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Abstract. We prove a Kauffman-Murasugi-Thistlethwaite theorem for alternating
links in thickened surfaces. It states that any reduced alternating diagram of a link
in a thickened surface has minimal crossing number, and any two reduced alternating
diagrams of the same link have the same writhe. This result is proved more generally
for link diagrams that are adequate, and the proof involves a two-variable generaliza-
tion of the Jones polynomial for surface links defined by Krushkal. The main result is
used to establish the first and second Tait conjectures for links in thickened surfaces
and for virtual links.

Introduction

A link diagram is called alternating if the crossings alternate between over and under
crossing as one travels around any component; any link admitting such a diagram is
called alternating. In his early work of tabulating knots [Tai98], Tait formulated several
far-reaching conjectures which, when resolved 100 years later, effectively solved the
classification problem for alternating knots and links. Recall that a link diagram is
said to be reduced if it does not contain any nugatory crossings. Tait’s first conjecture
states that any reduced alternating diagram of a link has minimal crossing number.
His second states that any two such diagrams representing the same link have the same
writhe. His third conjecture, also known as the Tait flyping conjecture, asserts that
any two reduced alternating diagrams for the same link are related by a sequence of
flype moves (see Figure 20).

Tait’s first and second conjectures were settled through results of Kauffman, Mura-
sugi, and Thistlethwaite, who each gave an independent proof using the newly dis-
covered Jones polynomial [Kau87, Mur87, Thi87]. The Tait flyping conjecture was
subsequently solved by Menasco and Thistlethwaite [MT93], and taken together, the
three Tait conjectures provide an algorithm for classifying alternating knots and links.
A striking corollary is that the crossing number is additive under connected sum for al-
ternating links. It remains a difficult open problem to prove this in general for arbitrary
links in S3.

Virtual knots were introduced by Kauffman in [Kau99], and they represent a natural
generalization of classical knot theory to knots in thickened surfaces. Classical knots
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and links embed faithfully into virtual knot theory [GPV00], and many invariants from
classical knot theory extend in a natural way. For instance, the Jones polynomial was
extended to virtual links by Kauffman [Kau99], who noted the abundant supply of
virtual knots with trivial Jones polynomial. (For classical knots, it is an open problem
whether there is a nontrivial knot with trivial Jones polynomial.) Indeed, there exist
alternating virtual knots K with trivial Jones polynomial (and even trivial Khovanov
homology [Kar18]). Consequently, the Jones polynomial is not sufficiently strong to
prove the analogue of the Kauffman-Murasugi-Thistlethwaite theorem for virtual links
(see also [Kam04] and [Dye17]).

The main result in this paper is a proof of the Kauffman-Murasugi-Thistlethwaite
theorem for reduced alternating links in thickened surfaces. This result can be para-
phrased as follows (see Theorem 4.1 and Corollary 4.5):

Theorem. If L is a non-split alternating link in a thickened surface Σ × I, then any
connected reduced alternating diagram for L has minimal crossing number. Further,
any two reduced alternating diagrams of L have the same writhe.

The theorem is established using a two-variable generalization of the Jones polyno-
mial for links in thickened surfaces defined by Krushkal [Kru11]. The Jones-Krushkal
polynomial is a homological refinement of the usual Jones polynomial in that it records
the homological ranks of the states under restriction to the background surface. It is de-
rived from Krushkal’s extension of the Tutte polynomial to graphs in surfaces [Kru11].
The main result is proved more generally for diagrams that are adequate in a certain
sense (see Definition 2.5), and we show that every reduced alternating diagram of a
link in a thickened surface is adequate (Proposition 2.8). Further, if L is a virtual link
and D is an alternating diagram for L, then we show that L is split if and only if D is a
split diagram (Corollary 1.12). In addition, we prove the dual state lemma for links in
thickened surfaces (Lemma 2.10). In the last section, Corollary 4.5 is applied to prove
the Tait conjectures for virtual knots and links (see Theorem 5.2 and 5.3).

In [AFLT02]), Adams et al. use geometric methods to prove minimality of reduced
alternating diagrams of knots in thickened surfaces. In this paper, we generalize the
results in [AFLT02] to links in thickened surfaces admitting adequate diagrams. The
proof relies on an analysis of the homological Kauffman bracket and Jones-Krushkal
polynomial. These invariants are closely related to the surface bracket polynomial
studied in [DK05] and [Man03]. However, they exhibit different behavior in that they
are not invariant under stabilization and destabilization. In [Kru11], Krushkal shows
that the Jones-Krushkal polynomial admits an interpretation in terms of the general-
ized Tutte polynomial of the associated Tait graph. This result is a generalization of
Thistlethwaite’s theorem [Thi87]. In a similar vein, Chmutov and Voltz show how to
relate the Jones polynomial of a checkerboard colorable virtual link with the Bollabás-
Riordan polynomial of its Tait graph in [CV08] (see also [CP07]).

We close this introduction with a brief synopsis of the contents of the rest of this
paper. In Section 1, we review background material on links in thickened surfaces and
virtual links. One result characterizes checkerboard colorable virtual links (Proposi-
tion 1.7), and another characterizes alternating virtual links that are split (Corollary
1.12). In Section 2, we recall the definition of the homological Kauffman bracket
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〈 · 〉Σ and show that it is invariant under regular isotopy. We prove that every re-
duced alternating link diagram is adequate (Proposition 2.8) and establish the dual
state lemma (Lemma 2.10). In Section 3, we introduce the Jones-Krushkal polynomial
J̃(t, z) ∈ Z[t1/2, t−1/2, z] and show that it is an invariant of links in thickened surfaces
up to isotopy and diffeomorphism. For checkerboard colorable links, we introduce the
reduced Jones-Krushkal polynomial J(t, z) and give many sample calculations of J̃(t, z)
and J(t, z). We prove that the Jones-Krushkal polynomial of L is closely related to
that of its mirror images L∗ and L† (Proposition 3.12).

Section 4 contains the proof of the main result, which is the Kauffman-Murasugi-
Thistlethwaite theorem for reduced alternating link diagrams on surfaces (Corollary
4.5). In Section 5, we apply the main result to deduce the first and second Tait
conjectures for virtual links (Theorem 5.3). Table 1 lists the reduced and unreduced
Jones-Krushkal polynomials for all virtual knots with 3 crossings and all checkerboard
colorable virtual knots with 4 crossings.

Notation. Unless otherwise specified, all homology groups are taken with Z/2 coef-
ficients. Decimal numbers such as 3.5 and 4.98 refer to the virtual knots in Green’s
tabulation [Gre04].

1. Virtual links and links in thickened surfaces

In this section, we review the basic properties of virtual links and links in thickened
surfaces.

1.1. Virtual link diagrams. A virtual link diagram is an immersion of m ≥ 1 circles
in the plane with only double points, such that each double point is either classical
(indicated by over- and under-crossings) or virtual (indicated by a circle around the
double point). Two virtual link diagrams are said to be equivalent if they can be related
by planar isotopies, Reidemeister moves, and the detour move shown in Figure 1. An
oriented virtual link L includes a choice of orientation for each component of L, which
is indicated by placing arrows on the components as in Figure 2.

Figure 1. The detour move.

Given a virtual link diagram D, the crossing number is denoted c(D) and is defined
to be the number of classical crossings of D. The crossing number of a virtual link L is
the minimum crossing number c(D) taken over all virtual link diagrams D representing
L.
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Figure 2. The virtual trefoil, Hopf link, and Borromean rings.

Given an oriented virtual link, each classical crossing is either positive or negative,
see Figure 3. The writhe of the crossing is ±1 according to whether the crossing is
positive or negative. The writhe of the diagram is the sum of the writhes of all its
crossings.

Definition 1.1. For a virtual link diagramD, the writhe ofD, denoted w(D) is defined
as n+(D)− n−(D), where n+(D) and n−(D) are the number of positive and negative
crossings in D, respectively.

ε(c) = +1

c

ε(c) = −1

c

Figure 3. A positive and a negative crossing.

1.2. Links in thickened surfaces. Virtual links can also be defined as equivalence
classes of links in thickened surfaces. Let I = [0, 1] denote the unit interval and Σ be
a compact, connected, oriented surface. A link in the thickened surface Σ × I is an
embedding L :

⊔m
i=1 S

1 ↪→ Σ × I, considered up to isotopy and orientation preserving
homeomorphisms of the pair (Σ× I,Σ× {0}).

A surface link diagram on Σ is a tetravalent graph in Σ whose vertices indicate over
and under crossings in the usual way. Two surface link diagrams represent isotopic
links if and only if they are equivalent by local Reidemeister moves. The writhe of
a link diagram on a surface is defined in the same way as it is for virtual links (cf.
Definition 1.1).

Two link diagrams on Σ are said to be regularly isotopic if one can be obtained from
the other by a sequence of moves that involve Reidemeister 2 and 3 moves and the
writhe-preserving move in Figure 4. Notice that the writhe is invariant under regular
isotopy of links in Σ× I.

Let p : Σ× I → Σ be projection onto the first factor. The image p(L) ⊂ Σ is called
the projection of the link. Using an isotopy, we can arrange that the projection is a
regular immersion with finitely many double points.

