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One of the Tait conjectures, which was stated 100 years
ago and proved in the 1980’s, said that reduced alternating
projections of alternating knots have the minimal number of
crossings. We prove a generalization of this for knots in S ×I,
where S is a surface. We use a combination of geometric and
polynomial techniques.

1. Introduction.

A hundred years ago, Tait conjectured that the number of crossings in a
reduced alternating projection of an alternating knot is minimal. This state-
ment was proven in 1986 by Kauffman, Murasugi and Thistlethwaite, [6],
[10], [11], working independently. Their proofs relied on the new polynomi-
als generated in the wake of the discovery of the Jones polynomial.

We usually think of this result as applying to knots in the 3-sphere S3.
However, it applies equally well to knots in S2×I (where I is the unit interval
[0, 1]). Indeed, if one removes two disjoint balls from S3, the resulting space
is homeomorphic to S2× I. It is not hard to see that these two balls do not
affect knot equivalence. We conclude that the theory of knot equivalence in
S2 × I is the same as in S3.

With this equivalence in mind, it is natural to ask if the Tait conjecture
generalizes to knots in spaces of the form S × I where S is any compact
surface.

More rigorously, consider the projection surface S0 = S × {1
2}. Let π :

S×I → S0 be the natural projection. We define crossing number, alternating
projections and alternating knots in the obvious way. Given some choice
of a definition of reduced, we want to know whether reduced alternating
projections of alternating knots have minimal crossing number.

In other words, if c(π(K)) represents the crossing number of a projection,
we want to know if it is always the case that if K and K ′ represent two
spatial configurations of the same knot, so π(K), π(K ′) are two projections
of the knot and π(K) is “reduced” and alternating, then

c(π(K)) ≤ c(π′(K)).(1)
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In [4], Kamada showed that if two projections of a knot in S× I are both
“properly reduced” alternating projections with the same supporting genus,
then they have the same number of crossings. A projection is properly
reduced if the four regions that meet at each crossing of the projection are
distinct. This is a generalization of a reduced projection in the plane. The
supporting genus of a projection is the genus of the surface that results if
each region of the projection surface is replaced with a disk.

The result presented in this paper extends Kamada’s result in three ways.
First, our notion of “reduced” is more general than Kamada’s, and it is a
more natural generalization of the definition in S3.

We define a knot projection to be reduced on S0 if there are no trivial
simple closed curves on S0 that intersect the knot projection exactly once
(a trivial curve is a curve that is homotopic to the constant curve). This
is natural, because curves like this exist exactly when one can perform the
“untwisting” operation to reduce the number of crossings. Note that such
a curve intersects the projection at a crossing, with two strands of the knot
coming out of the intersection to either side of the curve.

Second, we consider arbitrary projections π(K), π(K ′), not just projec-
tions with the same supporting genus. Third, we show that the crossing
numbers of the reduced alternating projections are not just equal to one
another, but that they are minimal.

Indeed, we prove the following:

Theorem 1.1. Let S be a compact surface. Let π(K) be a reduced alternat-
ing projection of an alternating knot in S × I and let π(K ′) be an arbitrary
projection (of the same knot). Then

c(π(K)) ≤ c(π(K ′)).(2)

Unlike the proof of the original Tait conjecture, polynomial techniques
were not enough to establish our result. These techniques are only strong
enough to give results analogous to those of Kamada. We use Menasco’s
geometrical techniques to show something analogous to the supporting genus
restriction always holds and to complete the proof. Independently, in [5], the
author announced a version of Theorem 1.1 for knots and links, however,
only an outline of the proof has appeared. The techniques utilized differ
substantially from those presented here.

The specific breakdown of the paper is as follows. The second section
of this paper presents the geometrical argument. The main result of this
section is that the general result follows from the special case that S is a
punctured compact orientable surface, and π(K ′) cuts this surface into disks
and punctured disks. This special case is analogous to Kamada’s result.
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The third section of this paper presents the polynomial argument. We
define polynomial invariants for knots in S× I and use them to prove (2) in
the special case.

Combining these two results gives the main theorem, the proof of which
appears in the third section. The fourth and final section discusses exten-
sions of the theorem, and other related questions and conjectures.

Acknowledgements. The first author was supported by NSF Grant DMS-
9803362. The remaining authors were supported by NSF Grant DMS-
9820570 as participants in the Williams College SMALL REU program in
the summer of 1999.

2. The geometric argument.

In this section we show that in some sense, alternating projections of a
knot in S × I wrap around the projection surface S0 less than any other
projections of the same knot. The rigorous statement of this idea is given
by the next theorem. (Hayashi has proved a related result in the case that
S is a torus [2].)

