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TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES* 

The subject of this paper is related to the homeomorphism problem for 
3-dimensional closed manifolds. The fundamental theorem for 2-manifolds 
tells us how many topologically distinct 2-manifolds there are. The methods 
for its proof cannot yet be applied to 3 or more dimensions. There are two 
ways to approach the 3-dimensional problem. The first one is to examine 
fundamental regions (Diskontinuitatsbereiche) of groups acting on a 
3-dimensional metric space (Bewegungsgruppen). In the 2-dimensional case, 
every closed surface is a fundamental region of a fixed-point-free action; 
however, there are 3-manifolds for which this is not true. The fundamental 
regions of 3-dimensional spherical actions are endowed with a certain 
fibration: the fibers are trace curves (Bahnkurven) of a continuous action on 
the hypersphere; examples will be given in 43 and can also be found in DB 
11.' This leads us to the second way: instead of investigating a complete 
system of topological invariants of 3-dimensional manifolds, we search for a 
system of invariants for fiber preserving maps of fibered 3-manifolds. This task 
is completely solved in this paper. These invariants refer of course to the 
fibering of the manifold, not to the manifold itself, so that so far the question 
remains whether two spaces with different fibrations can be homeomorphic. 
Furthermore there are 3-manifolds that do not admit a fibration (4 15). Even 
so, in many cases the fiber invariants can be used to decide whether 
3-manifolds are homeomorphic. Examples for this are given in 412-4 14 and 
in DB 11. 

A knowledge of the topology of surfaces, the fundamental group, and the 

+Reprinted from H.  Seifert, Acta Murhematicu (i0 (1933), 147-288 (translated by Wolfgang 
Heil). 

' Cf. W. Threlfall and H .  Seifert, Topologische Untersuchungen der Diskontinuitatsbereiche 
endlicher Bewegungsgruppen des dreidimensionalen spharischen Raumes. Math. Ann. 107. This 
will be referred to as DB 11; the first part in M a d  Ann. 104 will be cited as DB 1. 
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360 TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES 

homology group is assumed. The spaces of line elements' (Linienelemente) 
provide introductory examples. Other examples are given in this paper. 

1. Fibered Spaces 

We define a manifold3 to be a set of points such that for each point there is 
a system of subsets, called neighborhoods, which satisfy the axioms (1H4) 
below. 

(1) Hausdorff axioms: 

(a) Each point P has at least one neighborhood U ( P ) ;  each 
neighborhood of P contains P. 

(b) If U ( P )  and V ( P )  are neighborhoods of P, then there exists a 
neighborhood W ( P )  c U ( P )  n V ( P ) .  

(c) If Q lies in U ( P ) ,  then there exists a neighborhood U ( Q )  of Q 
which is contained in U ( P ) .  

(d) For two distinct points there exist disjoint neighborhoods. 

A system of neighborhoods satisfying these axioms is called a topological 
space. Two equivalent systems of the same point set determine the same 
topological space. Here systems are equivalent if each neighborhood U ( P )  of 
one system contains a neighborhood U ' ( P )  of the other system, and vice 
versa. A subset of a topological space is open if it contains for each of its 
points a neighborhood of this point. The system of all open subsets of a 
topological space is a system of neighborhoods, which is equivalent to all 
other systems of neighborhoods of this space. From now on we always choose 
this system of neighborhoods. 

(2) Each point of M has a neighborhood homeomorphic to an open 3-ball 
in 3-dimensional Euclidean space. 

(3) If an arbitrary neighborhood is assigned to each point, then countably 
many of these cover the manifold. If already finitely many suffice to cover 
the manifold, it is called dosed, otherwise open! 

(4) The manifold is connected, i.e., any two points can be connected by an 
arc, or equivalently, the manifold is not the union of two disjoint open sets. 

* W. Threlfall, Raume aus Linienelementen. Juhresber. Deufsch. Math.- Verein. 42 (l932), 
88-1 10. 

'Cf. H. Kneser, Topologie der Mannigfaltigkeiten. Juhresber. Deursch. Mufh.-Verein. 34'(1926), 
I .  

41nstead of (3) we could require the second Hausdorff countability axiom in addition to ( I )  
and (2): There exists an equivalent system of neighborhoods that consists of countably many 
distinct point sets. The following axiom would do just as well: The manifold can be covered with 
countably many subsets, each of which is homeomorphic to an open 3-dimensional Euclidean 
ball. 
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In  combinatorial topology manifolds are required to admit a triangulation. 
This requirement is redundant for our purpose, since fibered spaces can be 
triangulated, as will be shown in $4. One could say a manifold is fibered if  i t  
is decomposed into curves, called fibers, such that each point lies on exactly 
one fiber and a neighborhood of each point can be mapped homeomorphi- 
cally onto a neighborhood of a point in a Euclidean space in such a way that 
fibers are mapped to line segments of a bundle of parallel lines. This 
requirement is a local one. But even if we postulated this for all points of the 
manifold, we would still find this definition of a fibered manifold to be too 
general. 