Two links L0 ⊂ Σ0 × I and L1 ⊂ Σ1 × I are said to be stably equivalent if one is ob-
tained from the other by a finite sequence of isotopies, diffeomorphisms, stabilizations,
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Figure 4. Regular isotopy includes the above move together with Rei-
demeister 2 and 3 moves.

and destabilizations. Stabilization is the operation of adding a handle to Σ to obtain a
new surface Σ′, and destabilization is the opposite procedure. Specifically, if D0 and D1

are two disjoint disks in Σ which are both disjoint from the image of L under projection
Σ×I → Σ, then Σ′ is the surface with genus(Σ′) = genus(Σ)+1 obtained by attaching
an annulus A = S1 × I to Σ r (D0 ∪ D1) so that ∂A = ∂D0 ∪ ∂D1. This operation
is referred to as stabilization, and the opposite procedure is called destabilization. It
involves cutting along a vertical annulus in Σ× I disjoint from the link and attaching
two 2-disks.

In [CKS02], Carter, Kamada, and Saito give a one-to-one correspondence between
virtual links and stable equivalence classes of links in thickened surfaces. The next
result is Kuperberg’s theorem [Kup03].

Theorem 1.2. Every stable equivalence class of links in thickened surfaces has a unique
irreducible representative.

Given a virtual link L, its virtual genus gv(L) is defined to be the genus of the surface
of its unique irreducible representative. A virtual link L is said to be classical if it has
virtual genus gv(L) = 0. This is the case if and only if it can be represented by a
virtual link diagram with no virtual crossings. For instance, the three virtual links in
Figure 2 all have virtual genus equal to one and so are non-classical (see Figures 13, 8,
and 14).

There is a construction, due to Kamada and Kamada [KK00], which associates
to any virtual link diagram D a ribbon graph on an oriented surface. The graph
is a tetravalent graph representing the projection of D, and the surface MD has a
handlebody decomposition with 0-handles being disk neighborhoods of each of the real
crossings of D, and 1-handles for each of the arcs of D from one crossing to the next.
If D has n crossings, then MD has n 0-handles and 2n 1-handles. Let ΣD denote the
closed oriented surface obtained by attaching disks to all the boundary components of
MD. A diagram D for a virtual link L is said to be a minimal genus diagram if the
genus of ΣD is equal to the virtual genus of L.

Notice that under this construction, the link diagram is cellularly embedded in ΣD,
namely the complement of its projection is a union of disks. By Theorem 1.2, this will
be true for any minimal genus diagram of a virtual link L.

1.3. Alternating virtual links. A virtual link diagram D is said to be alternating
if, when traveling along the components, the classical crossings alternate from over to
under when one disregards the virtual crossings. A virtual link L is alternating if it
can be represented by an alternating virtual link diagram.

In a similar way, a surface link diagram D on Σ is said to be alternating if the
crossings alternate from over to under around any component of D. It follows that a
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virtual link is alternating if and only if it can be represented by an alternating surface
link diagram.

Definition 1.3. Let D be a surface link diagram on Σ. A crossing c in D is called
nugatory if we can find a simple closed curve in Σ which separates Σ and intersects D
only in the double point c.

Remark 1.4. For classical link diagrams, nugatory crossings can always be removed
by rotating one side of the diagram 180◦ relative to the other. In contrast, for link
diagrams on surfaces, nugatory crossings are not in general removable.

Figure 5. A nugatory crossing.

Definition 1.5. A surface link diagram D on Σ is called reduced if it is cellularly
embedded and has no nugatory crossings.

Remark 1.6. Note that, by the Kamada-Kamada construction, any virtual link can be
realized by a cellularly embedded diagram on a surface. Thus, the first condition of
Definition 1.5 can always be arranged for virtual links.

1.4. Checkerboard colorable links. A surface link diagram D on Σ is said to be
checkerboard colorable if the components of Σ rD can be colored by two colors such
that any two components of ΣrD that share an edge have opposite colors. A link in a
thickened surface is checkerboard colorable if it can be represented by a checkerboard
colorable surface link diagram. Likewise, a virtual link is checkerboard colorable if it
admits a checkerboard colorable representative.

In [Kam02], Kamada showed that every alternating virtual link is checkerboard
colorable. In fact, in [Kam02, Lemma 7] she showed that a virtual link diagram is
checkerboard colorable if and only if it can be transformed into an alternating diagram
under crossing changes.

There are, however, subtle differences between the categories of virtual links and
links in thickened surfaces. For instance, Figure 6 presents an alternating knot diagram
on the torus which is not checkerboard colorable, hence Kamada’s result is not true
for surface links. The failure stems from the fact that this diagram is not cellularly
embedded. In particular, the diagram in Figure 6 is not minimal genus, and any
vertical arc disjoint from the knot gives a destabilizing curve. Destabilization along
this curve shows that this knot is stably equivalent to the classical trefoil, which of
course is checkerboard colorable.
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Figure 6. An alternating knot diagram on the torus which is not
checkerboard colorable.

Several authors have used slightly different names for the notion of checkerboard col-
orability. For instance, in [KNS02], checkerboard colorable links are called normal, and
in [Rus18], checkerboard colorable diagrams called even. In [BGH+17], checkerboard
colorable links are called mod 2 almost classical links.

Suppose D is a surface link diagram on Σ which is cellularly embedded and checker-
board colorable, and fix a checkerboard coloring of the complementary regions of D in
Σ. The black regions determine a spanning surface for L which is the union of disks
and bands, with one disk for each black region and one half-twisted band for each
crossing.

The result is an unoriented surface F embedded in Σ × I with boundary ∂F = L.
Associated to this surface is its Tait graph Γ, which is a graph embedded in Σ with one
vertex for each black region and one edge for each crossing. There is an edge between
two vertices for each crossing connecting the corresponding regions. In particular, if a
black region has a self-abutting crossing, then its Tait graph Γ will contain a loop.

The dual spanning surface for L can be constructed by starting with the white regions
and adding half-twisted bands for each crossing. Its Tait graph is defined similarly.
The black and white Tait graphs are dual graphs in the surface Σ, and each of the
checkerboard surfaces deformation retracts onto its Tait graph. The next result gives
a useful characterization of checkerboard colorability for links in thickened surfaces.

Proposition 1.7. Given a link L ⊂ Σ × I in a thickened surface, the following are
equivalent:

(i) L is checkerboard colorable.
(ii) L is the boundary of an unoriented spanning surface F ⊂ Σ× I.
(iii) [L] = 0 in the homology group H1(Σ× I;Z/2).

Proof. If L is checkerboard colorable, then an unoriented spanning surface is obtained
by attaching one half-twisted band between two black regions for each crossing of L.
This shows that (i)⇒(ii), and to see the reverse implication, suppose F is a spanning
surface for L, realized as a union of disks and bands in Σ × I. Perform an isotopy to
shrink the disks so their images under projection p : Σ × I → Σ are disjoint from one
another and from each band. Thus, the projection, restricted to F , is an embedding
except for band crossings. At each band crossing, we can attach a 1-handle so that the
new surface is the black surface for a checkerboard coloring of the resulting diagram of
L. Thus (ii)⇒(i).
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The step (ii)⇒(iii) is obvious, and the reverse implication follows from a standard
argument which is left to the reader. �

1.5. Split virtual links. In this section, we show that an alternating virtual link L
is split if and only if it is obviously split. In other words, L is split if and only if every
alternating diagram of L is split.

We begin by recalling an invariant of checkerboard colorable links called the link
determinant. Suppose L is a virtual link that is represented by a checkerboard colorable
diagram D with n crossings {c1, . . . , cn} and m arcs {a1, . . . , am}. Each arc aj starts at
a classical undercrossing and goes to the next classical undercrossing, passing through
any intermediate virtual crossings or overcrossings along the way. If D has k connected
components, then m = n+ k − 1.

Define the n×m coloring matrix B(D) so that its ij entry is given by

bij(D) =


2, if aj is the overcrossing arc at ci,
−1, if aj is one of the undercrossing arcs at ci,
0, otherwise.

In case aj is coincidentally the overcrossing arc and an undercrossing arc at ci, then
we set bij(D) = 1.

Note that the matrix B(D) is the one obtained by specializing the Fox Jacobian
matrix A(D) at t = −1. Here, A(D) is defined in terms of taking Fox derivatives
of the Wirtinger presentation of the link group GD whose generators are given by
the arcs a1, . . . , am and relations are given by crossings c1, . . . , cn and applying the
abelianization homomophism GL → 〈t〉 , ai 7→ t. For details, see [BGH+17].

Notice that the entries in each row of B(D) sum to zero, therefore it has rank at
most n− 1. The next result is proved in [BGH+17] .

Proposition 1.8. Any two (n−1)× (n−1) minors of B(D) are equal up to sign. The
absolute value of the minor is independent of the choice of checkerboard colorable dia-
gram D. It defines an invariant of checkerboard colorable links L called the determinant
of L and denoted det(L).

Definition 1.9. A virtual link diagram D is said to be a split diagram if it is discon-
nected, and a virtual link L is split if it can be represented by a split diagram.

Proposition 1.10. Suppose L is a checkerboard colorable virtual link. If L is split,
then det(L) = 0.

Proof. Suppose D = D1 ∪D2 is a split checkerboard colorable diagram for L. In each
row of the coloring matrix, the non-zero elements are either 2,−1,−1 or 1,−1. It
follows the rows add up to zero. We consider a simple closed curve in the plane which
separates D into two parts. It follows that the coloring matrix B = B(D) admits a
2× 2 block decomposition of the form

B =

[
B1 0
0 B2

]
,
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where B1 and B2 are the coloring matrices for D1 and D2, respectively. Since det(B1) =
0 = det(B2), it follows that the matrix obtained by removing a row and column from
B also has determinant zero. �

The next result is the virtual analogue of Bankwitz’s theorem [Ban30]. For a proof,
see [Kar18].

