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AN APPLICATION OF NON-POSITIVELY

CURVED CUBINGS OF ALTERNATING LINKS

Makoto Sakuma and Yoshiyuki Yokota

Abstract. By using non-positively curved cubings of prime alternating link exteriors, we
prove that certain ideal triangulations of their complements, derived from reduced alternat-

ing diagrams, are non-degenerate, in the sense that none of the edges is homotopic relative

its endpoints to a peripheral arc. This guarantees that the hyperbolicity equations for those
triangulations for hyperbolic alternating links have solutions corresponding to the complete

hyperbolic structures. Since the ideal triangulations considered in this paper are often used
in the study of the volume conjecture, this result has a potential application to the volume

conjecture.

1. Introduction

Let L be a hyperbolic link in S3 and M := S3 \ L the complement of L. In the
approach to the volume conjecture [7,8], initiated by D. Thurston [9] and the second
author [11,12], a certain ideal triangulation, S, of M derived from a diagram of K plays
a crucial role. Tetrahedra in S correspond to q-factorials in the Kashaev invariant, and
the hyperbolicity (gluing) equations for S and the complex volume of M are related to
the potential function which appears in an integral expression of the Kashaev invariant.

However, in general, there is no guarantee that the hyperbolicity equations for S
have a geometric solution, i.e., a solution which corresponds to the complete hyperbolic
structure. In fact, this fails if and only if some edge of S is inessential in the sense that it
is homotopic to a curve on the peripheral torus. To be precise, for a link L in S3, the arc
in its exterior E(L) := S3 \N(L) obtained from the ideal edge of S is homotopic, relative
to its endpoints, to an arc in ∂E(L). (Here, N(L) is an open regular neighborhood of
L.) In [6], such an arc is called peripheral. An inessentail ideal edge has no geodesic
representative in the hyperbolic manifold M , and conversely, if all ideal edges of S are
essential (i.e., not inessential), then the edges have unique geodesic representatives, which
gives a geometric solution to the hyperbolicity equations (though some of the tetrahedra
may be flat or negatively oriented).

The purpose of this paper is to prove the following theorem, by using non-positively
curved cubings of alternating link exteriors.

2010 Mathematics Subject Classification. Primary:57M25. Secondary:57M50.

The first author was partially supported by JSPS KAKENHI Grant Number 15H03620. The second

author was partially supported by JSPS KAKENHI Grant Number 15K04878.

Typeset by AMS-TEX

http://arxiv.org/abs/1612.06973v1


2 MAKOTO SAKUMA AND YOSHIYUKI YOKOTA

Theorem 1.1. Let L be a hyperbolic link in S3 which has a reduced alternating diagram

D and S the ideal triangulation of the complement of L associated to D. Then, the edges

of S are essential, and so the hyperbolicity equations obtained from S have a geometric

solution.

Non-positively curved cubings of alternating link exteriors were first found by the
pioneering work by Aitchison, Lumsden and Rubinstein [3]: they proved that if an alter-
nating link L admits a “nicely balanced” alternating diagram, then its exterior admits a
non-positively curved cubing. The existence of non-positively curved cubing for the exte-
rior of every prime alternating link was first noted in a literature by Adams [1], where he
attributes it to Agol. In fact, Agol gave a beautiful application of non-positively curved
cubings of the exteriors of 2-bridge links, in his talk [2] in 2002.

The cubings of link exteriors themselves have been essentially known to the experts
from early time. Ideal triangulations derived from the related cubings are used in the
wonderful computer program SnapPea, as explained by Weeks [13]. The cubing C of a
link exterior E(L) is intimately related to the classical Dehn complex D of L: there is a
deformation retraction r : E(L) → D, and C is identified with the mapping cylinder of
the restriction of r to ∂E(L) (see Section 2). It is a classical result due to Weinbaum [14]
that the Dehn presentation of the augmented link group π1(E(L)) ∗ Z obtained from a
diagram D of L satisfies the small cancellation condition if and only if D is a reduced
alternating diagram. Moreover, it is known that the Dehn complex D obtained from a link
diagram D is non-positively curved if and only if D is a prime alternating diagram (see
[4, Proposition II.5.43]). This is translated to the corresponding cubing as follows: the
cubed complex C obtained from a link diagram D is non-positively curved if and only if
D is a prime alternating diagram (see Proposition 3.3 and Remark 3.4).