In the present paper we consider only those fibered manifolds which satisfy 
in addition to the four manifold axioms the three following axioms which 
relate to properties of the fibering in the large. (We call these manifolds 
fibered spaces.) 

(5) The manifold can be decomposed into fibers, where each fiber is a 
simple closed curve. 

(6)  Each point lies on exactly one fiber. 
(7) For each fiber H there exists a fiber neighborhood, that is, a subset 

consisting of fibers and containing H ,  which can be mapped under a fiber 
preserving map onto afibered solid torus, where H is mapped onto the “middle 
fiber.” 

A fibered solid torus is obtained from a fibered cylinder D 2  X I where the 
fibers are the lines x X I ,  x E D 2 ,  by rotating D 2  X 1 (but keeping D 2  X 0 
fixed) through an angle of 

and then identifying D 2  x 0 and D 2  x 1 (i.e., x X 0 is identified with p(x )  X I ,  
where p is the rotation). Here v, p are coprime integers. Without loss of 
generality we can assume that 

p > O  and O < v < + p .  

For if v is replaced by v + k p  or by - v, then the new solid torus can be 
mapped onto the old one by a fiber preserving map. 

A map is fiber preserving if it (1) is a homeomorphism and (2) maps fibers 
to fibers. Two solid tori which are homeomorphic under a fiber preserving 
map will not be distinguished. 

When identifying the cylinder D 2  X I with the solid torus the lines (fibers) 
of D 2  x I are decomposed into classes such that each class contains exactly p 
lines, which match together to give one fiber of the solid torus, except that the 
class containing the axis of D 2  x I consists of the axis alone, which also 
makes up a fiber. If p = 1, we call the solid torus an ordinary solid torus. 

The fiber neighborhoods are (in contrast to point neighborhoods) closed 
sets: each fiber neighborhood contains its boundary torus. 

2 4 v h l J . )  
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A meridian M of a solid torus V is a simple closed oriented curve on the 
boundary torus T which is not contractible on T but contractible in V .  A 
homeomorphism of V onto itself maps a meridian to a meridian. If we forget 
about orientation, we can map a meridian onto any other meridian under a 
continuous deformation of T. In Fig. I, e.g., the oriented boundary curve of 
the bottom surface D 2  X 0 is a meridian. A longitude B of the solid torus is a 
simple closed curve on T which intersects M in exactly one point. 

B is determined (modulo deformations of T )  up to its orientation and 
multiples of M .  Any pair of meridian and longitude can be mapped onto 
another such pair by a topological map of the solid torus onto itself; however, 
even though any meridian can be mapped onto any other by a deformation of 
T,  this is not necessarily true for longitudes. The topological map of the solid 
torus, which sends a longitude to another which is not homologous (on T ) ,  
cannot be obtained by a deformation of the identity. 

We now orient a fiber H of a solid torus. Thus, if we have chosen a fiber 
H ,  a meridian M ,  and a longitude B on the boundary T of a given fibered 
solid torus V ,  we can just as well choose instead of H ,  M ,  B any other system 
H ’ ,  M‘, B’ which is related to the first system as follows: 

H - € , H I ,  (1) 

M - E ~ M ‘ ,  (2) 

B - e3B’ + xM’. (3) 

Here e, = 2 1; x is an integer. Instead of the equal sign we have chosen the 
homology sign, which denotes homology on T .  For homology is all that 
matters to us and we allow, for example, that H ’  be a fiber disjoint to H and 
M ’  be a meridian obtained from M by a deformation of T. 

Throughout, we write relations of the homology group additively and 
relations of the fundamental group multiplicatively.5 

The numbers p and u not only determine the fibered solid torus V ,  but 

5Cf. B. L. Van der Waerden, “Moderne Algebra 1.” p. 19. Berlin, 1930. 
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conversely V determines p and v uniquely, i.e., two fibered solid tori can be 
mapped onto each other by a fiber preserving map iff they have the same 
defining numbers p,u. For, choosing the longitude B suitably (shortest path 
on a D 2  X I from a point x E d D 2  X 0 to its equivalent point on a D 2  x I ,  the 
dotted line in Fig. 1) and orienting M and H suitably, we have on T the 
homology 

H - u M + p B ,  ( H )  

which means precisely that p and u are the defining numbers of the fibered 
solid torus. If we were to choose instead of H , M , B  an arbitrary system 
H ’ ,  M ‘ ,  B’  of the fibered solid torus, then we would get 

HI-  nM’ + m B ’  (H’) 
since M’ and B ’  are a fundamental system‘ of curves on T which is a basis 
for the homology. Here m and n are coprime integers since the fiber is a 
simple closed curve, and m # 0 since i t  is not homologous to the meridian. 
On the other hand, we can express the homology (H) in terms of H’, M ’ ,  B’  
via the formulas ( I ) ,  (2) (3): 

E , H ‘ - ( E ~ u  + x p ) M ’ +  E ~ / . L B ‘ .  

Therefore 

E , [ ( E ~  + x p ) M ’  + E ~ ~ B ’ ]  -nM’  + m B ’ .  