Theorem 1.11 (Theorem 5.16, [Kar18]). Let L be a virtual link which is represented
by a connected alternating diagram D with n ≥ 2 classical crossings. Suppose further
that D has no nugatory crossings. Then det(L) ≥ n.

Corollary 1.12. Suppose a virtual link L admits an alternating diagram D without
nugatory crossings. Then L is a split virtual link if and only if D is a split diagram.

Proof. Clearly, if D is a split diagram, then L is a split link. Suppose then that L
admits an alternating diagram D that is not split and has n = n(D) > 0 crossings. (If
n = 0, then D has one component and is an unknot diagram.) Theorem 1.11 implies
that det(L) ≥ n. Hence det(L) 6= 0, and Proposition 1.10 shows that L is not split. �

2. The homological Kauffman bracket

In this section, we recall the definition of the homological Kauffman bracket from
[Kru11]. It is defined for link diagrams in thickened surfaces and is an invariant of
regular isotopy of unoriented links. We introduce a notion of adequacy for link diagrams
on surfaces and use the homological bracket to prove that adequate link diagrams have
minimal crossing number.

2.1. States and their homological rank. Let L be a link in Σ× I with surface link
diagram D on Σ. Suppose further that D has n crossings. For each crossing ci of D,
there are two ways to resolve it. One is called the A-smoothing and the other is the
B-smoothing, according to Figure 7.

c A-smoothing B-smoothing

Figure 7. The A- and B-smoothing of a crossing.

A state is a collection of simple closed curves on Σ which results from smoothing each
of the crossings of D. Thus, a state S is just a link diagram on Σ with no crossings.
Since there are two ways to smooth each crossing, there are 2n states. We will use
S = S(D) to denote the space of all states of D. Ordering the crossings {c1, . . . , cn}
of D in an arbitrary way, we can identify each state with a binary word ε1ε2 · · · εn of
length n, where εi = 0 indicates an A-smoothing and εi = 1 a B-smoothing at the
crossing ci.
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Given a state S ∈ S, let a(S) be the number of A-smoothings and b(S) the number
of B-smoothings, and let |S| be the number of cycles in S. Define

k(S) = dim (kernel (i∗ : H1(S) −→ H1(Σ))) ,

r(S) = dim (image (i∗ : H1(S) −→ H1(Σ))) ,

where i : S → Σ is the inclusion map. We call r(S) the homological rank of the state
S, and we note that k(S) + r(S) = b1(S) = |S|.

Since Σ is a compact, closed, oriented surface, the intersection pairing on H1(Σ) is
symplectic. A given collection of disjoint simple closed curves on Σ must therefore map
into an isotropic subspace of H1(Σ). It follows that the homological rank of any state
S satisfies 0 ≤ r(S) ≤ g, where g is the genus of Σ.

The homological Kauffman bracket is denoted 〈 · 〉Σ and defined by setting

(1) 〈D〉Σ =
∑
S∈S

A(a(S)−b(S))(−A−2 − A2)k(S)zr(S).

Here, z is a formal variable which keeps track of the homological rank of S. Upon
setting z = −A−2 − A2 and dividing one factor of −A−2 − A2, one recovers the usual
Kauffman bracket.

The following lemmas study the effect of the various diagrammatic moves on the
homological Kauffman bracket. These will be applied to show that it is invariant
under regular isotopy of links in surfaces. The first is an immediate consequence of
Equation (1), and the proof is left to the reader.

In the first lemma, denotes a simple closed curve on Σ.

Lemma 2.1. The homological Kauffman bracket satisfies the following identities.
(i) If is homologically trivial, then 〈 〉Σ = −A2 − A−2. Otherwise, 〈 〉Σ = z.
(ii) If is homologically trivial, then 〈 t L〉Σ = (−A2 − A−2) 〈L〉Σ .
(iii)

〈 〉
Σ

= A
〈 〉

Σ
+ A−1

〈 〉
Σ
.

Lemma 2.2. If a link diagram on a surface is changed by a Reidemeister type 1 move,
then the homological Kauffman bracket changes as follows:

(2)
〈 〉

Σ

= −A3 〈 〉Σ and
〈 〉

Σ

= −A−3 〈 〉Σ .

Proof. To see the first identity, apply Lemma 2.1 (iii) to the left-hand side of Equation
(2) and simplify using Lemma 2.1 (ii). The first equation follows immediately. The
second identity follows by a similar argument; details are left to the reader. �

Lemma 2.3. If a link diagram on a surface is changed by a Reidemeister type 2 or 3
move, then the homological Kauffman bracket is unchanged, i.e., we have

(i)
〈 〉

Σ
=
〈 〉

Σ
and (ii)

〈 〉
Σ

=
〈 〉

Σ

Proof. To prove (i), apply Lemma 2.1 (iii) twice to the diagram on the left and simplify
using Lemma 2.1 (ii). The identity (i) follows.
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To prove (ii), apply Lemma 2.1 (iii) to the lower crossing in the diagram on the left
and simplify, using the fact that 〈 · 〉Σ is invariant under Reidemeister 2 moves. The
identity (ii) then follows. �

Lemma 2.3 implies that the bracket 〈D〉Σ is an invariant of unoriented links in Σ× I
up to regular isotopy, and in Definition 3.1 we use Lemma 2.2 to define a normalization
which is an invariant of oriented links in Σ× I up to isotopy.

Figure 8. A minimal genus diagram of the virtual trefoil in the torus,
and the states SA and SB.

Example 2.4. The virtual trefoil K (see Figure 2) admits a minimal genus diagram D
on the torus T , which has two crossings. The diagram D is depicted in Figure 8, along
with the state SA of all A smoothings and the state SB of all B-smoothings. Clearly
|SA| = 2, r(SA) = 1 and |SB| = 1, r(SB) = 1. One can further show that the other two
states AB,BA have |S| = 1 and r(S) = 1. Thus, 〈D〉T = A2(−A2−A−2)z+2z+A−2z.

Notice that the cube of resolutions for this knot has single cycle smoothings. These
occur whenever there are two states S, S ′ with |S| = |S ′| which are identical everywhere
except one crossing. For checkerboard colorable diagrams, one can show that |S| =
|S ′| ± 1 whenever S, S ′ are two states that differ only at one crossing (for a proof,
see [Rus18] or [Kar18, Proposition 6.14]). Therefore, the cube of resolutions of a
checkerboard colorable diagram never has any single cycle smoothings.

2.2. Adequate diagrams. Next, we introduce the notions of A-adequate and B-
adequate for link diagrams on a surface. In the following, for a given link diagram
D on a surface, let SA denote the all A-smoothing state and SB the all B-smoothing
state.

We take a moment to review the state-sum formulation for the homological Kauffman
bracket. Given a link diagram D on Σ and a state S ∈ S(D), let

(3) 〈D |S〉Σ = A(a(S)−b(S))(−A−2 − A2)k(S)zr(S).

Then we can write

(4) 〈D〉Σ =
∑
S∈S

〈D |S〉Σ .

Definition 2.5. The diagram D is called A-adequate, if for any state S ′ with exactly
one B-smoothing, we have k(S ′) ≤ k(SA). The diagram D is called B-adequate if,
for any state S ′ with exactly one A-smoothing, we have k(S ′) ≤ k(SB). A diagram is
called adequate if it is both A- and B-adequate.
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Recall that for a classical link, a link diagram D is “plus-adequate” if the all A-
smoothing state SA does not contain any self-abutting cycles, and it is “minus-adequate”
if the same holds for the all B-smoothing state SB [Lic97, Definition 5.2]. Thus, if a
diagram is plus-adequate then it is A-adequate, and if it is minus-adequate then it is
B-adequate.

However, a diagram can be A-adequate without being plus-adequate, and it can
be B-adequate without being minus-adequate. Indeed, our notion of adequacy is less
restrictive because it allows self-abutting cycles in SA provided that k(S ′) ≤ k(SA) for
the new state S ′ obtained by switching the smoothing. In case |S ′| = |SA| + 1, this is
equivalent to the requirement that r(S ′) = r(SA) + 1. There is a similar interpretation
for B-adequacy.

In [Kam04, p.1089], Kamada defines a virtual link diagram to be proper if four
distinct regions of the complement meet at every crossing. Any virtual link diagram
that is proper is automatically adequate according to Definition 2.5, but the converse is
not true in general. Indeed, in Proposition 2.8, we will show that all reduced alternating
link diagrams on surfaces are adequate, whereas most alternating knot diagrams on
surfaces are not proper.

We use dmax and dmin to denote the maximal and minimal degree in the variable A.
For example, dmax(〈D |S〉Σ) = a(S)− b(S) + 2k(S) and dmin(〈D |S〉Σ) = a(S)− b(S)−
2k(S). (Note that the homological variable z is disregarded in degree considerations.)

Lemma 2.6. If D is a surface link diagram on Σ with n crossings, then
(i) dmax(〈D〉Σ) ≤ n+ 2k(SA), with equality if D is A-adequate,
(ii) dmin(〈D〉Σ) ≥ −n− 2k(SB), with equality if D is B-adequate.

Proof. Suppose S is a state forD with an A-smoothing at a given crossing but otherwise
arbitrary, and let S ′ be the state obtained by switching it to a B-smoothing at the
given crossing. Clearly, a(S ′) = a(S)− 1 and b(S ′) = b(S) + 1. Switching the crossing
produces a cobordism from S to S ′, and there are three possibilities: (i) two cycles in
S join to form one cycle in S ′, (ii) one cycle in S splits to form two cycles in S ′, or (iii)
switching from S to S ′ involves a single cycle smoothing (see Figure 9). Notice that
|S ′| = |S| − 1, |S ′| = |S|+ 1, or |S ′| = |S| in cases (i), (ii), or (iii), respectively.

