dehn’s solution

- In $\delta(P)$, dihedral angles which are rationals multiples of π are 0!
- $\delta(\text{unit cube}) = 12 \times 1 \otimes (\pi/2) = 0$ since $\pi/2 = 0 \in \mathbb{R}/\pi\mathbb{Q}$
- For a regular tetrahedra with unit volume, the lengths of all its sides is some positive number a and all its dihedral angles are α where $\cos(\alpha) = 1/3$.
- $\delta(\text{tetrahedra}) = 6 \times a \otimes \arccos\left(\frac{1}{3}\right)$
- $\arccos\left(\frac{1}{3}\right) = \frac{\pi}{3}$ is irrational! (needs proof)
Dehn’s solution

- In $\delta(P)$, dihedral angles which are rationals multiples of π are 0!

- $\delta(\text{unit cube}) = 12 \times 1 \otimes (\pi/2) = 0$ since $\pi/2 = 0 \in \mathbb{R}/\pi\mathbb{Q}$

- For a regular tetrahedra with unit volume, the lengths of all its sides is some positive number a and all its dihedral angles are α where $\cos(\alpha) = 1/3$.

- $\delta(\text{tetrahedra}) = 6 \times a \otimes \arccos\left(\frac{1}{3}\right)$

- $\frac{\arccos\left(\frac{1}{3}\right)}{\pi}$ is irrational! (needs proof)

- $\delta(\text{unit cube}) = 0 \neq 6 \times a \otimes \arccos\left(\frac{1}{3}\right) = \delta(\text{tetrahedra})$
Dehn’s solution

- In $\delta(P)$, dihedral angles which are rationals multiples of π are 0!
- $\delta(\text{unit cube}) = 12 \times 1 \otimes (\pi/2) = 0$ since $\pi/2 = 0 \in \mathbb{R}/\pi\mathbb{Q}$
- For a regular tetrahedra with unit volume, the lengths of all its sides is some positive number a and all its dihedral angles are α where $\cos(\alpha) = 1/3$.
- $\delta(\text{tetrahedra}) = 6 \times a \otimes \arccos(1/3)$
- $\frac{\arccos(1/3)}{\pi}$ is irrational! (needs proof)
- $\delta(\text{unit cube}) = 0 \neq 6 \times a \otimes \arccos(1/3) = \delta(\text{tetrahedra})$
- Thus the unit cube and the unit tetrahedra are not scissors congruent!
Further Comments

- In two dimensional spherical geometry S^2 and hyperbolic geometry H^2 it is known that area determines scissors congruence.
Further Comments

- In two dimensional spherical geometry S^2 and hyperbolic geometry \mathbb{H}^2 it is known that area determines scissors congruence.
- Does volume and Dehn invariant determine scissors congruence in \mathbb{E}^3? Yes they do! Sydler answered this question in 1965. This question is known as the “Dehn invariant sufficiency” problem.
In two dimensional spherical geometry S^2 and hyperbolic geometry H^2 it is known that area determines scissors congruence.

Does volume and Dehn invariant determine scissors congruence in E^3? Yes they do! Sydler answered this question in 1965. This question is known as the “Dehn invariant sufficiency” problem.

“Dehn invariant sufficiency” is still open for 3-dimensional spherical geometry S^3 and hyperbolic geometries H^3 and in higher dimensions.
Further Comments

- In two dimensional spherical geometry \mathbb{S}^2 and hyperbolic geometry \mathbb{H}^2 it is known that area determines scissors congruence.
- Does volume and Dehn invariant determine scissors congruence in \mathbb{E}^3? Yes they do! Sydler answered this question in 1965. This question is known as the “Dehn invariant sufficiency” problem.
- “Dehn invariant sufficiency” is still open for 3-dimensional spherical geometry \mathbb{S}^3 and hyperbolic geometries \mathbb{H}^3 and in higher dimensions.
- Dupont and Sah related scissors congruence to questions about the homology of groups of isometries of various geometries (regarded as discrete groups).
In two dimensional spherical geometry S^2 and hyperbolic geometry H^2 it is known that area determines scissors congruence.

Does volume and Dehn invariant determine scissors congruence in E^3? Yes they do! Sydler answered this question in 1965. This question is known as the “Dehn invariant sufficiency” problem.

“Dehn invariant sufficiency” is still open for 3-dimensional spherical geometry S^3 and hyperbolic geometries H^3 and in higher dimensions.

Dupont and Sah related scissors congruence to questions about the homology of groups of isometries of various geometries (regarded as discrete groups).

Dupont, Sah, Parry, Suslin etc gave relations between scissors congruences and K-theory of fields.
Further Comments

- In two dimensional spherical geometry S^2 and hyperbolic geometry \mathbb{H}^2 it is known that area determines scissors congruence.
- Does volume and Dehn invariant determine scissors congruence in \mathbb{E}^3? Yes they do! Sydler answered this question in 1965. This question is known as the “Dehn invariant sufficiency” problem.
- “Dehn invariant sufficiency” is still open for 3-dimensional spherical geometry S^3 and hyperbolic geometries \mathbb{H}^3 and in higher dimensions.
- Dupont and Sah related scissors congruence to questions about the homology of groups of isometries of various geometries (regarded as discrete groups).
- Dupont, Sah, Parry, Suslin etc gave relations between scissors congruences and K-theory of fields.
- Neumann used a “complexified” Dehn invariant in \mathbb{H}^3 to define invariants of hyperbolic 3-manifolds.
References

4. Scissors Congruence by Efton Park, Seminar Notes, Texas Christian University.
6. Tangram pictures taken from the iPhone application LetsTans http://www.letstans.com/.