Comparing the coefficients, we see that p and v are determined by m and n .  
To see this, note that I pl = Iml, also p > 0, so p = Iml; also u is equal to I n [ ,  
reduced modulo m to a number in the interval [ -  i m , i  m] .  Thus the 
numbers p and u are characteristic for the given fibered solid torus. 

Meridian and longitude are already defined on a nonfibered solid torus. 
We need to define still another curve, the crossing curve Q (Querkreis), 
presuming the fibering. I t  is a simple closed curve on T that intersects each 
fiber of T in exactly one point. I t  is therefore (except for its orientation and 
multiples of the fiber) determined by the fibering of T, i.e., if Q and Q’ are 
two crossing curves, we have the formula 

Q - E ~ Q ’  + yH’ (4) 

in addition to the transformation formulas (l)-(3). The fiber H and crossing 
curve Q are a fundamental system of curves on T similar to meridian and 
longitude, i.e., any other closed curve on T is homologous to a linear 
combination of H and Q. 

The boundary of an arbitrary fibered solid torus is a fibered torus. 
Therefore the boundaries of any two fibered solid tori can be mapped onto 
each other under a fiber preserving homeomorphism. The fibered solid torus 

6Meridian and longitude are also called a canonical system of curves or a pair of conjugate 
Ruckkehrschnitte. 



364 TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES 

is determined by the fibering of its boundary torus only if on this torus a 
closed curve M is distinguished as meridian. Of course, M must satisfy the 
conditions to be a simple closed curve not homologous to zero (on T )  and not 
homologous to a fiber. If on a fibered torus the fiber H is oriented and a 
crossing curve Q is chosen, M can be expressed [with coprime integers a 
(# 0) and p ]  as follows: 

We claim that the fibered solid torus is uniquely determined by the fibering 
of its boundary and by M ,  hence by a, /I. We show this by computing the 
characteristic numbers p, v. If 

is a longitude on the fibered torus, we can assume (choosing orientation of B 
suitably) that 

M - aQ + P H .  

B - p Q  + UH 

since both of Q,  H and M ,  B are a fundamental system of curves on the torus. 
Then 

p is determined by a and p up to multiples of a by (5).  As before from (H’), 
the last equation gives us now the characteristic numbers p and v uniquely: 
p = IaI, v = the absolute value of the number p, reduced moda to [ - a, a].  
In particular if the meridian is a crossing curve we have an ordinary fibered 
solid torus. 

The simplest example of a fibered space is S ’  X S2. I t  is obtained from 
S 2  x I by identifying the points x X 0 and x X 1. Figure 2 shows a cross 
section through the center point of S2 X 1 C R ’. The fibers correspond to the 
radii of the hollow ball. We have a fibered space, since each fiber has a fiber 
neighborhood which can be mapped onto a fibered solid torus with the 
numbers p = I ,  v = 0. 

H - a B - p M  

2. Orbit Surface 

The most important concept in the study of fibered spaces is that of the 
orbit surface (Zerlegungsflache). Every fibered space F has an orbit surface f. 
Now j is not a subset of the space F and can in general not be embedded in 
F,’ but is defined as follows: there is a one-to-one correspondence between 
the fibers of F and the points of j.E Since each point of F lies on exactly one 

7 0 ~ r  definition of Zerlegungsflache is not related to G. D. Birkhoff‘s surface of section, 
Dynamical systems with two degrees of freedom [Tram. Amer. Mafh. SOC. 18 (1917), 268; cf. also 
L. Bieberbach, “Differentialgleichungen, ” p. 136. Berlin, 19231. 

*The orbit surface thus indicates how the manifold is “decomposed” into fibers [cf. H. Tietze 
and L. Vietoris, Encykl. Math. Wiss. (111) AB 13 (1930), 1781. 
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fiber, it follows that each point of F has exactly one image on f. The 
neighborhoods o f f  are defined as images of the neighborhoods in F (i.e., of 
the open subsets of F ) .  The following can be proved: 

( 1 )  f is a Hausdorff space. 
(2) Each point of f  has a neighborhood homeomorphic to an open 2-cell. 

(For the proof use the fact that each fiber neighborhood can be mapped 
topologically onto a solid torus.) 

(3) Any covering off by neighborhoods has a countable subcovering. f is 
an open or closed manifold if F is open or closed, respectively. 

(4) f is connected. 

(lk(4) imply that f is triangulable, by a theorem of T. Rado.9 Therefore we 
can apply all the theorems of the theory of 2-manifolds. If F is closed, then f 
is an orientable surface of genus p (number of handles) or a nonorientable 
surface of genus k (number of cross-caps). In the example S '  x S2, the orbit 
surface is a 2-sphere which can be embedded into S '  X S 2  so that each fiber 
meets it  in exactly one point. 

Any closed or open, orientable or nonorientable surface f is the orbit 
surface of some fibered space, for example of the product f X S '  (the fibers 
are x x S ' ,  x ~ f ) .  Here the orbit surface can again be embedded into the 
fibered space, as above. In  $3 we shall give an example where this is no longer 
possible. 