S

S′

S

S′

S

S′

Figure 9. The three types of cobordisms from S to S ′ include a fusion
(left), fission (middle), and single cycle smoothing (right).

Further, in case (i), either r(S ′) = r(S) and k(S ′) = k(S) − 1 or r(S ′) = r(S) − 1
and k(S ′) = k(S); and in case (ii), either r(S ′) = r(S) and k(S ′) = k(S) + 1 or
r(S ′) = r(S) + 1 and k(S ′) = k(S). In case (iii), either r(S ′) = r(S) and k(S ′) = k(S)
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or r(S ′) = r(S) ± 1 and k(S ′) = k(S) ∓ 1. Since a(S ′) − b(S ′) = a(S) − b(S) − 2 and
k(S ′) ≤ k(S) + 1 in all three cases, we conclude that

(5) dmax (〈D |S ′〉Σ) ≤ dmax (〈D |S〉Σ) .

Clearly dmax(〈D |SA〉Σ) = n + 2k(SA) and dmin(〈D |SB〉Σ) = −n − 2k(SB). Since
any state is obtained from SA by switching smoothings at a finite set of crossings,
repeated application of Equation (5) gives that dmax(〈D |S〉Σ) ≤ dmax(〈D |SA〉Σ), and
the inequality (i) follows.

Now suppose that D is A-adequate and S is a state with exactly one B-smoothing.
Then A-adequacy implies that k(S) ≤ k(SA). Since a(S) − b(S) = n − 2, it follows
that

(6) dmax(〈D |S〉Σ) ≤ dmax(〈D |SA〉Σ)− 2.

Any state S ′ with two or more B-smoothings is obtained from a state S with exactly
one B-smoothing by switching the smoothings at the remaining crossings. Therefore,
by Equations (5) and (6), we find that

dmax(〈D |S ′〉Σ) ≤ dmax(〈D |S〉Σ) ≤ dmax(〈D |SA〉Σ)− 2.

Thus dmax(〈D〉Σ) = n+ 2k(SA), and this completes the proof of (i).
Statement (ii) follows by a similar argument. Alternatively, one can deduce (ii)

directly from (i) using the observation that a diagram is A-adequate if and only if its
mirror image is B-adequate. �

Define the span of the homological Kauffman bracket by setting

span(〈D〉Σ) = dmax(〈D〉Σ)− dmin(〈D〉Σ).

By Lemma 2.3, the homological Kauffman bracket is invariant under the second and
third Reidemeister moves. Lemma 2.2 implies that span(〈D〉Σ) is also invariant under
the first Reidemeister move. Therefore, it gives an invariant of the underlying link.

Corollary 2.7. If D is a link diagram with n crossings on a surface Σ, then

span(〈D〉Σ) ≤ 2n+ 2k(SA) + 2k(SB),

with equality if D is adequate.

Proposition 2.8. Any reduced alternating diagram D for a link in a thickened surface
Σ× I is adequate.

Proof. Any reduced alternating link diagram on a surface is checkerboard colorable, and
one can choose the coloring so that the white regions are enclosed by the cycles of SA
and the black regions by the cycles of SB. Since each cycle in SA bounds a white region,
it follows that SA is homologically trivial. Thus r(SA) = 0 and k(SA) = b1(SA) = |SA|.
Similarly, since each cycle in SB bounds a black region, SB is also homologically trivial.
Thus r(SB) = 0 and k(SB) = b1(SB) = |SB|.

We will now show that D is A-adequate. Suppose S is a state with exactly one
B-smoothing. Then |S| = |SA| ± 1. (Since D is checkerboard colorable, there are no
single cycle smoothings.) If |S| = |SA| − 1, then r(S) ≤ r(SA) = 0. Hence r(S) = 0
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and k(S) = |S| = |SA| − 1 = k(SA)− 1 as required. Otherwise, if |S| = |SA|+ 1, then
we claim that r(S) = 1 and k(S) = |S| − 1 = |SA| = k(SA).

To prove this claim, consider a self-abutting cycle of SA. This happens only for
crossings of D where a white region meets itself. Such a crossing gives rise to a loop γ in
the associated Tait graph Γ. We view Γ as a graph embedded in Σ. Since D is reduced,
it contains no nugatory crossings, hence the loop γ must be a non-separating curve on
Σ. This implies the loop is homologically nontrivial in Σ, namely [γ] 6= 0 as an element
in H1(Σ). Since each cycle in SA is homologically trivial, the two new cycles formed
by switching the smoothing must both carry the homology class [γ]. In particular,
this shows that r(S) = 1, and it follows that k(S) = |S| − r(S) = |SA| = k(SA). This
completes the proof that D is A-adequate.

The same argument applied to the mirror image of D shows that the diagram D is
B-adequate. �

Theorem 2.9. Suppose L is a link in Σ× I admitting a connected reduced alternating
diagram D on Σ. Then span(〈D〉Σ) = 4n− 4g+ 4, where n is the number of crossings
of D and g is the genus of Σ.

Proof. Since D is a reduced alternating diagram, it is checkerboard colorable. Further,
we can choose the coloring so that the cycles of SA are the boundaries of the white
disks and the cycles of SB are the boundaries of the black disks. Thus |SA| is the
number of white disks and |SB| is the number of black disks. The diagram D gives a
handlebody decomposition of Σ, and using that to compute the Euler characteristic,
we find that χ(Σ) = n− 2n+ |SA|+ |SB|. It follows that |SA|+ |SB| = n+ 2− 2g.

By Proposition 2.8, D is adequate, and Corollary 2.7 applies to show that

span(〈D〉Σ) = 2n+ 2(k(SA) + k(SB)),

= 2n+ 2(|SA|+ |SB|),
= 4n− 4g + 4. �

2.3. The dual state lemma. The next result is the analogue of the dual state lemma
for surface link diagrams. Note that for a given state S, the dual state, denoted S∨, is
given by performing the opposite smoothing at each crossing. For classical links, the
dual state lemma was proved by Kauffman and Murasugi [Kau87,Mur87]. Our proof
is based on the one given by Turaev [Tur87, §2].

Lemma 2.10. Let D be a connected link diagram on a surface Σ with genus g, and
suppose D has n crossings. For any state S with dual state S∨, we have:

(a) |S|+ |S∨| ≤ n+ 2.
(b) k(S) + k(S∨) ≤ n+ 2− 2g provided that D is cellularly embedded.

Proof. Assume the diagram D lies in Σ×{1/2} and that its double points (or crossings)
have been labeled c1, . . . , cn.

Given a state S for D, we construct a compact surface MS with boundary ∂MS =
S ∪ S∨ embedded in Σ× I. The surface is a union of disks and bands, and it has one
disk for each crossing and one band for each edge of D. Specifically, if there is an edge
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of D connecting ci to cj, then there is a band of MS connecting the disk at ci to the
one at cj. Note that we are not excluding loops, which occur if ci = cj.

The disks of MS are assumed to lie in Σ × {1/2} and to be pairwise disjoint. The
bands of MS retract to the corresponding edge of D, but they sometimes include a
half-twist. The bands without twists are assumed to lie in Σ × {1/2}, and the bands
with a half-twist are assumed to lie in a small neighborhood of the associated edge of
D. (The direction of the half-twist is immaterial.) From this description, it is clear
that there is a deformation retract from MS to the diagram D.

ci cj

β

ci cj

β

Figure 10. The band β connecting the disk at ci to the disk at cj. Since
the crossings are opposite (over/under), the band will be untwisted if the
smoothings are the same (AA or BB) and twisted if the smoothings are
opposite (AB or BA).

Let β be a band connecting the disk at ci to the disk at cj, and we discuss now
whether or not β is flat or twisted as in Figure 10. It connects one of outgoing arcs of
ci to one of the incoming arcs of cj. There are four possibilities, according to whether
the outgoing arc from ci is an overcrossing or an undercrossing arc, and whether the
incoming arc to cj is an overcrossing or an undercrossing arc. There are also four
possibilities according to the smoothings the state S specifies at ci and cj, which is
one of {AA,AB,BA,BB}. The band β will be untwisted if the arcs are opposite
(over/under or under/over) and the smoothings are the same (AA or BB), or if arcs
are the same (over/over or under/under) and the smoothings are the opposite (AB or
BA). Otherwise, the band β includes a half-twist (see Figure 10).

This same prescription applies in case β is a loop. In that case, the smoothings at
ci = cj are necessarily the same, thus the band β will be flat if the outgoing arc at ci
connects to the other incoming arc at 90◦, and it will be half-twisted if it connects to
the opposite incoming arc (see Figure 11).

β
β

Figure 11. A flat band and a half-twisted band.
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When the surface MS is defined this way, it follows that ∂MS = S ∪ S∨. Consider
the commutative diagram:

(7) H2(MS, ∂MS) // H1(∂MS) //

i∗
��

H1(MS) //

j∗
��

· · ·

H1(Σ)
= // H1(Σ)

In the above, all homology groups are taken with Z/2 coefficients, and the top row is
the long exact sequence in homology of the pair (MS, ∂MS), and the two vertical maps
are induced by MS

j
↪→ Σ× I p→ Σ and ∂MS

i
↪→ Σ× I p→ Σ.