Theorem 2.1. Let S be an orientable surface. Let K be a configuration of
a knot in S × I such that π(K) is regular and alternating. Let K ′ be any
other configuration of the knot, and let H : (S × I) × I → (S × I) be the
isotopy carrying K ′ to K. Suppose that there exists a simple closed curve
γ ∈ π(K ′)c which does not bound a disk in π(K ′)c (where π(K ′)c denotes the
complement of the knot projection in S0). Let A0 be the annulus γ × I. Let
A = H(A0, 1) be the isotoped annulus. Then we may continue the isotopy,
so that afterwards:

(i) The knot projection is π(K) up to planar isotopy (i.e., there exists an
isotopy of S0 that takes the knot projection to π(K)).

(ii) The annulus is in its original position A0.

Before giving the proof of this theorem, we first show how it can be applied
to our main problem, the generalized Tait conjecture. Recall that we wish
to show that if S is a compact surface, K a configuration of a knot in S × I
with reduced alternating projection, K ′ an arbitrary configuration of the
knot,then

c(π(K)) ≤ c(π(K ′)).(3)

For the time being, we will assume that the surface is orientable and then
we will finish off the argument for nonorientable surfaces by taking their
double covers. Using Theorem 2.1, we can reduce this problem to a much
simpler one.
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Claim 2.2. To prove Theorem 1.1 in the orientable case, it suffices to show
(3) in the case of a compact orientable surface S possibly with boundary,
where the regions in π(K ′)c are disks and disks with holes.

Proof. Consider a regular neighborhood N of π(K ′). The boundary of this
neighborhood, ∂N consists of a number of simple closed curves that lie
in π(K ′)c. Take the subset of these curves which do not bound disks in
π(K ′)c and consider the vertical annuli (obtained by crossing each curve
with I) corresponding to them. By Theorem 2.1 we can assume that after
we perform the isotopy that takes K to K ′, these annuli will return to their
original positions. We can interpret this as follows. First, cut the space
S× I along these vertical annuli, and paste separate annuli onto each of the
resulting boundary components. The result will be a number of separate
spaces, each of the form F × I where F is a compact surface with boundary.
The knot K ′ will lie in one of these spaces, F0 × I. The entire isotopy
between K and K ′ will take place within a copy of F0 × I, although the
actual position of F0 × I within S × I will change over time.

The interpretation of the result from Theorem 2.1 is that the position
of F0 × I at the end of the isotopy is the same as at the beginning of the
isotopy. By combining this result with an appropriate choice of identification
between the continuously deforming F0 × I and the original copy, one can
see that the entire isotopy between K and K ′ can be performed within a
fixed copy of F0 × I. In other words, we can think of K, K ′ as being two
configurations of a knot within a space F0 × I. By our construction, the
projection π(K ′) cuts the projection surface F0 × {1

2} into disks and disks
with holes. This means that, by thinking of the two configurations of the
knot, K, K ′, as lying in the space F0 × I, we only have to deal with the
simpler case described above. �

Now that we have shown the importance of Theorem 2.1 in establishing
the generalized Tait conjecture, we give the proof.

Proof of Theorem 2.1. We prove the theorem in the case that γ is nontrivial
on S0. The case where γ is trivial can be dealt with using the same arguments
but with a few simplifications.

The first step is to isotope the knot K into Menasco form (cf. [7], [8]).
That is, we flatten K onto the surface S0, creating “bubbles” at the crossings.
We arrange A so that it meets these bubbles only in saddle shaped disks.

Denote the surface with the equatorial disks of the bubbles replaced by
the upper(lower) hemispheres by S+

0 (S−
0 ).

The proof can be subdivided into four parts:

1. We show that if c is a curve of intersection of the annulus A and S±
0

that meets a saddle s on both sides, then c must be trivial on S±
0 .
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Moreover, the disk that c bounds on S±
0 cannot intersect the part of

the bubble lying directly above (below) s.
2. We isotope A so that it no longer meets any bubbles.
3. We isotope A and K, removing all the intersection curves of A ∩ S0

except a single nontrivial curve.
4. We finish the isotopy so that the annulus returns to its original position

A0.
Before proceeding with the first step, we make the following observations:

(i) A curve in A ∩ S±
0 is nontrivial in S±

0 if and only if it is nontrivial in A.
This is equivalent to showing that the inclusion map i∗ : π1(A) → π1(S× I)
is an injection. This follows immediately from the fact that i∗ sends the
generator of the infinite cyclic group, π1(A), to the homotopy class of γ.