We use throughout the following notation. Passing from the fibered space 
F to the orbit surface j we pass from capital letters to small letters. Thus to 
the fiber H of the space F corresponds the point h of the orbit surfacef. 

If Q H  is a fiber neighborhood of the fiber H ,  we call its image oh an orbit 
neighborhood (Zerlegungsumgebung) of the image point h of H .  The orbit 
neighborhood is obtained from the meridian disk of the fiber neighborhood, 

9T. Rad6. Uber den Begriff der hemannschen Flache, Acia Univ. Szeged. 2 (1925), 101. 
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i.e., from the bottom disk of the cylinder of Fig. I ,  by identifying points 
which belong to the same fiber. Therefore, the orbit neighborhood is a circle 
sector of an angle 2n/p whose boundary radii have been identified, or in 
other words: it is the orbit surface of a cyclic rotation group of order p of the 
disk about its center point. Hence the orbit neighborhood can be mapped 
homeomorphically onto a disk with boundary; hence it is a 2-cell. The orbit 
neighborhoods are just like the fiber neighborhoods closed point sets. They 
satisfy the neighborhood axioms only after removing their boundary curves. 

The orbit neighborhoods satisfy the following: 

LEMMA 1. If w, is an orbit neighborhood of the point h and if e is a 2-ceIl 
contained in w,, such that h is not on the boundary of e, then e is also an orbit 
neighborhood (a) of h,  if h is an interior point of e,  (b) of each interior poinr of e.  
if h does not belong to e.  The fiber neighborhoods E (resp. 52,) which map onto e 
(resp. oh) are in case (a) homeomorphic under a fiber preserving map; in case (b) 
E is an ordinary fibered solid torus. 

ProoJ (a) The fibers that map to the points of e constitute a fibered 
subset E of a, which contains the fiber H in its interior. If  we think of 52, as 
a fibered cylinder with boundary disks identified under a rotation, we obtain 
the orbit neighborhood w,, (Fig. 3) from the meridian disk G i  of a, (Fig. 4) if 
we identify those points of G i  which are equivalent under the cyclic rotation 
group of order p acting on Gi. 

The points of G i  which map to points of e constitute a 2-cell e' (shaded in 
Fig. 4) which contains the center point of G i  in its interior and which is 
mapped to itself under the cyclic rotation group. The subspace E of 52, 
consists of the lines parallel to the axis of the cylinder QH which pass through 
the points of e'. We shall show that we can map e' onto G i  under an 

FIG. 3 
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orientation preserving homeomorphism ii keeping h" fixed and such that any p 
points which are equivalent under the cyclic rotation group are again mapped 
onto p such points. Taking the corresponding map on the lines of E and Q H ,  

we obtain a topological map of E onto Q H  which maps fibers to fibers and 
keeps the middle fiber H fixed, as claimed in the lemma. 

The map a" is obtained as follows: Let a be an orientation preserving map 
that maps e onto and keeps h fixed, let re be a simple arc from h to the 
boundary of e ,  and let r,  be the image of re which is a simple arc from h to 
the boundary of w,,. Now I? (resp. Gi) is decomposed by the p @re-)images of 
re (resp. r,) into p consecutive sectors 

(resp. 

which are cyclically interchanged by the rotation group. The map a 
determines a map of the sector e" onto the sector G' and hence a map a" of .? 
onto Gi, as required. 

In this case, to the 2-cell in wh there correspond in G i  now p disjoint 
2-cells e"',;', . . . , P P  which are interchanged under the cyclic rotation group. 
The fiber set E corresponding to e is in the cylinder Q H  made up of p 
congruently fibered cylinders which lie over Z' to Zp. Now E is obtained from 
these pieces by pasting them together (one after the other) and finally 
identifying top and bottom disks under the identity map. Therefore E is an 
ordinary fibered solid torus, in which we can take each inner fiber as the 
middle fiber. 

e"' ,C2, .  . . , e " ~  . . . , G P )  

(b) 

From Lemma 1 we obtain 

LEMMA 2. If Qk and $2; are two fiber neighborhoods of the fiber H, they are 
homeomorphic under a fiber preserving map which keeps H fixed. 
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ProoJ On the orbit surface there exists a 2-cell e containing h and lying in 
the interior of the intersection of the orbit neighborhoods ui and 0:. By 
Lemma 1, e is the image of a fiber neighborhood E of the fiber H ,  and E can 
be mapped under a fiber preserving map (keeping H fixed) to each of Qk and 
Qi, respectively. 

This lemma implies that for a given fiber H the numbers p,v are the same 
for all fiber neighborhoods of H ;  hence they are an invariant of H .  If p > I ,  
we call H an exceptional fiber of order p of the space; if p = I ,  an ordinary 
fiber. If a fiber in the neighborhood of an exceptional fiber H of order p 
approaches H ,  its limit runs p times around H .  In a fibered solid torus all the 
fibers are ordinary fibers, except possibly for the middle fiber. In a fiber 
neighborhood of an exceptional fiber H of order p we have that p H is 
homologous to an ordinary fiber. The points of the orbit surface that are 
images of exceptional fibers are exceptional points; as points of the orbit 
surface, they cannot be distinguished from ordinary points. 