This paper is organized as follows. In Section 2, we review the cubings and ideal
triangulations of the exteriors and complements of prime alternating links. In Section 3,
we review some basic facts on cubed complexes, and apply to alternating link exteriors.
We give a proof of Theorem 1.1 in Section 4 and state its consequence in Section 5.

Acknowledgements. The authors realized that the results of this paper can be
derived from the existence of non-positively curved cubings of alternating hyperbolic
link exteriors in 2015, and it was announced by the second author at a conference at
Waseda University in honour of the 20th anniversary of the Volume Conjecture. During
the conference, we learned from Stavros Garoufalidis that essentially the same results
had been already obtained in 2002 by the joint work of S. Garoufalidis, I. Moffatt and D.
Thurston in [6], which was completed in 2007, but has not been published. Their method
is based on the small cancellation property of the Dehn presentation. Though their proof
is algebraic while ours is geometric, both proofs are based on the non-positively curved
property of alternating link exteriors. We thank S. Garoufalidis for kindly sharing their
preprint with us and encouraging us to publish our results. We also thank the organizer,
Jun Murakami, of the conference at Waseda University.

2. Cubical decomposition of link exteriors

Let L be a prime link in S3 which is represented by a connected diagram D, and
E(L) := S3 \ N(L) the exterior of L, where N(L) is an open regular neighborhood of
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L. D. Thurston [9] described a method for decomposing E(L) into partially truncated
octahedra placed between crossings. He also described a method for constructing an ideal
tetrahedral decomposition of the link complement from the octahedral decomposition.
These decompositions are essentially equivalent to those described by Weeks [13], and
their details are described by the second author [12]. The octahedral decomposition
induces a cubical decomposition of E(L), which is non-positively curved if and only if
the diagram D is reduced and alternating, as observed in Remark 3.4.

In this section, we recall the cubical decomposition and the ideal triangulation obtained
from it, following [12]. In what follows, we assume that D is a reduced alternating
diagram. We may pick two points P+ and P− in S3, identify S3 \ {P+, P−} with S2×R,
and assume the following hold. The diagramD is regarded as a 4-valent graph in S2×{0},
L ⊂ D × [−1, 1] ⊂ S2 × [−1, 1], and L intersects S2 × {0} transversely in 2c points,
P1, P2, . . . , P2c, where c is the crossing number of D. Let D∗ be a graph embedded in
S2 × {0} dual to D, such that D ∩ D∗ = {P1, P2, . . . , P2c}. The vertices of D and D∗

are denoted by X1, X2, . . . , Xc and R0, R1, . . . , Rc+1 respectively. The closures of the 4c
connected components of S2 \ (D ∪D∗) are denoted by Q1, Q2, . . . , Q4c and

ν : {1, 2, . . . , 4c} → {1, 2, . . . , c},

µ : {1, 2, . . . , 4c} → {0, 1, . . . , c+ 1},

α, β : {1, 2, . . . , 4c} → {0, 1, . . . , 2c− 1},

σ : {1, 2, . . . , 4c} → {−1, 1}

are defined by Figure 1, where 1 ≤ g ≤ 4c.

Qg

Xν(g)

Rµ(g)

Pβ(g)

Pα(g)

Qg

Xν(g)

Rµ(g)

Pα(g)

Pβ(g)

σ(g) = 1 σ(g) = –1

Figure 1

The connected components of

L+ = L ∩ (S2 × [0, 1]), L− = L ∩ (S2 × [−1, 0])

are called overpasses and underpasses of L respectively, and we assume that each over-
pass/underpass intersects S2×{±1} precisely at the point above/below the corresponding
crossing (vertex) of D. Namely, we assume

L ∩ (S2 × {±1}) = {Xn | 1 ≤ n ≤ c} × {±1}.