(ii) The simple closed nontrivial curves in A∩S±
0 are homotopic to either γ

or γ−1. This follows from (i), and from the fact that simple closed nontrivial
curves on an annulus have winding number ±1 around the center.

Now we proceed with (1).

1). We show that if c is a curve of intersection of the annulus A
and S±

0 that meets a saddle s on both sides, then c must be trivial.
Moreover, the disk that c bounds on S±

0 cannot intersect the part
of the bubble lying directly above (below) s.

Assume without loss of generality that c lies on S+
0 . We will eliminate

three different configurations for c. It will then follow that c satisfies the
required conditions.

Case 1. The curve c runs between opposite corners of the saddle (see Fig-
ure 1).

Figure 1. Case 1.

Let G be the graph consisting of a single point p on s together with four
non-intersecting edges connecting p to the four “corners” of s (see Figure 2).
Consider the graph H = ∂s ∪ C ∪ G. Then we see immediately that H is
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Figure 2. The graph G on the saddle s.

Figure 3. H is isomorphic to K5.

Figure 4. Case 2.

isomorphic to K5 (see Figure 3). But H lies in the annulus, by construction.
This is a contradiction since K5 is a non-planar graph.

Case 2. The curve c runs between adjacent vertices on the saddle (see
Figure 4).
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Let c1, c2 be the two arcs of c that run between these vertices, and let
a1, a2 be the arcs of ∂s in S−

0 that join these two pairs of vertices together.

Case 2a. One of the two curves, c1 ∪ a1, c2 ∪ a2 is trivial.

Assume without loss of generality that c1 ∪ a1 is trivial. Observe that
the linking number between c1 ∪ a1 and the knot K is ±1 (depending on
which orientation we choose). To see this, note that c1 lies on S+

0 so that
all the crossings between K and c1 are undercrossings (for K). Since they
alternate in the orientation of K and since there is an odd number of them,
their total contribution to the linking number is ±1. The single overcrossing
of K with A1 contributes ±1, giving a total of (±1± 1)/2 = ±1.

But c1 ∪ a1 is trivial on S+
0 and therefore trivial on the annulus A. We

conclude that it bounds a disk D ⊂ A. D doesn’t intersect K, so by the
alternative definition of linking number, the linking number of K and c1∪a1

is 0. This is a contradiction.

Case 2b: Both c1 ∪ a1 and c2 ∪ a2 are nontrivial and c is nontrivial.

By Observation (ii), c1 ∪ a1, c2 ∪ a2, c are all homotopic to γ or γ−1. But
it is clear from the picture that

[c1 ∪ a1] · [c2 ∪ a2] = [c](4)

(where [ ] denotes homotopy class). This is a contradiction, since it is
impossible for

[γ±1] · [γ±1] = [γ±1].(5)

Combining Cases 1, 2a, 2b, we conclude that c must be trivial, while
c1 ∪ a1, c2 ∪ a2 must both be nontrivial. This means that the disk that
c bounds lies “outside” c. That is, it doesn’t intersect the portion of the
bubble lying above (below) s. This completes Part (1).

2). We isotope A so that it no longer meets any bubbles.

We first show that by isotoping A, if necessary, we can always reduce the
number of saddles that touch trivial intersection curves (of A with S±

0 ).
Suppose that some trivial curves do touch saddles. Assume without loss

of generality that some of the curves lie in S+
0 . Choose an “innermost”

trivial curve j. That is, choose j such that j = ∂D for a disk D ⊂ S+
0 , and

such that D doesn’t contain any trivial curves of A∩S+
0 that meet saddles.

It is easy to see that since K is alternating it appears alternately on the
left and right of j as we traverse successive bubbles met by j. We may
therefore choose a bubble and an arc j1 of j lying on the bubble, such that
the knot is on the same side of j1 as the disk D.

In general, the intersection between the bubble and D will consist of some
number of strips.
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Figure 5. The three possible configurations for arc j2.

By drawing the arc j2 that makes up the other half of the strip containing
our original arc j1, we get one of the following cases (see Figure 5).

a) The strip extends all the way across the bubble.
b) The arcs j1, j2 lie on opposite sides of K.
c) The arcs j1, j2 lie on the same side of K.

To see (a) is impossible, note that the saddle containing j1 must meet
another curve on the opposite side of the knot, and in Case (a) this curve is
contained in D. This is a contradiction since we choose j to be the innermost
such curve.

To see that (b) is impossible we first note that j1, j2 must belong to the
same saddle. This follows from the same reasoning as in (a). Next, we apply
Part (1). By Part (1), the only possible configuration for j is where D does
not meet the portion of the bubble lying directly above the saddle. This is
a contradiction.