Since MS is connected and has χ(MS) = n − 2n = −n, it follows that b1(MS) =
b0(MS)− χ(MS) = n+ 1. Further, b2(MS, ∂MS) = 1, thus

|S|+ |S∨| = b1(∂MS) ≤ b1(MS) + b2(MS, ∂MS) = n+ 2,

which proves part (a).
If D is cellularly embedded, then the map H1(D) → H1(Σ) induced by inclusion is

surjective. However, since MS deformation retracts to D, it follows that the map j∗ in
(7) is also surjective. Thus dim(ker j∗) = b1(MS)− 2g = n+ 1− 2g.

By commutativity of (7), this implies that

k(S) + k(S∨) = dim(ker i∗) ≤ dim(ker j∗) + b2(MS, ∂MS) = n+ 2− 2g,

which proves part (b). �

3. The Jones-Krushkal polynomial

In this section, we recall the Jones-Krushkal polynomial, which is a two-variable
Jones-type polynomial associated to oriented links in thickened surfaces and defined in
terms of the homological Kauffman bracket [Kru11]. We show that this polynomial, or
rather its reduction, has a special form when the link L is checkerboard colorable. We
provide many sample calculations, and we prove a result that describes its behavior
under horizontal and vertical mirror symmetry.

3.1. The Jones-Krushkal polynomial.

Definition 3.1. For an oriented link L in a thickened surface Σ × I with link di-
agram D, the (unreduced) Jones-Krushkal polynomial is given by setting J̃L(t, z) =[
(−A)−3w(D) 〈D〉Σ

]
A=t−1/4 . Thus, we have

J̃L(t, z) = (−1)w(D)t3w(D)/4
∑
S∈S

t(b(S)−a(S))/4(−t−1/2 − t1/2)k(S)zr(S).

The usual Jones polynomial is defined similarly:

VL(t) = (−1)w(D)t3w(D)/4
∑
S∈S

t(b(S)−a(S))/4(−t−1/2 − t1/2)|S|−1.

Since |S| = k(S) + r(S), it is clear that one can recover the usual Jones polynomial
from J̃L(t, z) by setting z = −t−1/2 − t1/2 and dividing one (−t−1/2 − t1/2) factor out.
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The factor t3w(D)/4 is chosen so that the right hand side of the above equation is
invariant under all three Reidemeister moves. Lemma 2.2 implies that the polynomial
J̃L(t, z) is invariant under isotopy of links in Σ× I. It is also an invariant of diffeomor-
phism of the pair (Σ×I,Σ×{0}). By Kuperberg’s theorem, we can obtain an invariant
of virtual links by calculating the polynomial on a minimal genus representative.

The next lemma shows that the Jones-Krushkal polynomial is a Laurent polynomial
in t1/2.

Lemma 3.2. If L is an oriented link in Σ× I, then J̃L(t, z) ∈ Z[t1/2, t−1/2, z].

Proof. Equivalently, we claim that, for any surface link diagramD on Σ, the normalized
Kauffman bracket (−A)−3w(D) 〈D〉Σ lies in Z[A2, A−2, z].

Note that the claim, once proved, implies the lemma. Note further that Equation 3
implies that the terms in 〈D |S〉Σ all have the same A-degree modulo 4 for any state
S ∈ S(D). For two states S1, S2 ∈ S(D), we have a(S1) − b(S1) ≡ a(S2) − b(S2)
mod 2. Hence Equation 3 implies that the terms in 〈D |S1〉Σ and in 〈D |S2〉Σ have the
same A-degree modulo 2. Thus, the claim will follow once it has been verified for any
one state S ∈ S(D).

We claim that (−A)−3w(D) 〈D |Sσ〉Σ ∈ Z[A2, A−2, z], where Sσ is the Seifert state.
This is the state with all oriented smoothings (see Figure 12). (For classical links,
Sσ coincides with the one produced by Seifert’s algorithm.) As in Figure 12, Sσ has
A-smoothings at the positive crossings and B-smoothings at the negative crossings.
Thus a(Sσ)− b(Sσ) = w(D).

positive crossing

A-smoothing B-smoothing

negative crossing

Figure 12. Oriented smoothings at positive and negative crossings.

To complete the proof, we apply Equation 3 one more time to see that

(−A)−3w(D) 〈D |Sσ〉Σ = (−A)−3w(D)
(
Aw(D)(−A−2 − A2)k(Sσ)zr(Sσ)

)
,

= (−1)w(D)A−2w(D)(−A−2 − A2)k(Sσ)zr(Sσ) ∈ Z[A2, A−2, z]. �

For a link L ⊂ Σ × I, where Σ has genus g, it follows that 0 ≤ r(S) ≤ g for all
states S ∈ S. Thus, we can write J̃L(t, z) =

∑g
i=0 Φ̃i(t)z

i, where Φ̃i(t) ∈ Z[t−1/2, t1/2]
for i = 0, . . . , g by Lemma 3.2.

Proposition 3.3. If L is a link in Σ × I which is not checkerboard colorable, then
Φ̃0(t) = 0. Thus J̃L(t, z) = zJ ′(t, z), where J ′(t, z) =

∑g
i=1 Φ̃i(t)z

i−1.

If, in addition, L is a link in a thickened torus, then J̃(t, z) = zVL(t) and so is
completely determined by the usual Jones polynomial.

Proof. If L is not checkerboard colorable, then [L] is nontrivial as an element in H1(Σ).
The same is true for any state S, since S is homologous to L. Thus r(S) ≥ 1 for all
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states, which implies that Φ0(t) = 0. If L is a link in the thickened torus, then it
follows that r(S) = 1 for all states, thus J̃(t, z) = zVL(t) as claimed. �

Example 3.4. Let K be the virtual trefoil (see Figures 2 and 8). In Example 2.4, we
showed that its diagram has homological Kauffman bracket 〈D〉T = A2(−A2−A−2)z+
2z + A−2z. Since this diagram has writhe w(D) = −2, it follows that

(8) J̃K(t, z) = z
(
−t−5/2 + t−3/2 + t−1

)
.

Since K is not checkerboard colorable and has virtual genus one, Equation (8) can also
be deduced from Proposition 3.3 and the fact that VK(t) = −t−5/2 + t−3/2 + t−1.

Figure 13. A minimal genus diagram of the virtual Hopf link in the
torus, and the states SA and SB.

Example 3.5. The virtual Hopf link L (see Figure 2) admits a minimal genus diagram
D on the torus T which has one crossing. The diagram D, along with the states SA
and SB, are depicted in Figure 8. It has |SA| = 1 = |SB| and r(SA) = 1 = r(SB), hence
〈D〉T = Az + A−1z. Thus, the Jones-Krushkal polynomial of the virtual Hopf link is
J̃L(t, z) = z

(
−t−1 − t−1/2

)
. Since the virtual Hopf link is not checkerboard colorable

and has virtual genus one, this also follows from Proposition 3.3 and the fact that
VL(t) = −t−1 − t−1/2.

3.2. The reduced Jones-Krushkal polynomial. In this section, we introduce a
reduction of Jones-Krushkal polynomial for checkerboard colorable links in thickened
surfaces.

Suppose L is a link in Σ × I represented by a checkerboard colorable link diagram
D on Σ. Since L is homologically trivial as an element in H1(Σ × I;Z/2), it follows
that k(S) ≥ 1 for each state S.

Definition 3.6. Let L be an oriented, checkerboard colorable link in Σ × I and D a
diagram on Σ representing L. The reduced Jones-Krushkal polynomial is defined by
setting

JL(t, z) = (−1)w(D)t3w(D)/4
∑
S∈S

t(b(S)−a(S))/4(−t−1/2 − t1/2)k(S)−1zr(S).

As before, we can write JL(t, z) =
∑g

i=0 Φi(t)z
i.

Remark 3.7. The reduced Jones-Krushkal polynomial JL(t, z) specializes to the usual
Jones polynomial VL(t) under setting z = −t−1/2 − t1/2.

In particular, if L is a classical link, then any classical link diagram for L will have
r(S) = 0 for all states. Thus JL(t, z) = VL(t) when L is classical.
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For classical links, Jones proved that VL(t) ∈ t(m−1)/2Z[t, t−1], wherem is the number
of components in L [Jon85, Theorem 2]. This result was extended to checkerboard
colorable virtual links by Kamada, Nakabo, and Satoh [KNS02, Proposition 8]. The
next result gives the analogous statement for the reduced Jones-Krushkal polynomial.

Proposition 3.8. Let L be a checkerboard colorable link in Σ× I with m components,
and let JL(t, z) =

∑g
i=0 Φi(t)z

i. Then Φi(t) ∈ t(m+i+1)/2 Z[t, t−1].

Proof. Let D be a checkerboard colorable diagram for L. Lemma 3.2 implies that
Φi(t) ∈ Z[t1/2, t−1/2]. For any state S ∈ S(D), define ϕS(t) ∈ Z[t1/2, t−1/2] by setting

(9) ϕS(t)zr(S) = (−1)−3w(D)t3w(D)/4t(b(S)−a(S))/4(−t−1/2 − t1/2)k(S)−1zr(S).

If S ′ ∈ S(D) is any other state, then we claim that

(10) b(S)− a(S) + 2|S| ≡ b(S ′)− a(S ′) + 2|S ′| (mod 4).

Since any state can be obtained from any other by switching the smoothings at finitely
many crossings, it is sufficient to prove (10) when S ′ is obtained from S by switching just
one smoothing. In that case, we have a(S)− b(S) = a(S ′)− b(S ′)±2 and |S| = |S ′|±1
by checkerboard colorability, and (10) follows.