Observe that S2 × R is decomposed into 4c quadratic prisms

Q1 × R, Q2 × R, . . . , Q4c × R
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each of which looks as in Figure 2, where the bold arcs represent Ig := L+ ∩ (Qg × R)
and Jg := L− ∩ (Qg × R).

Xν(g)

Qg

Rµ(g)

Pβ(g) Pα(g) →

Figure 2

We consider the arcs

A(Xn) := Xn × (1,∞), B(Xn) := Xn × (−∞,−1), C(Xn) := Xn × (−1, 1),

A(Pl) := Pl × (0,∞), B(Pl) := Pl × (−∞, 0), C(Rm) := Rm × R,

where n ∈ {1, 2, . . . , c}, m ∈ {0, 1, . . . , c + 1} and l ∈ {0, 1, . . . , 2c − 1}. Let A(Ig) and
B(Jg) be the 2-cells in ∂(Qg × R) bounded by

{Ig, A(Xν(g)), A(Pα(g))}, {Jg, B(Xν(g)), B(Pβ(g))}

respectively, the shaded ones in Figure 2, where 1 ≤ g ≤ 4c. Then, as each of the
overpasses and underpasses is contractible, we can collapse each connected component
of ∪4c

g=1A(Ig) and ∪4c
g=1B(Jg) to a vertical edge. Then each Qg × R becomes an ideal

tetrahedron, Sg, in (S2 × R) \ L with 6 ideal edges

A(Xν(g)) = A(Pα(g)), A(Pβ(g)), B(Xν(g)) = B(Pβ(g)), B(Pα(g)), C(Xν(g)), C(Rµ(g))

as shown in Figure 3. The family of ideal tetrahedra, {Sg}1≤g≤4c, gives an ideal trian-
gulation, T , of (S2 × R) \ L.

→→

Figure 3
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Note that {Qg×R : ν(g) = n} and {Sg : ν(g) = n} intersect ∂N(P±), ∂N(L) as shown in
Figures 4a and 4b, where N(P±) denote open regular neighborhoods of P± respectively.

C(Xn)

A(Xn)

B(Xn)

C(Xn)

A(Xn)

B(Xn)

A(Xn)

B(Xn)

Figure 4a Figure 4b Figure 4c

For each n ∈ {1, 2, . . . , c}, the union On := ∪ν(g)=nSg of the 4 ideal tetrahedra sharing
the “crossing arc” C(Xn) is regarded as a quotient of an ideal octahedron. To see this,
note that Sg is identified with the join C(Xν(g)) ∗ C(Rµ(g)). Thus On is identified with
the join of C(Xn) and Zn := ∪ν(g)=nC(Rµ(g)), which is a cycle of length 4. This implies
that On is regarded as a quotient of an ideal octahedron. In fact, we can obtain an
ideal octahedron by cutting On along A(Xn) and B(Xn) (see [9, Figure in p.17] and [11,
Figure 2]). In the following, we do not distinguish between On and an ideal octahedron.

By adding the two vertices P± to On (i.e., by “replacing” each of the four ideal
vertices of the octahedron contained in the cycle Zn with a real vertex), and taking the
intersection with E(L) (i.e., truncating the pair of ideal vertices corresponding to the two
ends of the crossing arc C(Xn)), we obtain a partially truncated octahedron, Ǒn, and
the set {Ǒn}1≤n≤c determines a partially truncated octahedral decomposition of E(L),
where P± are the only vertices in the interior of E(L).