We are left with (c). We consider the disk D and the appearance of the
strip in D (see Figures 6, 7).

Let a be the arc joining u to v, along the bubble. Let l be the arc of c
joining x and y. Then, by examining the strip on the disk D, we see that
uxyv = j1 ∪ l∪ j2 ∪a bounds a disk D′. Note that D′ contains the strip and
that it doesn’t meet A ∩ S+

0 except at its (D′’s) boundary and possibly at
trivial curves contained in its interior.

We now show that by isotoping A, we can remove the saddles touching
j1 and j2. The argument is taken from Adams [1].

The isotopy is accomplished in two steps. Consider the part of the annulus
lying directly above the curve j1 ∪ l ∪ j2, and between S × {1

2 + ε} and
S × {1

2 + 2ε}. Take this portion of the annulus and push it horizontally
towards the arc a, keeping the rest of the annulus fixed. Continue pushing
until the annulus is just beyond the arc a. At this point, the annulus will
still be vertical between S0 and S×{1

2 + ε}, and vertical above S×{1
2 +2ε}.



ALTERNATING KNOTS IN S × I 9

Figure 6. The appearance of the strip on the bubble in Case (c).

Figure 7. The appearance of the strip on the disk D in Case (c).

However, it will lie essentally horizontally, just above S × {1
2 + ε} and just

below S×{1
2 +2ε}. In other words, the annulus will form a mouth that lies

directly above the disk D′ with a “roof” at height 1
2 + 2ε, and a “bottom”

at height 1
2 + ε. The “back” of the mouth will be vertical and will lie just

beyond the arc a (see Figure 8).
In the process of creating this mouth, one may encounter other pieces

of the annulus that lie above D′. These pieces will necessarily be parts of
“tubes” that lie above intersection curves in D′. As we push the annulus
beyond a, we can push these tubes along with us. The end result will be
that the tubes will be vertical below S×{1

2 + ε} and above S×{1
2 +2ε}, but

they will make a long detour around the mouth in the intervening region.
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Figure 8. Creating the mouth (from Adams [1]).

Now that we have created the mouth, we can proceed with the second
part of the isotopy. Take the portion of the bottom of the mouth that lies
directly above the strip uxyv and pull it under the knot, through the bubble,
so that it lies on the opposite side of the bubble. If there are tubes, we also
pull through the part of the tubes lying above uxyv.

The end result is that the saddles touching j1 and j2 no longer exist.
Furthermore, no new saddles have been created. We have therefore reduced
the number of saddles that touch trivial curves by at least two.

We have established that we can always reduce the number of saddles
that touch trivial intersection curves. Hence, we may assume that no trivial
intersection curves meet saddles on either S+

0 or S−
0 . Note that this, together

with Part (1), implies that no curves of any kind can touch the same saddle
on opposite sides. It turns out that these two facts are enough to show that
the intersection curves of A ∩ S±

0 do not meet any saddles.
Indeed, suppose that the set of intersection curves that touch saddles is

nonempty. We know that these intersection curves are nontrivial, so by
Observation (ii) they must have homotopy type γ±1. Now consider the
curves of A ∩ S+

0 that intersect saddles. If we drew them on A they would
appear as in Figure 9.

Take the “outermost” S+
0 intersection curve c that touches a saddle. (To

define outermost rigorously, we embed the annulus A in a disk D such that
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Figure 9. The appearance of the intersection curves on the annulus.

Figure 10. The appearance of c on the annulus.

∂D = A ∩ S × {1}. We say that c is outermost if all the other curves are
contained in the interior of the disk it bounds in D.)

The curve c touches some saddle s (see Figure 10). Let c1, c2 be the
two intersection curves on S−

0 obtained by “switching” s (see Figure 11), or
rather by viewing the intersection curves from below S0 rather than above.
Note that c1, c2 must be distinct curves since no curve touches the same
saddle twice.

Now since c is outermost, there are line segments on the disk D from c1

to ∂D and from c2 to ∂D that do not cross c2 or c1 respectively. Hence the
disk on D bounded by c1 does not contain c2 and the disk on D bounded by
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Figure 11. The appearance of c1 and c2 on the annulus.

c2 does not contain c1. This contradicts the fact these are disjoint nontrivial
curves on the annulus.

Thus, no intersection curves touch saddles. This completes Part (2).

3). We remove all but a single nontrivial intersection curve.

First we remove all the trivial intersection curves. We accomplish this
one curve at a time. Let c be an innermost intersection curve on S0. Let
D1 be the disk that c bounds on S0, and D2 the disk c bounds on A.