From (9), it is clear that ϕS(t) ∈ t(3w(D)+b(S)−a(S)+2k(S)−2)/4 Z[t, t−1].
Let Sσ be the Seifert state with all oriented smoothings (see Figure 12). Recall that

b(Sσ)− a(Sσ) = −w(D).
We claim that

(11) m ≡ |Sσ|+ n (mod 2).

Each time we perform an oriented smoothing, the number of components changes by
one. Thus the claim now follows easily by induction on n.

For any state S, Equation (10) implies that

(12) b(S)− a(S) + 2|S| = b(Sσ)− a(Sσ) + 2|Sσ|+ 4`

for ` ∈ Z. By Equation (12) and the fact that |S| = k(S) + r(S), we get that

(3w(D) + b(S)− a(S) + 2k(S)− 2)/2 = (3w(D) + b(S)− a(S) + 2|S| − 2r(S)− 2)/2,

= (2w(D) + 2|Sσ|+ 4`− 2r(S)− 2)/2,

= w(D) + |Sσ|+ 2`− r(S)− 1,

≡ w(D) +m− n− r(S)− 1 (mod 2),
≡ m+ r(S) + 1 (mod 2).

(The last two steps use Equation (11) and the fact that n ≡ w(D)(mod 2).) For each
state S with r(S) = i, we have shown that ϕS(t) ∈ t(m+i+1)/2Z[t, t−1]. Since we can
write Φi(t) =

∑
r(S)=i ϕS(t)zi, the proposition now follows. �

Example 3.9. The virtual Borromean rings L (see Figure 2) admits a minimal genus
diagram on the torus T , which is shown in Figure 14 along with SA and SB. Notice
that the diagram is checkerboard colorable, and it has |SA| = 2, r(SA) = 0, and |SB| =
1, r(SB) = 0. By direct computation, the three states AAB,ABA,BAA all have |S| = 1
and r(S) = 0, and the three states ABB,BAB,BBA all have |S| = 2 and r(S) = 1.
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Figure 14. A minimal genus diagram of the virtual Borromean rings
in the torus, and the states SA and SB.

Therefore, 〈D〉T = A3d2 + 3Ad+ 3A−1dz + A−3d, where d = −A2 − A−2. Since D has
writhe w = 3, it follows that

JL(t, z) = t− 2t2 − t3 − 3t5/2z.

3.3. Calculations. In this section, we provide some sample calculations of the homo-
logical Kauffman bracket and Jones-Krushkal polynomials.

Figure 15. From left to right, a virtual link with four components, a
minimal genus representative in the torus, and the states SA and SB.

Example 3.10. A virtual link L with four components along with a minimal genus
diagram on the torus T appear on the left of Figure 15. The states SA and SB are
shown to the right with shading around the smoothed crossings. From this, we see
that |SA| = 2 = |SB| and r(SA) = 0 = r(SB). Resmoothing one of crossings of SA, one
can show that the four states AAAB,AABA,ABAA, and BAAA all have |S| = 1 and
r(S) = 0. Likewise, resmoothing one of crossings of SB, one can similarly show that
the four states ABBB,BABB,BBAB, and BBBA all have |S| = 1 and r(S) = 0.
Resmoothing two of the crossings of SA (or doing the same to SB), one can show that
the six states AABB,ABBA,BBAA,BAAB,ABAB,BABA all have |S| = 2 and
r(S) = 1. Thus,

〈L〉T = A4d2 + 4A2d+ 6dz + 4A−2d+ A−4d2,

where d = −A2 − A−2.
Since this link has writhe w(L) = −4, it follows that

JL(t, z) = t−3
(
t−1(−t−1/2 − t1/2) + 4t−1/2 + 6z + 4t1/2 + t(−t−1/2 − t1/2)

)
,

=
(
−t−9/2 + 3t−7/2 + 3t−5/2 − t−3/2

)
+ 6t−3z.

The diagram is alternating, therefore it is adequate.
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Figure 16. The virtual chain link.

Example 3.11. Figure 16 shows virtual chain link with m− 1 crossings and m compo-
nents. It is not checkerboard colorable, thus it follows that r(S) ≥ 1 for all states. One
can further show that its virtual genus is bm

2
c.

Figure 16 shows the states SA and SB for the virtual chain link. Notice that |SA| =
1 = |SB|. One can further show that every state S has |S| = 1. Since L is not
checkerboard colorable, it follows that every state has r(S) = 1. As a result we have

〈D〉Σ = Am−1z +

(
m− 1

1

)
Am−3z + · · ·+

(
m− 1

m− 2

)
A3−mz +Am−1z = (A+A−1)m−1z.

Since this link has writhe w = 1−m, we conclude that

JD(t, z) = (−1)1−mt(3−3m)/4
(
t−1/4 + t1/4

)m−1
z,

= (−1)m−1
(
t−1 + t−1/2

)m−1
z.

Figure 17. The states SA and SB for the virtual chain link.

3.4. Horizontal and vertical mirror images. In this section, we describe how the
Jones-Krushkal polynomial changes under taking mirror images. Recall that there are
two ways to take the mirror image of a virtual link L. They are called the vertical
and horizontal mirror images, and they are defined in terms of virtual link diagrams
as follows.

Given a virtual link diagram D, the vertical mirror image is denoted D∗ and it is
the diagram obtained by switching the over and under crossing arcs at each classical
crossing, see Figure 18. The horizontal mirror image is denotedD† and it is the diagram
obtained by reflecting the diagram D across a vertical line x = x0 in R2 to the far left
of D, see Figure 18.

We describe these operations for links in thickened surfaces. Let L be a link in Σ×I,
and let D be its diagram on Σ. Let φ : Σ × I → Σ × I be the orientation-reversing
map given by φ(x, t) = (x, 1 − t) for (x, t) ∈ Σ × I. Then φ(L) = L∗, the vertical
mirror image of L. Now let ψ : Σ → Σ be an orientation-reversing homeomorphism.
(For example, ψ could be reflection through a plane when Σ is embedded in R3.) Then
under ψ × id : Σ× I → Σ× I, we have (ψ × id)(L) = L†, the horizontal mirror image
of L.
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K K∗ K†

Figure 18. The virtual knot K = 3.1 and its mirror images.

Proposition 3.12. If L is a link in Σ× I, then
J̃L∗(t, z) = J̃L(t−1, z), and J̃L†(t, z) = J̃L(t−1, z).

If L is a checkerboard colored link in Σ× I, then
JL∗(t, z) = JL(t−1, z), and JL†(t, z) = JL(t−1, z).

Proof. We give the proof for the vertical mirror image; the proof for horizontal mirror
image is similar and left to the reader. Let D be a diagram on Σ for L. Then D∗ is
obtained by switching the over and under arcs at each crossing of D. Notice that an
A-smoothing applied to a crossing of D has the same effect as a B-smoothing applied
to the crossing of D∗. Thus, there is a one-to-one correspondence S ↔ S∗ between
the state spaces S(D) and S(D∗), where S ∈ S(D) and S∗ ∈ S(D∗) have opposite
smoothings at the corresponding crossings of D and D∗.

Clearly, w(D∗) = −w(D), a(S∗) = b(S), and b(S∗) = a(S). Further, we have |S∗| =
|S|, k(S∗) = k(S), and r(S∗) = r(S). Set d = −t−1/2 − t1/2. Thus

J̃L∗(t, z) = (−1)w(D∗)t3w(D∗)/4
∑

S∗∈S(D∗)

t(b(S
∗)−a(S∗))/4dk(S∗)zr(S

∗),

= (−1)w(D)t−3w(D)/4
∑

S∈S(D)

t(a(S)−b(S))/4dk(S)zr(S) = J̃L(t−1, z).

The proof for reduced Jones-Krushkal polynomial is similar and is left to the reader. �

a

a

b

b

c

c

d

d

D

a

a

b

b

c

c

d

d

a

a

b

b

c

c

d

d

Figure 19. A minimal genus diagram of 3.1 and the states SA and SB.
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Example 3.13. Figure 18 shows the virtual knot K = 3.1 and its mirror images K∗, K†,
and Figure 19 shows a minimal genus diagram of K on a genus 2 surface Σ2. The states
SA and SB are shown in Figure 19 with shading around the smoothed crossings. From
that, one can see that |SA| = 1, r(SA) = 1 and |SB| = 1, r(SB) = 1. Resmoothing one
of the crossings in SA, one can show that two of the three states AAB,ABA,BAA have
|S| = 1 and r(S) = 1, and the third has |S| = 2 and r(S) = 2. Resmoothing one of the
crossings in SB, one can further show that two of the three states ABB,BAB,BBA
have |S| = 2 and r(S) = 2, and the third has |S| = 1 and r(S) = 1.

Since w(D) = −1, we have

〈D〉Σ2
= A3z + 2Az + Az2 + 2A−1z2 + A−1z + A−3z,

J̃K(t, z) = −
(
t−3/2 + 2t−1 + t−1/2 + 1

)
z −

(
t−1 + 2t−1/2

)
z2.

Thus, Proposition 3.12 applies to show

J̃K∗(t, z) = J̃K†(t, z) = −
(
1 + t1/2 + 2t+ t3/2

)
z −

(
2t1/2 + t

)
z2.

4. A Kauffman-Murasugi-Thistlethwaite theorem

In this section, we prove the Kauffman-Murasugi-Thistlethwaite theorem for alter-
nating links in surfaces.