Now note that the join of the midpoint Xn of the crossing arc C(Xn) with the cycle Zn

determines an ideal square in On, which divides On into two ideal pyramids. The ideal
square in On descends to a square in Ǒn, and the pair of pyramids descends to a pair of
cubes in Ǒn which intersect ∂N(P±) and ∂N(L) as shown in Figure 4c. The set of these
pairs of cubes determines a cubic decomposition, C, of E(L). The cubic decomposition
has precisely two vertices P± in the interior of E(L) and the vertices

an := A(Xn) ∩ ∂N(L), bn := B(Xn) ∩ ∂N(L)

in ∂E(L), where 1 ≤ n ≤ c.
We note that the set of the squares determines the Dehn complex, D, of L. For each

cube in C, there is a unique square in D which is a face of the cube. Thus there is a
natural deformation retraction r : C = E(L) → D and C is identified with the mapping
cylinder of the restriction of r to ∂E(L).
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At the end of this section, we recall the ideal triangulation, S, of E(L) which are used
in the study of the volume conjecture by [9,11, 12]. Roughly speaking, S is obtained
from the ideal triangulation T of S2 × R = S3 \ (L ∪ {P+, P−}) by engulfing the extra
ideal points P± into L, where we suppose c > 3 (see Assumption 3 in [12]). To this end,
pick a point, say P0, from L∩S2×{0}, and collapse the ideal edges A(P0) and B(P0) into
an ideal vertex. This forces some of the other simplexes of T to degenerate. In order to
give more precise description, arrange Q1, Q2, Q4c−1, Q4c, X1, Xc, R0, Rc+1, P1, P2c−1 as
shown in Figure 5, namely the following hold for the functions introduced in this section.

ν(1) = ν(2) = ν(α−1(1)) = 1, ν(4c) = ν(4c− 1) = ν(β−1(2c− 1)) = c,

µ(1) = µ(4c− 1) = 0, µ(2) = µ(4c) = c+ 1,

α(1) = α(2) = β(4c− 1) = β(4c) = 0

Rc+

Q

QQc–

Qc

R

P
P

XXc
Pc–

Figure 5

Then, since A(P0) = A(X1) = A(P1), B(P0) = B(Xc) = B(P2c−1), and since the collaps-
ing of A(P0) and B(P0) cause collapsing of C(R0) and C(Rc+1) into ideal vertices, the
following degeneration of ideal tetrahedra occur. The pairs of ideal tetrahedra {S1, S2}
and {S4c−1, S4c} collapse into the ideal edges B(X1) and A(Xc) respectively, and, if g
belongs to

(α−1({1, 2c− 1}) ∪ β−1({1, 2c− 1}) ∪ µ−1(0, c+ 1)) \ {1, 2, 4c− 1, 4c},

then Sg collapses into an ideal triangle. The other ideal tetrahedra continue to be ideal
tetrahedra, namely, if g belongs to

Γ = {1, 2, . . . , 4c} \ (α−1({1, 2c− 1}) ∪ β−1({1, 2c− 1}) ∪ µ−1(0, c+ 1)),

then Sg remains to be an ideal tetrahedron in S. See [12] for details. (Though [12] treats
only hyperbolic knot diagrams which satisfy certain assumptions, the same arguments
are available for prime link diagrams which satisfy the same assumptions, such as reduced
alternating diagrams with ≥ 4 crossings.)

In particular, the edges of S are obtained as the images of the following paths in C.

αn : = A(X1) ∪ P+ ∪A(Xn) (1 < n ≤ c)

βn : = B(Xc) ∪ P− ∪B(Xn) (1 ≤ n < c)

γn : = C(Xn) (1 ≤ n ≤ c)

δm : = A(X1) ∪ P+ ∪ C(Rm) ∪ P− ∪B(Xc) (m 6∈ µ(ν−1({1, c})))
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3. Non-positively curved cubing

Let L, D and C be as in the previous section. Then, by identifying each cube in C
with a unit cube in E3, C is regarded as a cubed complex (see [4, p.115]). In this section,
we explain the well-known fact that C is non-positively curved.

We first review some basic facts about a cubed complex W . A path γ : [0, l] → W is
called a piecewise geodesic if there exist

0 = t0 < · · · < ti−1 < ti < · · · < tn = l

such that each γ|[ti−1,ti] is an isometric embedding into some cube. Then there exists
a shortest piecewise geodesic between any two points in X , called a geodesic, and W
becomes a complete geodesic metric space.