THEOREM 1. A closed fibered space contains at most finitely many exceptional 
fibers. 

For otherwise there would exist a point of the space such that any 
neighborhood of it meets infinitely many exceptional fibers. The fiber 
through this point would not have a fiber neighborhood. 

3. Fiberings of S 3  

Before studying fiberings in general, we construct examples of fiberings of 
S 3  with exceptional fibers. We think of S 3  as lying in R4, where it is a 
hypersurface with the equation 

x ; + x ; + x : + x ; =  1, 

where x, , x2, x3 ,  x4 are Cartesian coordinates. The fibers are the trace curves 
of certain groups of rigid motions in a single variable (eingliedrigen) of the 
hypersphere into itself. As hypersphere curves of R4 they are given by the 
equations 

xi = x, cos mt + x2  sin mt, 
x i  = - x ,  sinmt + x2cosmt,  

x; = 

x; = 

x3 cos nt + x4 sin nt, 

- x3 sin nt + x4 cos nt. 

Here m and n are coprime positive integers; t is a continuous parameter. 
The trace curves are closed curves which are traversed once if t runs from 0 
to 277. 

We visualize the sphere by projecting it stereographically from the north 
pole (O,O,O,  1) into the equator plane x4 = 0. The equator plane is a 
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FIG. 5 

3-dimensional Euclidean space with the Cartesian coordinates x, y ,  z which 
we close to the conformal space by adjoining one single point of infinity, the 
image of the north pole." Each point (x,,x2,x3,x4) distinct from the north 
pole has a unique image with coordinates x, y ,  z; the x-, y-, and z-axes are 
identified with the x,-, x2-, and x,-axes of R4. The Euclidean space has now 
in addition to the Euclidean metric (from R 4, a spherical metric which comes 
from the stereographic projection of the hypersphere. The projection 
transforms the rigid motions of the hypersphere into conformal (or 
spherical-rigid) motions which permute diametrical balls of the unit sphere 
x2 + y 2  + z 2  = 1. In particular, the above described continuous group is 
mapped into a group which sends the z-axis and the unit circle x2 + y 2  = 1, 
z = 0, to itself. 

Then the 60' tori, which have the z-axis as axis of rotation and which 
intersect each of the spheres through the unit circle orthogonally, are all 
mapped into themselves. Figure 5 shows a section of the torus with the 
x,z-plane. Each of the tori bounds a solid torus which contains the unit circle 
in its interior and is fibered by the trace curves of the group of motions. For a 
half-plane bounded by the z-axis is under a motion of the group rotated 
about the z-axis. The circular section of the half-plane with a solid torus 
(shaded in the figure) is spherical-rigidly rotated about its spherical center M 
about the angle 2nn/m during the time that the half-plane is rotated once 
about the z-axis. The characteristic numbers p and v of the fibered solid torus 
are therefore p = rn and v = absolute value of n, reduced modm to 
[ -  +m,+rn]. 

The part of the hypersphere lying outside the torus considered is also a 
solid torus fibered by trace curves which has the z-axis as middle fiber. For 
under the rigid motion xi = x3, x i  = x4, x i  = xI, xk = x2, that is, under the 

'OCf. DB I1 87, 81, and 92. 
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corresponding spherical motion of the conformal space, the unit circle and 
z-axis are interchanged. The characteristic numbers of this solid torus are 
p = n and v = m (reduced modn to the interval [ - 4 n, 4 n]). The unit circle is 
therefore an exceptional fiber of multiplicity m, and the z-axis an exceptional 
fiber of multiplicity n. Each other trace curve is an ordinary fiber since it is 
contained in a fibered solid torus neighborhood of the unit circle. Each 
ordinary fiber wraps m times about the z-axis and n times about the unit 
circle; hence it is knotted, namely, a torus knot” if m and n are different 
from 1. 

The orbit surface of a hypersphere fibration is always the 2-sphere. For 
each closed curve in S 3  can be deformed into a point; therefore the same 
holds for the orbit surface. Since S 3  is closed, so is the orbit surface (§2); 
hence it can only be the 2-sphere. Here is a direct verification in the case that 
m = n = 1, in which case there are no exceptional fibers. In this case the trace 
curves are circles, which include the z-axis and the unit circle. Each circle 
intersects the interior of the unit circle exactly once, except for the unit circle. 
If a point in the interior of the unit disk approaches the boundary, then the 
trace curve through this point approaches the unit circle. Thus one has to 
close the interior of the unit circle with one single point, the image point of 
the unit circle, to obtain the orbit surface. This completion gives us the 
2-sphere. 

The orbit surface cannot be embedded into the hypersphere so that each 
fiber intersects it in its image point, because a 2-sphere in S 3  intersects any 
closed curve in an even number of points.” 