Theorem 4.1. Let L be a link in the thickened surface Σ× I. If L admits a connected
reduced alternating link diagram on Σ with n crossings, then any other link diagram
for L has at least n crossings.

Proof. Let D be an arbitrary connected link diagram on Σ with n crossings. Lemma
2.10 and Corollary 2.7 combine to show that

span(〈D〉Σ) ≤ 2n+ 2k(SA) + 2k(SB) ≤ 4n+ 4− 4g.

In case D is a connected, reduced, alternating diagram for the link L ⊂ Σ × I,
Theorem 2.9 implies that span(〈D〉Σ) = 4n− 4g + 4. If L were to admit a diagram D′

with fewer crossings, then the above considerations would imply that span(〈D′〉Σ) <
4n−4g+4, which gives a contradiction to the fact that span(〈D〉Σ) = span(〈D′〉Σ). �

We now explain how to deduce that the writhes of two reduced alternating diagrams
for the same link in Σ× I are equal.

Definition 4.2. Given a link diagram D in Σ × I, we define its r-parallel Dr to be
the link diagram in Σ× I in which each link component of D is replaced by r parallel
copies, with each one repeating the same “over” and “under” behavior of the original
component.

Lemma 4.3. If D is A-adequate, then Dr is also A-adequate. If D is B-adequate,
then Dr is also B-adequate.

Proof. Let SA(D) be the all A-smoothing of D and SA(Dr) the all A-smoothing of the
r-parallel Dr. It is straightforward to check that SA(Dr) is the r-parallel of SA(D).
Therefore, a cycle in SA(Dr) is self-abutting if and only if it is the innermost strand
parallel to a self-abutting cycle of SA(D).
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Let S ′ be the state obtained from SA(D) by switching the smoothing from A to B,
and let S ′′ be the state obtained from SA(Dr) by switching the corresponding crossing
on the innermost strand. Switching the smoothing at a self-abutting cycle is either a
single-cycle smoothing or increases the number of cycles.

Suppose firstly it is a single cycle smoothing. (This corresponds to case (iii) from
the proof of Lemma 2.6.) Then |S ′| = |SA(D)|, and since D is A-adequate, we have
k(S ′) ≤ k(SA(D)) and r(S ′) ≥ r(SA(D)). Notice that S ′′ has the same homological
rank as S ′, and that |S ′′| = |SA(Dr)|. Thus k(S ′′) ≤ k(SA(Dr)) as required.

Now suppose that |S ′| = |SA(D)| + 1. (This corresponds to case (ii) from the proof
of Lemma 2.6.) Since D is A-adequate, the homological rank increases under making
the switch from SA(D) to S ′. But S ′′ has the same homological rank as S ′, thus the
same is true under making the switch from SA(Dr) to S ′′. In particular, this shows
that k(S ′′) ≤ SA(Dr).

A similar argument can be used to show the second part, namely that if D is B-
adequate, then Dr is also B-adequate. The details are left to the reader. �

The next result follows by adapting Stong’s argument [Sto94] (cf. Theorem 5.13
[Lic97]). The proof is by now standard, but it is included for the reader’s convenience.

Theorem 4.4. Let D and E be two link diagrams on Σ that represent isotopic oriented
links in Σ × I. If D is A-adequate, then nD − w(D) ≤ nE − w(E), where nD and nE
are the number of crossings of the diagrams D and E, respectively.

Proof. Let {Li | i = 1, . . . ,m} be the components of L, and let Di and Ei be the
subdiagrams of D and E corresponding to Li. For each i = 1, . . . ,m, choose non-
negative integers µi and νi such that w(Di) + µi = w(Ei) + νi. Let D′i be the result of
changing Di by adding µi positive kinks, and let E ′i be the result of adding νi positive
kinks to Ei. Notice that D′ is still A-adequate.

The writhes of the individual components satisfy:

w(D′i) = w(Di) + µi = w(Ei) + νi = w(E ′i),

and the contributions from the mixed crossings of D′ and E ′ are both equal to the
total linking number link(L) =

∑
i 6=j `k(Li, Lj), which is an invariant of the oriented

link L. It follows that w(D′) = w(E ′).
For any r, take (D′)r and (E ′)r. Then w((D′)r) = r2w(D′), because in forming

the r-parallel of a diagram, each crossing is replaced by r2 crossings of the same sign.
The diagrams (D′)r and (E ′)r, are equivalent and have the same writhe, thus their
homological Kauffman brackets must be equal. In particular we have dmax(〈(D′)r〉Σ) =
dmax(〈(E ′)r〉Σ). Lemma 2.6 now implies that

dmax(〈(D′)r〉Σ) =

(
nD +

m∑
i=1

µi

)
r2 + 2

(
k(SA(D)) +

m∑
i=1

µi

)
r,

dmax(〈(E ′)r〉Σ) ≤
(
nE +

m∑
i=1

νi

)
r2 + 2

(
k(SA(E)) +

m∑
i=1

νi

)
r.
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Since this is true for all r, comparing coefficients of the r2 terms, we find that:

(13) nD +
m∑
i=1

µi ≤ nE +
m∑
i=1

νi.

Subtracting
∑m

i=1(µi+w(Di)) =
∑m

i=1(νi+w(Ei)) from both sides of (13), we get that

(14) nD −
m∑
i=1

w(Di) ≤ nE −
m∑
i=1

w(Ei).

Subtracting the total linking number link(L) from both sides of (14) gives the desired
inequality. �

Corollary 4.5. Let D and E be link diagrams on Σ with nD and nE crossings, respec-
tively, for the same oriented link L in Σ× I.

(i) If D is A-adequate, then the number of negative crossings of D is less than or
equal to the number of negative crossings of E.

(ii) If D is B-adequate, then the number of positive crossings of D is less than or
equal to the number of positive crossings of E.

(iii) An adequate diagram has the minimal number of crossings.
(iv) Two adequate diagrams of an oriented link in Σ× I have the same writhe.

Proof. (i) Let, n+ and n− be the number of positive and negative crossings, respectively.
We have

nD − w(D) ≤ nE − w(E),

n+(D) + n−(D)− (n+(D)− n−(D)) ≤ n+(E) + n−(E)− (n+(E)− n−(E)),

n−(D) ≤ n−(E).

(ii) Use the negative kinks in the proof of Theorem 4.4. It follows that

−nD +
∑
i

µi ≥ −nE +
∑
i

νi =⇒ nD −
∑
i

µi ≤ nE −
∑
i

νi,

nD + w(D) ≤ nE + w(E) =⇒ n+(D) ≤ n+(E).

(iii) Follows from (i) and (ii).
(iv) From (iii), we have nD = nE. It follows from Theorem 4.4 that

nD − w(D) ≤ nE − w(E)⇒ w(E) ≤ w(D).

From (ii), we have

nD + w(D) ≤ nE + w(E)⇒ w(D) ≤ w(E).

Therefore w(D) = w(E). �

The corollary above shows that the first and second Tait Conjectures hold for reduced
alternating links in surfaces.
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5. The Tait conjectures for virtual links

In this section, we will prove the first and second Tait conjectures for virtual links
using the results from the previous section. Corollary 4.5 gives the desired conclusion
for links in a fixed thickened surface, and it remains to extend the statement to stably
equivalent links in thickened surfaces.

This will be achieved in two steps. In the first step, we will show that any reduced
alternating diagram D of a virtual link L has minimal genus. Thus, Corollary 4.5
applies to show thatD has minimal crossing number among all minimal genus diagrams
for L. In the second, we will show that any non-minimal genus diagram D′ for L has
crossing number n(D′) ≥ n(D). This will be proved by relating the spans of 〈D′〉Σ′ and
〈D〉Σ.

We first claim that if L is an alternating virtual link, then any alternating virtual link
diagramD for L has minimal genus. There are several ways to prove this. One way is to
use a recent result of Adams et al. from [AARH+19] to see that any alternating virtual
link diagram for L represents a tg-hyperbolic link L ⊂ Σ × I in a thickened surface.
Therefore, by [AEG+19, Theorem 1.2] tg-hyperbolicity implies that this diagram is
a minimal genus representative for L. Another way is to use the Gordon-Litherland
pairing for links in thickened surfaces [BCK19]. One can compute that any alternating
virtual link diagram for L has nullity equal to zero, which implies that the diagram is
minimal genus.

Thus, any reduced alternating diagram D for L is minimal genus, and Corollary 4.5
implies that any other minimal genus diagram D′ for L has n(D′) ≥ n(D).

To complete the proof, we must rule out the possibility of a minimal crossing diagram
which is not minimal genus. The following conjecture takes care of that and would lead
to a direct proof of the Tait conjectures for virtual links.

Conjecture 5.1. Given a virtual link L, any minimal crossing diagram for it has
minimal genus.

Conjecture 5.1 is known to be true for virtual knots. The proof is due to Manturov
and uses homological parity [Man13]. As a consequence, we can give a simple proof of
Tait’s first and second conjectures for virtual knots.

Theorem 5.2. Suppose K is a virtual knot admitting an adequate diagram D on a
minimal genus surface Σ with crossing number n(D) and writhe w(D). Then any other
diagram D′ for K has crossing number n(D′) ≥ n(D). If D1 and D2 are two adequate
diagrams of minimal genus for K, then n(D1) = n(D2) and w(D1) = w(D2).