For x ∈ W , the set of unit tangent vectors at x is called the geometric link of x in
W and denoted by Lk(x,W ). We can regard Lk(x,W ) as a piecewise spherical complex,
and so it admits the structure of a complete geodesic metric space. Note that the length
of each edge of Lk(x,W ) is equal to π/2. The following lemma is well-known (see [4,
Remark I.5.7]).

Lemma 3.1. A piecewise geodesic γ in W is a local geodesic if, for each point x on γ,
the distance between the incoming and the outgoing unit tangent vectors to γ at x are at

least π in Lk(x,W ).

In general, a metric space is said to be non-positively curved if each point in it has a
neighborhood where any geodesic triangle is thinner than a comparison triangle in E2,
that is, the distance between any points on a geodesic triangle is less than or equal to the
distance between the corresponding points on a comparison triangle (cf. [4, Definition
II.1.2]). The following criterion is well-known (see [4, Theorem II.5.20]).

Proposition 3.2(Gromov’s link condition). A cubed complex W is non-positively

curved if Lk(x,W ) is a simplicial complex which is flag, i.e., any finite subset of vertices,

that is pairwisely joined by edges, spans a simplex.

The following proposition was first noted in a literature by Adams [1], where he at-
tributes it to Agol.

Proposition 3.3. Let L be a prime alternating link in S3 represented by a reduced alter-

nating diagram D, and let C be the cubed complex with underlying space E(L) constructed

from the diagram D. Then C and its double, Ĉ, across ∂E(L) are non-positively curved.

proof. Observe that C induces a cubing of ∂E(L), such that each vertex has degree 4 (see
Figure 4c). Thus, for any vertex of C contained in ∂E(L), its link in C is identified with
a unit hemi-sphere consisting of 4 spherical triangles which are regular and right-angled.
Hence these vertices satisfy Gromov’s link condition.

For the inner vertex P+ of C, we can observe that the link Lk(P+, C) is obtained from
the cell decomposition of S2 determined by the graph D∗, by subdiving each region of
D∗ as follows. Each region of D∗ contains a unique vertex, say Xn, of D. Subdivide the
region by taking the join of Xn and the edge cycle of D∗ forming the boundary of the
region (see Figure 6). In fact, the vertex Xn of Lk(P+, C) comes from the edge A(Xn)
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of C, whereas the vertex Rm(∈ D∗) of Lk(P+, C) comes from the edge C(Rm) of C (see
Figure 4c).

The checker board coloring of the regions of D induces a black and white coloring of
the vertices of D∗. Thus the set of the vertices of Lk(P+, C) is divided into the following
three subsets: the set of the white vertices of D∗, the set of the black vertices of D∗, and
the set of the vertices of D. Moreover, any edge of Lk(P+, C) joins vertices which belong
to different groups. Now pick a triple of vertices of Lk(P+, C) such that each sub-pair
spans an edge in Lk(P+, C). Then the triple contains a unique vertex from each subset.
In particular, it contains a pair of vertices which form the boundary of an edge, say e,
of D∗. The only vertices of Lk(P+, C) which span an edge with each of the boundary
vertices of e are the two vertices of D dual to the two regions of D∗ containing e in
the boundary. Thus the triple of the vertices span an 2-simplex of Lk(P+, C). Hence
Lk(P+, C) satisfies Gromov’s condition. The same argument works for Lk(P−, C). Thus
we have proved that C is non-positively curved.

Figure 6

We can easily check that the double Ĉ is also non-positively curved, because the link
in Ĉ of a vertex contained in ∂E(L) is the double of the link in C of the corresponding
vertex and so it is identified with the unit 2-sphere consisting of 8 spherical triangles
which are regular and right-angled. �

Remark 3.4. The cubing C can be constructed from any connected link diagram D,
and we can see as in the above proof that C is non-positively curved if and only if D is
a reduced alternating diagram.