We isotope D2 onto D1. We then pull D2 through the surface S0, elim-
inating the trivial curve c. If necessary we pull the knot projection along,
too, without changing its combinatorial structure (that is, without changing
the knot projection up to planar isotopy). By this we mean that if the knot
is in the way of the isotopy then the knot projection lives entirely in the disk
D1. We can assume that it lies in a disk D′

1 which is contained in D1 and
which is a distance ε from the boundary of D1. We may now let B be the
ε
2 -neighborhood of D1. This contains the knot K. As we isotope D2 through
D1, we pull the ball B along, all the while keeping the knot frozen within
it. After we have removed this intersection curve of A with S0, we continue
the isotopy to move this ball back down to S0 until the disk D′

1 again sits
on S0. The knot has now been returned to S0 with the same combinatorial
projection it had before. We repeat this process until there are no more
trivial curves.

We will now be left with a number of parallel nontrivial curves of interec-
tion on A. Note that they are also parallel on S0 since the annulus on A
that any two of them bound can be homotoped into S0 by collapsing out the
I in S × I. We eliminate these curves in pairs, using the same technique as
above. Let c1, c2 be adjacent parallel nontrivial curves on A. Let M be the
annulus they bound on A and N the annulus they bound on S0. Since both
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annuli live in S × I, and share boundary on S0, M can be isotoped onto N
and then pulled through S0, eliminating a pair of nontrivial curves. Again,
we may have to push the knot along during the isotopy but in that case,
the knot projection was contained entirely in N . In fact, we may assume
that the knot projection lies entirely in an annulus N ′ which is contained
in N and which is a distance ε from the boundary of N . Then if V is the
solid torus ε

2 -neighborhood of N ′, it contains the knot K. As we isotope M
through N , we pull the solid torus V along, keeping the knot frozen within
it. After removing the two intersection curves of A with S0, we continue
the isotopy to move V back down to S0 until the annulus N ′ again sits on
S0. Notice that to do so, we can slide V along the annulus until the annulus
again intersects S0, and then set N ′ down on S0. Since all of the intersec-
tions of A with S0 are parallel on S0, the resulting projection is isotopic on
S0 to the original projection of K. Repeating this process, we can remove
all but a single nontrivial curve (intially there must be an odd number of
nontrivial curves).

This completes (3).

4). We return the annulus to its initial position, A0.

To prove (4), consider an isotopy H : S0 × I → S0 that takes A ∩ S0

back to A0 ∩ S0 = γ. We know that such an isotopy exists, since A ∩ S0

consists of a simple closed curve homotopic to γ. Extend H to an isotopy
of the full space S × I by requiring that H preserve the product structure
of the space. This isotopy will take A ∩ S0 to γ and it will preserve the
combinatorial aspect of the knot projection. Next, flatten the knot onto the
surface S0 and straighten the portions of the annulus lying above and below
the projection surface S0 so that they are vertical. The result is that the
annulus will be in its original vertical position, γ× I. Moreover, at all times
we have preserved the combinatorial aspect of the knot projection, so the
projection will differ from π(K) only by planar isotopy.

This completes (4) and proves Theorem 2.1. �

3. The polynomial argument.

We will now define a set of polynomials which we will use to prove the spe-
cial case of the theorem. These polynomials generalize Kauffman’s bracket
polynomial.

Because of the existence of the projection π, the equivalence of knots
in S × I is the same as the equivalence of their diagrams by Reidemeister
moves [4]. We may therefore define polynomials for such knots and links by
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the skein relation

as in the plane. In the above equation, we call the first splitting of the link
at the crossing an A-split and the second splitting a B-split.

The main difference between planar projections and projections to a sur-
face is that on the surface, the curves to which the link is reduced (that
is, the curves with no crossings) can have different isotopy types, and these
are preserved by Reidemeister moves. This means that, in the expansion of
the knot in terms of knots without crossings, the coefficient of each isotopy
class is preserved separately, producing a family of polynomials [3]. Related
polynomials also appear in Kamada’s proof [4].

Our precise definition of the polynomials is in terms of states. For a
surface S, define F(S) to be the set of families of non-intersecting nontrivial
simple closed curves on S up to isotopy. Thus if S is a torus, F(S) is in one-
to-one correspondence with the pairs (p, q) of integers. If d = gcd(p, q) then
the family of curves corresponding to (p, q) consists of d non-intersecting
(p

d , q
d) torus knots. For each element of F(S) there will be a polynomial.