In P I 1  we shall show that the fiberings described above are the only 
possible fiberings of the hypersphere; i.e., any fibering of S 3  can be mapped 
to one of these under a fiber preserving map. 

4. Triangulations of Fibered Spaces 

The fibered spaces are defined as topological spaces via point sets, but it is 
well known that there are also other, purely combinatorial, definitions of 
manifolds which use different things for their construction, namely, cells of 
dimensions 0 to 3. A combinatorial manifold determines a topological 
manifold if we fill in the cells (which can be chosen to be simplexes) with 
points. In 2 dimensions, any topological space satisfying the corresponding 
axioms (1x4) of 0 1  can be triangulated (see Footnote 9), and therefore one 
can base theorems about 2-manifolds on the topological or the combinatorial 
definition, whichever is more convenient. In three and more dimensions, 

“K. Reidemeister, Knoten und Gruppen. Abh. Marh. Sem Lmiv. Hamburg 5 (1927), 19. 
‘*Since each point of the hyperspere is mapped to a point of the orbit surface, we have a map 

of S3 onto Sz. It is the same map which H. Hopf investigates in “Uber die Abbildungen der 
3-dimensionalen Sphare auf die Kugelflache” [ Marh. Ann. 104 (I93 I), 637-6651. 
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however, i t  is not yet proved that a manifold satisfying axioms (IH4) of $ 1  
can be triangulated.* Therefore i t  is important to know that fibered spaces 
can be triangulated, so that we can use both the methods of point set and 
combinatorial topology. We now present a lemma which is useful but not 
necessary for the proof of the triangulation of fibered spaces. 

LEMMA 3 .  If  w is a (closed) 2-cell on the orbit surface f which contains no 
exceptional points, then w is an orbit neighborhood of each of its interior points. 
If w contains exactly one exceptional point in its interior, then w is an orbit 
neighborhood of this exceptional point. 

Prooj Let h be the exceptional point, or if w has no exceptional points, let 
h be an arbitrary interior point of w. Take a triangulation of w which is so 
small that each 2-simplex is covered by an orbit neighborhood. Furthermore 
we require that h lie in the interior of a 2-simplex. Such a triangulation exists, 
for mapping w onto a disk of R 2 ,  we find a positive radius E such that a disk 
of radius E about an arbitrary point p of w is covered by an orbit 
neighborhood (which is not necessarily the orbit neighborhood of p ) .  I f  the 
&-disk is not contained in the disk, we consider only the part belonging to w. 
If there did not exist such an E ,  there would exist a sequence of disks whose 
radii and center points converge to 0 and a pointp,. respectively, and each of 
which could not be covered with an orbit neighborhood. Then we could take 
a disk of radius p > 0 about p, which is covered by the orbit neighborhood of 
po. This disk contains almost all disks of the sequence, almost all of which 
can therefore be covered by one orbit neighborhood. This contradiction 
assures the existence of an E as above. We now triangulate o so small that 
each 2-simplex can be covered by a disk of radius E .  Then we apply Lemma 1 
to the &-disks and find that all 2-simplexes are orbit neighborhoods. The 
corresponding fiber neighborhoods are ordinary fibered solid tori, except 
possibly for the orbit neighborhood AH of the fiber H which is mapped into 
the 2-simplex 6, containing h. Now, as is well known, there is a sequence of 
2-cells wI = a,, w 2 .  . . . , w, = w, which all are 2-simplexes of the triangulation 
of w and such that each is obtained from its predecessor by adjoining an 
adjacent 2-simplex along one or two edges, a fact which, by the way, may not 
be true in 3 dimensions. The corresponding fiber sets 52,  = AH, Q2, . . . , Qo 
= 52 are fiber neighborhoods of H .  For as wi is obtained from w , _  , by pasting 
on a 2-simplex 6 along a single I-cell s (which may consist of one or two 
edges of S ) ,  we obtain 52; from Q j -  I by pasting an ordinary fibered solid torus 
A fiber preservingly to 5 2 , - ,  along a fibered annulus S .  It is easy to see that 
this gives us again a fibered solid torus. 

THEOREM 2. Every fibered space can be triangulated. 

Proof. We take a triangulation of the orbit surface such that the 
exceptional points are contained in the interior of the 2-simplexes and such 

Translafor’s nofe: This paper was printed December 14, 1932. 
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that no 2-simplex contains more than one exceptional point. By Lemma 3 
each 2-simplex is an orbit neighborhood. The fibered space is therefore 
decomposed into a finite or countable number of fibered solid tori. Two 
adjacent such solid tori have a fibered annulus in common, which is mapped 
onto a I-simplex of the orbit surface and which can be mapped onto a 
rectangle of R * after removing a spanning arc. We can therefore speak about 
straight lines in such an annulus. These are lines which map to straight lines 
of the rectangle. Now we triangulate each of the fibered solid tori so that the 
triangulation of the three annuli which make up the boundary of the solid 
torus is “linear.” On each of these annuli there are now two triangulations 
which come from the triangulations of the two adjacent solid tori and which 
can be replaced by a common subdivision since they are linear. This gives us 
a decomposition of the fibered space into cells. From this we can deduce a 
simplicia1 triangulation by barycentric subdivision. 