4. Proof of Theorem 1.1

We show that the arcs αn, βn, γn, δm, introduced at the end of Section 2, are local
geodesics in the cubed complex C. Then, since these arcs are orthogonal to the boundary
∂C, this implies that their doubles in the double Ĉ of C are closed local geodesics. Since
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Ĉ is non-positively curved by Proposition 3.3, this in turn implies that these loops are
not null-homotopic in Ĉ (see [4, Theorem II.4.23]). Hence the arcs αn, βn, γn, δm are
essential (non-peripheral) in C = E(L). Since these arcs form the edge set of S, we
obtain the desired result.

We first show that αn = A(X1) ∪ P+ ∪ A(Xn) with 1 < n ≤ c is a local geodesic
in C. Note that αn is a piecewise geodesic consisting of two geodesic arcs A(X1) and
A(Xn), where the two arcs “intersect” Lk(P+, C) at the vertices X1 and Xn. Since these
two vertices belong to the same subset introduced in the proof of Proposition 3.3, no
edge of Lk(P+, C) joins them. Since Lk(P+, C) is a spherical complex consisting of right-
angled regular triangles, this implies that the distance between the vertices X1 and Xn

in Lk(P+, C) is ≥ π. Hence αn is a local geodesic by Lemma 3.1. The same argument
works for βn.

Next, show that δm = A(X1)∪P+ ∪C(Rm)∪P− ∪B(Xc) with m 6∈ µ(ν−1({1, c})) is
a local geodesic in C. We have only to show that δm satisfies the condition in Lemma 3.1
at the vertices P+ and P−. To this end, note that the intersection of δm with Lk(P+, C)
are the vertices X1 and Rm. Since m 6∈ µ(ν−1({1})), no edge of Lk(P+, C) joins them,
and hence the distance between X1 and Rm in Lk(P+, C) is ≥ π. Thus δm satisfies the
condition in Lemma 3.1 at P+. The same argument works for P−. Hence δm is a local
geodesic.

The remaining arcs γn are obviously local geodesics, and so we have proved that the
arcs αn, βn, γn, δm are local geodesics. This completes the proof of Theorem 1.1. The
fact that the crossing edges γn are essential are already known by [1] and [5], as is noted
in [10].

5. Application

Let L be a hyperbolic link in S3 with a reduced alternating diagram D and M its
complement. Under the same assumption in Section 2, the potential function associated
to D is defined by

V (z;D) =
∑

g∈Γ

σ(g)Li2(z(β(g))/z(α(g))),

where z is a map {2, 3, . . . , 2c− 2} → C such that z(l) = 1 if l ∈ α(µ−1({0, c+ 1})). For
simplicity, we put

Λ = {2, 3, . . . , 2c− 2} \ α(µ−1({0, c+ 1})).

Then, by Theorem 1.1 and [12, Theorems 2.5 and 2.6], we have the following corollary.
(The results in [12] holds not only for hyperbolic knots but also )

Corollary 5.1. The hyperbolicity equations for S are given by

exp

{

z(l)
∂V (z;D)

∂z(l)

}

= 1, l ∈ Λ

which must have a solution ζ corresponding to the complete hyperbolic structure of M .

Furthermore,

V̂ (ζ,D) = V (ζ;D)−
∑

l∈Λ

log ζ(l)

[

z(l)
∂V (z;D)

∂z(l)

]

z=ζ
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gives the complex volume of M modulo π2.

At the end of this paper, we note that Ian Agol [2] had announced the following beau-
tiful application of non-positively curved cubings of hyperbolic 2-bridge link exteriors.
Each hyperbolic 2-bridge link group admit precisely two parabolic gerenating pairs, namely

the upper and lower meridian pairs. In fact, he has shown that any pair of parabolic
transformations, which are not equivalent to the upper and lower meridian pairs, gener-
ates a free subgroup of the 2-bridge link group. The proof is based on the non-positivity
of the cubing and the fact that the union of the “vertical middle planes” of the cubes in C
give rise to the checker board surfaces associated with the reduced alternating diagram.
(The union of the horizontal middle planes gives the boundary of a regular neighborhood
of the Dehn complex.) The same argument implies that any pair of parabolic transfor-
mations of the link group of a hyperbolic alternating link with bridge index ≥ 3 generates
a free subgroup of the link group.
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