A state s of a knot (or link) K is a splitting of the knot at each crossing;
such a state consists of non-intersecting curves. We make several definitions:

N (s) = {nontrivial curves of s} ∈ F
a(s) = number of A-splittings
b(s) = number of B-splittings
t(s) = number of trivial components of s
|s| = number of components of s
p(s)= number of components of s which bound a disk or disk with holes

on S, whose other boundaries lie in ∂S. (The distinction between different
types of curves will be useful in the application of polynomials to knots on
general surfaces.)

For each F ∈ F , let

QF (K) =
∑

s∈{s|N (s)=F}

Aa(s)−b(s)(−A2 −A−2)t(s)−1.

By redefining this recursively, we see (as discussed above) that all QF ’s are
invariant under Reidemeister moves of Types II and III, and that all are
multiplied by the same power of A when a Type I move is applied.

The QF ’s are the most general invariant polynomials of this type. How-
ever, for our purposes we specialize slightly. |s| − t(s) is the number of
nontrivial curves in s; that is, it is the number of curves in F = N (s).
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Therefore, when we multiply QF by (−A2 − A−2)|F | we obtain the polyno-
mial

PF (K) =
∑

s∈{s|N (s)=F}

Aa(s)−b(s)(−A2 −A−2)|s|−1.(6)

This set of polynomials is invariant under Type II and III Reidemesiter
moves, and all are multiplied by the same factor when a Type I Reidemeister
move is applied.

We now apply these polynomials to prove the following modification of
our theorem, to which the original theorem reduces:

Theorem 3.1. Let S be an orientable surface possibly with boundary. Let
K and K ′ be equivalent knots in S × I, with projections π(K) and π(K ′)
such that:

1. π(K) is alternating, reduced, and has c crossings.
2. The complement of π(K ′) consists of disks, possibly with holes. Only

one boundary component of each disk with holes is on π(K ′). The
other components are boundary components of S × {1

2}.
Then c(π(K)) ≤ c(π(K ′)).

The proof closely parallels Kauffman’s proof of the original Tait conjecture
[6]. Let us begin with a lemma on the result of splitting the projection π(K ′)
in the A and B directions simultaneously. This is analogous to Kauffman’s
Lemma 2.11. Our proof is different, however. It does not use induction.

Lemma 3.2. Let K ′ be a knot in a projection π(K ′) (or a link with a con-
nected diagram). Let s′A be the all-A split and s′B be the all-B split (see
Figure 12). Then p(s′A) + p(s′B) ≤ R′, where R′ is the number of regions in
π(K ′)c.

Proof. Consider two vector spaces of formal sums (modulo 2) of the edges
and regions of the graph formed by π(K ′) in S × {1

2}.

C1 = vector space over Z2 generated by the edges of the projection π(K ′).
C2 = vector space over Z2 generated by the regions of π(K ′).

We define a linear mapping δ : C2 → C1 as follows. Define δ(r) to be the
formal sum of the edges of r, for an r which consists of a single region of
π(K ′)c. Then, define δ(r) on the full space C2 by extending linearly.

Note that the curves of s′A and of s′B can be thought of as elements of
C1. Indeed, each curve may be associated to the formal sum of edges along
which the curve passes. A curve will form the boundary of a piece of surface
precisely when the corresponding element of C1 lies in δ(C2).
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Figure 12. The knot K together with the A and B curves,
s′A and s′B.

In particular, the curves of s′A and s′B which bound punctured disks on
the surface span a vector subspace V of C1 which is entirely contained in
δ(C2). We conclude

dim V ≤ dim δ(C2).(7)

Note that:

dim δ(C2) = R′ − 1(8)

since the kernel of δ is 1-dimensional (it includes only the sum of no regions
and the sum of all regions).

We now find a lower bound to the dimension of V. Consider a relation
between the curves spanning V, that is consider a family of curves from s′A
and s′B which bound punctured disks on the surface and which, as elements
of C1, sum to zero. Since summation is modulo 2, each edge of the projection
is passed over an even number of times by curves of the family. But then
either all of the curves or none of the curves at each vertex must belong to
the family, since otherwise one of the edges at the vertex would have only
one curve from the family along it.

But if all the curves at some vertex belong to the family then, since
these curves also pass through the neighboring vertices, all the curves at
the neighboring vertices must belong to the family as well. Repeating this
argument, since π(K ′) is connected, either all of the curves or none of the
curves from s′A and s′B must belong to the family. This shows that there is
only one nontrivial relation between the curves of s′A and s′B, and so there
is certainly no more than one relationship between the curves generating V,
which are restricted to those bounding disks with holes. Thus

dim V ≥ p(s′A) + p(s′B)− 1.(9)
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This, with Equations (7) and (8) shows that p(s′A) + p(s′B) ≤ R′. �

We now give the proof of Theorem 3.1.