5. Drilling and Filling (Surgery) 

An essential aid for the classification of fibered spaces will be the method 
of drilling out exceptional fibers and replacing the drill hole by ordinary 
fibered solid tori. To drill out a fiber H from a fibered space F means to 
remove from F the interior points of a fiber neighborhood 52, of H. This 
results in a fibered space F with boundary. The boundary is a fibered torus. 
The orbit surface f of F is obtained from the orbit surface f of F by removing 
the interior points of the orbit neighborhood wh into which the fiber 
neighborhood 3, is mapped. 

We first show that the space F is independent of the choice of the fiber 
neighborhood of the fiber H and second that F is independent of the choice 
of H if H is an ordinary fiber. Then we get back fibered spaces F by closing 
an arbitrary fibered space F with boundary with suitable fibered torus seals 
(Verschluss ring). 

LEMMA 4. If 3 and 52’ are two fiber neighborhoods of a fiber H in a fibered 
space F, there exists a fiber preserving deformation of F which sends 52 to 52‘ and 
leaves H fixed. 

Proof: Between 3 and 3‘ we put a fiber neighborhood 52,  of H which lies in 
the interior of 52 and 52’ and show that there exists a fiber preserving 
deformation of F that keeps H fixed and sends 52 to 3,. Then there is also a 
deformation which sends 3’ to 52 since 52‘ is not distinguished from 3, The 
required deformation is the first deformation followed by the inverse of the 
second. The existence of such a fiber neighborhood 52, follows from Lemma I 
since for any two orbit neighborhoods w and w’ of h there exists an orbit 
neighborhood 0, of h which lies in the interior of w and w‘. 

We now take another orbit neighborhood wu of h which contains w in its 
interior. This is possible; one can choose for wu a 2-cell which contains w in 
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FIG. 6 

its interior and contains no exceptional points except h. This 2-cell exists 
since the orbit neighborhoods are closed and exceptional points have no 
accumulation points, and it is an orbit neighborhood by Lemma 3. 

To  get a model, we map a, onto a disk of R ’, with the image of h as center 
point, and such that o and o, are mapped to concentric circles (Fig. 6).  Now 
we perform on the disk a deformation which sends o1 to w (for example, by 
radially blowing up ol). This deformation of the orbit neighborhood of h 
corresponds to a fiber preserving deformation of the fiber neighborhood Qa of 
H which keeps H and the boundary of il, pointwise fixed. We obtain this 
deformation or‘ 9, by cutting il into a Euclidean cylinder and transferring the 
deformation of oa to all meridian disks which are p-fold branched covering 
surfaces of a,. 

Lemma 4 implies that the fibered space F, which is obtained from F by 
drilling out a fiber H ,  is independent of the choice of the (infinitely many) 
fiber neighborhoods of H .  

LEMMA 5.  The fibered space with boundarv F, which is obtained from F by 
drilling out an ordinary fiber H ,  is independent of the choice of the ordinary fiber 
H .  

ProoJ If H and H ’  are two ordinary fibers of F,  h and h’ their image 
points on the orbit surfacef, there exists a 2-cell o which contains h and h’ in 
its interior and contains no points which are images of exceptional fibers. 
Then there exists a deformation of w which sends h to h’ and keeps the 
boundary of w fixed. By Lemma 3, o is an orbit neighborhood of each of its 
interior points and hence the image of an ordinary fibered solid torus 9. The 
deformation of w corresponds to a fiber preserving deformation of il which 
sends H to H ’  and leaves the boundary torus of f2 pointwise fixed. 

The same arguments apply to the drilled-out space F and show that the 
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space obtained from F by drilling out an arbitrary number of ordinary fibers 
is independent from the choice of the ordinary fibers which are drilled out. 
The only requirement is that the drilled-out fiber neighborhoods be mutually 
disjoint. 

From the fibered space with boundary F that is obtained from F by drilling 
out a fiber we can construct new (closed) fibered spaces by closing the 
boundary torus B of F with a fibered solid torus, the torus seal V .  This is 
achieved by a fiber preserving pasting of the boundary torus II of V to the 
torus n. Given the torus seal V ,  this closing can be made in infinitely many 
essentially different ways. But the closing is completely determined if one 
knows the image k of a meridian curve M of V on the torus n. Obviously, M 
can neither be null homologous nor homologous to a fiber on n since 
otherwise this would be true for M on II; furthermore, M is without singular 
points. These are all requirements for M. For we have 

LEMMA 6.  I f  on the boundary torus n of a jibered space with boundary F we 
have a simple closed curve which is neither homologous to 0 nor to a 
fiber, then there exists exactly one jibered solid torus V whose boundary torus II 
can be mapped under a fiber preserving map onto n such that is homotopic to 
0 in V .  The thus resulting (c1osed)fibered space F ,  is uniquelv determined by F 
and the homology class of M on n. 