Proof. If D′ is a minimal crossing diagram for K, then Conjecture 5.1 implies D′ has
minimal genus. Therefore, since D is also a minimal genus diagram, Corollary 4.5
(iii) applies to show that n(D) ≤ n(D′). If D1 and D2 are two adequate diagrams
of minimal genus for K, then Corollary 4.5 applies to show that n(D1) = n(D2) and
w(D1) = w(D2). �

We will now show how to prove the Tait conjectures for virtual links without as-
suming Conjecture 5.1. This is achieved by developing an alternative approach that
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involves comparing the spans of the homological brackets of links related by stabiliza-
tion moves.

To that end, observe firstly that the homological Kauffman bracket is an invariant
of unoriented links in thickened surfaces under regular isotopy, and that the Jones-
Krushkal polynomial J̃L(t, z) is an invariant of oriented links under isotopy and dif-
feomorphism of the thickened surface. As we have seen, however, neither is invariant
under stabilization or destabilization.

Suppose then that L is a virtual link and D is representative link diagram on a
surface Σ. By the Kamada-Kamada construction, we can assume that the inclusion
map D ↪→ Σ is a cellular embedding (cf. Remark 1.6).

If D is not a minimal genus diagram for L, then it must admit a destabilizing curve
γ. Let D′ be the link diagram on the destabilized surface Σ′ of genus g − 1 obtained
by destabilizing Σ along γ. Then it follows the homological Kauffman brackets and
Jones-Krushkal polynomials of D and D′ are related to one another in a more-or-less
straightforward way. Namely, the bracket 〈D′〉Σ′ is obtained from 〈D〉Σ by replacing z
by −A2 −A−2 in some of the terms. The Jones-Krushkal polynomials are related in a
similar fashion. Specifically, let U be the subspace of H1(Σ) generated by [γ] and its
Poincaré dual and suppose S ∈ S(D) is a state forD such that i∗(H1(S))∩U 6= 0. Then
under destabilization, if the homological rank of S drops by one, then we substitute one
z-factor in 〈D〉Σ with −A2−A−2. Otherwise, if i∗(H1(S))∩U = 0, then the homological
rank does not change and we do not make the substitution. In either case, we see that
span(〈D′〉Σ′) ≤ span(〈D〉Σ) + 4.

Under ideal circumstances, a minimal genus diagram would be obtained from D after
one destabilization, but we may need to repeat this process finitely many times in order
to obtain a minimal genus diagram. (This step uses Kuperberg’s proof of Theorem 1.2,
which tells us that any non-minimal genus representative can be repeatedly destabi-
lized to obtain a minimal genus representative.) Therefore, suppose that γ1 . . . , γ` are
destabilizing curves for D, and let D′ be the link diagram on the surface Σ′ obtained
by destabilizing Σ along γ1 . . . , γ`. Notice that Σ′ has genus g′ = g − ` and it is by
assumption a surface of minimal genus for L.

Then as explained above, the bracket 〈D′〉Σ′ can be obtained from 〈D〉Σ by substi-
tuting z = −A2 − A−2 for up to ` of the z-factors in the terms 〈D |S〉Σ for any given
state S ∈ S(D). The number of z-factors requiring substitution in 〈D |S〉Σ is equal to
the dimension of i∗(H1(S))∩U , where U ⊂ H1(Σ) is the symplectic subspace generated
by [γ1], . . . , [γ`]. (Note that dimU = 2`, since it also contains the Poincaré duals of
[γ1], . . . , [γ`].) With each substitution the span of 〈D |S〉Σ increases by four, thus it
follows that span(〈D′〉Σ′) ≤ span(〈D〉Σ) + 4`.

Lemma 2.10 and Corollary 2.7 imply that

(15) span(〈D〉Σ) ≤ 4(n− g) + 4,

where n = n(D) is the crossing number of D and g = g(Σ) is the genus of Σ.
Now suppose that D′′ is a reduced alternating diagram for L. Then D′′ necessarily

has minimal genus, and since D′ is also a minimal genus diagram for L, Theorem 1.2
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implies that D′′ and D′ represent equivalent links in Σ′ × I. Therefore
(16) span(〈D′′〉Σ′) = span(〈D′〉Σ′) ≤ span(〈D〉Σ) + 4`.

In addition, Theorem 2.9 implies that

(17) span(〈D′′〉Σ′) = 4(n′′ − g′) + 4 = 4(n′′ − g + `) + 4,

where n′′ = n(D′′) is the crossing number of D′′.
Therefore, by Equations (15), (16), and (17), we see that

(18) span (〈D′′〉Σ′) = 4(n′′ − g + `) + 4 ≤ span(〈D〉Σ) + 4` ≤ 4(n− g) + 4`+ 4.

Thus, we conclude from this that n′′ ≤ n.

Theorem 5.3. Suppose L is a virtual link admitting a reduced alternating diagram D
on Σ with crossing number n(D) and writhe w(D). Then any other diagram D′ for L
has crossing number n(D′) ≥ n(D). If D1 and D2 are two reduced alternating diagrams
for the same virtual link, then n(D1) = n(D2) and w(D1) = w(D2).

Remark 5.4. In the classical setting, Thistlethwaite proved the following stronger result,
namely that a classical link L is alternating and prime if and only if span(VK(t)) = c(L),
the crossing number of L. One can see by example that this result is not true for virtual
knots. In particular, the virtual knots 4.98 and 4.107 are both checkerboard colorable,
prime and have the same crossing number and reduced Jones-Krushkal polynomial (see
Table 1). However, 4.107 is alternating and 4.98 is not.

A natural question is whether the Tait flyping conjecture can also be extended to
alternating virtual links. The flype move is shown in Figure 20. For tangles that
contain only classical crossings, it is immediate that the flype move does not alter
the virtual link type. When the tangle contains virtual crossings, the flype move can
change the virtual link type. (This was already noted by Zinn-Justin and Zuber in
[ZJZ04].)

The analogue of the Tait flyping conjecture is therefore the assertion that any two
reduced alternating link diagrams of the same link are related by a sequence of flype
moves by classical tangles.

Problem 5.5. Is the Tait flyping conjecture true for alternating virtual links?

T
T

Figure 20. The flype move for virtual links, where “T ” is a classical
tangle diagram.

In a different direction, one can ask whether the Tait conjectures continue to hold
in the welded category.

Problem 5.6. Are the Tait conjectures true for alternating welded links?
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Another interesting question is whether the Jones-Krushkal polynomial is a virtual
unknot detector. Proposition 3.3 shows that a virtual knot that is not checkerboard
colorable has nontrivial Jones-Krushkal polynomial.

Problem 5.7. Does there exist a checkerboard colorable virtual knot K which is non-
trivial and has JK(t, z) = 1?

For classical knots, this is equivalent to the open problem which asks whether the
Jones polynomial is an unknot detector.

For classical links, Khovanov defined a homology theory that categorifies the Jones
polynomial. The result is a bigraded homology theory of links that is known to detect
the classical unknot [KM11]. Khovanov homology has been extended to virtual knots
and links (see [Man04, Man07]), and it categorifies the usual Jones polynomial for
virtual links. However, the resulting knot homology does not detect the virtual unknot.

An interesting problem would be to construct a triply graded homology theory for
links in thickened surfaces that categorifies the Jones-Krushkal polynomial. In par-
ticular, is the resulting knot homology theory sufficiently strong to detect the virtual
unknot?

In closing, Table 1 presents the Jones-Krushkal polynomials for virtual knots with
up to three crossings and the reduced Jones-Krushkal polynomial for checkerboard
colorable virtual knots with up to four crossings.

Acknowledgements. We would like to thank Micah Chrisman, Robin Gaudreau,
Andrew Nicas, and Will Rushworth for their valuable feedback.
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Virtual Knot J̃K(t, z)

2.1 (−t−5/2 + t−3/2 + t−1)z

3.1 −(t−3/2 + 2t−1 + t1/2 + 1)z − (t−1 + 2t−1/2)z2

3.2 (t−2 − t−1 + 1− t+ t2)z

3.3 −(t−3 + 2t−5/2 + 2t−2)z − (t−5/2 + t−2 + t−3/2)z2

3.4 −(3t−1 + 2t−1/2)z − (t−3/2 + t−1/2 + 1)z2

Virtual Knot JK(t, z)

3.5 (t−3 − 2t−2) + (t−7/2 − t−5/2 − t−3/2)z

3.6 −t−4 + t−3 + t−1

3.7 (t−2 − t−1 − 1) + (t−3/2 − 2t−1/2)z

4.85 (3t−2 + 2t−1) + (t−5/2 + 6t−3/2 + t−1/2)z + (t−2 + 2t−1)z2

4.86 (−t−1 + 2− 2t) + (−t−3/2 + t−1/2 − t3/2)z

4.89 (t−4 + 4t−3) + (4t−7/2 + 4t−5/2)z + (2t−3 + t−2)z2

4.90 5 + (4t−1/2 + 4t1/2)z + (t−1 + 1 + t)z2

4.98 (t−1 + 3 + t) + (4t−1/2 + 4t1/2)z + 3z2

4.99 (−t−1 + 3− t) + (−t−3/2 + t−1/2 + t1/2 − t3/2)z

4.105 (t−4 + t−3 − 2t−2 + t−1) + (2t−7/2 − 2t−5/2)z

4.106 (−t−3 + t−2 − 1) + (−t−5/2 + 2t−3/2 − 2t−1/2)z

4.107 (t−1 + 3 + t) + (4t−1/2 + 4t1/2)z + 3z2

4.108 t−2 − t−1 + 1− t+ t2

Table 1. The Jones-Krushkal polynomials for virtual knots with up to
three crossings and for checkerboard colorable virtual knots up to four
crossings. Knots listed in boldface font are classical.
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