Proof. We must first define a notion of span, as in Kauffman’s proof. This
notion, however, is more technical, and depends on our projections. It is
constructed particularly for this proof.

We use the projection of K to fix two polynomials. Let sA be the all-
A split of π(K) and sB be the all-B split of π(K). Let FA = N (sA) and
FB = N (sB). We now focus on the fixed polynomials PFA

and PFB
.

Let max(P ) be the highest degree of any term of P and min(P ) the lowest.
Notice that max PFA

(K)−minPFB
(K) = maxPFA

(K ′)−minPFB
(K ′), since

we are considering the same pair of polynomials in either case. Let c =
c(π(K)) and c′ = c(π(K ′)).

We prove the following two inequalities:

max PFA
(K)−minPFB

(K) ≥ 4c− 4g + 2N ;(i)

max PFA
(K ′)−minPFB

(K ′) ≤ 4c′ − 4g + 2N.(ii)

Here g is the genus of S, and N is the number of curves in FA and FB which
do not bound disks with holes. Note that once these inequaltities have been
proved, they together imply c ≤ c′, which will finish the proof.

Proof of (i). The proof of Statement (i) is in two parts. First we show that
max PFA

(K) is the degree of a term from the all-A split, and similarly for
B, and then we calculate these degrees.

The highest degree contributed by a certain state is a(s)−b(s)+2(|s|−1)
(provided N (s) = FA). Let us start with the state sA and change to the
state s by switching one A-crossing at a time to a B-crossing. We must
show that all states which do contribute to PFA

contribute a strictly lower
exponent than sA.

Every time an A-split is switched to a B-split, a(s)−b(s) decreases by two.
|s| cannot increase by more than 1, and so the exponent a(s)−b(s)+2(|s|−1)
cannot increase. Now, suppose that s contributes a term which cancels with
the term from sA. Then the term from s must have the same degree and
belong to the same polynomial as the term contributed by sA. Thus |s| must
increase by one each time, and N (s) must equal N (sA). The possibilities
when the split of a given crossing is switched may be enumerated as follows,
since some curve must split into two at each stage.

1) A trivial curve splits into two trivial curves.
2) A trivial curve splits into two nontrivial curves.
3) A nontrivial curve splits into two nontrivial curves.
4) A nontrivial curve splits into a nontrivial curve and a trivial curve.
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Figure 13. A knot in which a trivial curve splits off when
an A-split is changed to a B-split. The dark curve, bounding
the gray region of the knot, is the original A-curve. The
light curve parallel to the curve which splits off contradicts
the definition of a reduced knot.

Neither (1) nor (4) can occur at the first stage since K is reduced (see
Figure 13). If (2) or (3) occurs at the first stage the number of nontrivial
curves increases and none of (1)–(4) occuring at a later stage can reduce this
number to its original value, so it is impossible for N (s) to equal N (sA). So
it is impossible for a cancellation to occur after all.

Thus a(s) − b(s) + 2(|s| − 1) for s = sA is strictly the maximum expo-
nent appearing in PFA

. The smallest exponent appearing in PFB
is found

similarly. Therefore,

max PFA
(K)−min PFB

(K) = c + 2(|sA| − 1)− (−c− 2(|sB| − 1))

= 2c + 2(|sA|+ |sB|)− 4.

By the definition of N, this can be written as

max PFA
(K)−min PFB

(K) = 2c + 2N + 2(p(sA) + p(sB))− 4.(10)

If we let N1 be the number of disk with holes components of π(K)c which
have only one boundary component formed by the knot, then we may follow
Kauffman, noting that since the knot is alternating, the boundaries of such
regions become curves of sA and sB. By the definition of p we therefore
obtain

N1 ≤ p(sA) + p(sB).(11)

Now we use the Euler characteristic to relate N1 to the crossing number of
π(K).

Let W = number of components of ∂S.
W (r) = number of boundary components of a region r of π(K)c, which

are not formed by π(K).
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g(r) = the genus of region r and let χ be the Euler characteristic. Euler’s
formula generalized to the case where the regions are not necessarily disks
gives

− c +
∑

r

χ(r) = χ(S).(12)

Also, χ(S) = 2− 2g −W and
∑

r W (r) = W , so

− c +
∑

r

(χ(r) + W (r)) = 2− 2g.(13)

Now χ(r)+W (r) ≤ 0 unless r has only one boundary formed by the knot
and has genus zero. There are N1 such regions and for each, χ(r)+W (r) = 1,
so by Equation (13)

−c + N1 ≥ 2− 2g.(14)

Combining this last equation with Equation (11) we see that

p(sA) + p(sB) ≥ c + 2− 2g.(15)

From Equation (10) we now see that,

max(PFA
(K))−min(PFB

(K)) ≥ 4c + 2N − 4g.(16)

Proof of (ii). We now continue with the proof of Statement (ii), which
concerns the non-alternating version of the knot, K ′.

By lemma (3.2), p(s′A)+p(s′B) ≤ R′. Now it follows by induction that for
an arbitrary pair of states s′1, s

′
2,

p(s′1) + p(s′2) ≤ R′ + b1 + a2.(17)

In fact, this follows by switching A-splits to B-splits as in (i) to turn s′A into
s′1 and s′b into s′2. (For the argument, notice that if a curve does not bound
a disk with holes, then it cannot split into curves which do bound disks with
holes.)

Now apply this inequality to a pair of states s′1 and s′2 which are assumed
to contribute to PFA

(K ′) and to PFB
(K ′), respectively. The difference be-

tween the exponents they contribute is:

a1 − a2 + b2 − b1 + 2(|s′1|+ |s′2|)− 4

= a1 − a2 + b2 − b1 + 2(p(s′1) + p(s′2))− 4 + 2(|s′1|+ |s′2| − p(s1)− p(s′2))

= a1 − a2 + b2 − b1 + 2(p(s′1) + p(s′2))− 4 + 2N

= 2c′ − 2a2 − 2b1 + 2p(s′1) + 2p(s′2)− 4 + 2N

≤ 2c′ + 2R′ − 4 + 2N.

The second equality follows since the nontrivial curves in s′1 and s′2 are just
the curves Fa and Fb, and N of these curves do not bound punctured disks.
The inequality follows from Equation (17).
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By Euler’s formula, and the assumption that all regions of K ′ are genus
zero, R′ = c′ + 2 − 2g, so the difference between an exponent of PFA

(K ′)
and one of PFB

(K ′) is at most 4c′ + 2N − 2g, proving (ii).

The inequalities (i) and (ii) together imply Theorem 3.1, since the quan-
tities on the left side of the inequalities are the same by the invariance
properties of the polynomials. �

We now restate Theorem 1.1:

Theorem 1.1. Let S be a compact surface. Let π(K) be a reduced
alternating projection of an alternating knot in S × I and let π(K ′) be an
arbitrary projection (of the same knot). Then

c(π(K)) ≤ c(π(K ′)).(18)

Proof. On account of Claim 2.2, Theorem 3.1 which we have just proved
implies this more general theorem in the orientable case. The nonorientable
case follows immediately by taking double covers. �

4. Conclusion.

The statement of Theorem 1.1 can be strengthened. It is unnecessary to
restrict the theorem to knots. Indeed, the proof works equally well for non-
splittable links, and with a few modifications it extends to links in general.

The other possible extensions of Theorem 1.1 are more difficult. We have
shown that if π(K) is a reduced alternating projection of a knot in S × I,
and π(K ′) is any other projection of that knot, then

c(π(K)) ≤ c(π(K ′)).(19)

It remains to be shown that

c(π(K)) < c(π(K ′)),(20)

if π(K) is non-alternating, and the knot is prime (Murasagi and Thistleth-
waite established this strict inequality in S3, [10], [11]).

Also, Tait conjectured that any two reduced alternating projections of the
same knot can be converted to one another through a series of special moves
called flypes. This statement was proved for knots in S3 by Thistlethwaite
and Menasco [9]. A natural extension of Theorem 1.1 would be to prove the
flyping conjecture for knots in S × I.

It is natural to ask questions about knots in more complicated spaces
which contain subspaces of the form S × I.

One possibility is to investigate the Tait conjecture for knots in (solid)
handlebodies, where we project knots onto the boundary. If our definition of
reduced is used, then the case in Figure 14 is possible. The knot projection
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Figure 14. A counterexample in the solid torus.

on the left is reduced and alternating, but the number of crossings can be
lowered by pulling a crossing through the center of the solid torus, and then
using a Type II Reidemeister move. The resulting knot with fewer crossings
is shown on the right.

Thus, the conjecture doesn’t hold with our notion of reduced. However,
it may hold if we use Kamada’s notion of reduced-properly reduced.

Alternatively, one could ask whether the Tait conjecture holds for knots
lying on an incompressible surface S in a 3-manifold M. We conjecture that
if two projections of a knot are equivalent in the 3-manifold, then they are
equivalent up to a homeomorphism of S × I. If true, this would reduce the
problem to the result proved here.
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