Proof. (a) First we show that there exists one and only one fibered solid 
torus V that satisfies the requirements of the theorem. If Q is a crossing 
curve, 

on 

an oriented fiber on n, we have 
- 
M - a . e + P H  ( a  =O,(a,  p )  = 1). 

In $1  it was shown that there exists exactly one fibered solid torus V with 
meridian M, fiber H ,  and suitable chosen crossing curve Q such that on the 
boundary II of V we have 

M - a Q  + P H .  

We can map II onto n under a fiber preserving map such that Q goes to 
and H to H. For we can cut II, n along Q and H ,  and fl, respectively, into 
two rectangles which are hatched by the fibers and we can map these 
rectangles onto each other under a fiber preserving map. Then M is mapped 
to M ,  and thus M becomes a meridian of V.  

and the homology class of M (on n). All possible fiber preserving maps of n 
onto II under which k becomes homotopic to 0 in V are obtained from a 
single such map followed by a fiber preserving map A ,  from II onto II which 
maps the meridian M, or more precisely its homology class, to itself or its 
negative. We shall have proved the independence of the resulting fibering F ,  
from the choice of the above maps once we have shown that we can extend 
A ,  to a fiber preserving map A ,  of V onto V whose restriction to II is A , .  

(b) We now show that the fibered space F ,  is uniquely determined by 
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We first check how the homology classes of IT are transformed under A,. Let 
H ,  Q, and M be fiber, crossing curve, and meridian curve on II, respectively, 
with an arbitrary but fixed orientation, and let 

M - a Q  + P H .  

Because of the transformations (4) in f I we can choose Q a priori such that 
a > 0 and 0 < /3 < a ;  of course, since M is a simple closed curve, a and /? 
are coprime. Let H ’ ,  Q’.  M ’  be the images of these curves under A, .  Since 
A ,  is fiber preserving, we have from f 1 

H ’ - E , H ,  Q’-E,Q + A H  k l ) .  (1) 

The meridian curve M is mapped under A ,  into 

M ‘ -  aQ’ + p H ‘ -  E - ~ Q  + (el  p + a h ) H .  

Now we must have that M ’  - e,M, hence 

E ~ ~ Q  + ( E ~  f i  + a h ) H  - E ~ ( C X Q  + P H ) .  

Comparing coefficients, we get E~ = e3 and 

ah + E ,  p = E 2 P .  (2) 

If a > 2, this implies A = 0 and for (1) there are only the two possibilities 

(1) H ‘ - H ,  Q’-Q 
( 2 )  H ‘ - - H ,  Q’- -Q.  

a > 2  ( 
For a = 2 we must have h = + 1, - 1, or 0, since 0 < p < a. Thus there are 4 
possibilities 

( I )  H ‘ - H ,  Q ‘ - Q  

( 2 )  H ‘ - - H ,  Q ’ - - Q  
( 3 )  H ‘ - - H ,  Q ’ - Q + H  

(4) H I - H ,  Q ’ - - Q - H  

a = 2  1 
For a = 1 we again get h = 0 and we obtain the four possibilities 

a = l  { H ’ h - - t H ,  Q ’ - + Q  

with all four combinations of the signs. 
The map A ,  which we have to construct will be the composition of two 

fiber preserving maps A ,  = J, . BV.l3 B ,  is an arbitrary fiber preserving map 
which transforms the homology classes on n in the same way as A,, does. J ,  
maps each class to itself. We cut V into a right circular cylinder. In case that 
H ’ -  - H ,  Q‘  - - Q we let B ,  be a rotation of n about a line orthogonal to 
the cylinder axis. Then B ,  is fiber preserving and sends each homology class 
on I1 to its negative. In the case a = 1 we obtain the desired map B ,  by the 

I3Jv . B, is the map obtained by first applying E p ,  then J , .  
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M 
FIG. I 

rotation as in the previous case or by a reflection on a plane which is 
orthogonal to or passes through the cylinder axis. In the case a = 2, the fiber 
is made up of two lines lying diametrical to the middle fiber. Since 
M - 2Q + H ,  the crossing curve appears as in Fig. 7. A transformation (3) is 
obtained by reflecting the cylinder at the plane orthogonal to the cylinder 
axis and going through its center point; a transformation (4) is obtained by 
reflecting at a plane which goes through the axis. 

It remains to be shown that for an arbitrary fiber preserving map J ,  of II 
onto itself which maps each homology class of II to itself, there exists a fiber 
preserving map J ,  of V onto itself whose restriction to II is J , .  We show first 
that J ,  can be deformed to the identity by a fiber preserving deformation. 
We can show this, e.g., by first taking a rigid translation of the fiber into itself 
such that the image Q’ of Q is mapped onto Q. Such a deformation is 
possible since by hypothesis Q’ is homologous to Q on the boundary torus. 
This is followed by a fiber preserving deformation which interchanges the 
fibers and such that the composition keeps Q pointwise fixed. The map J ,  so 
deformed appears in the fibered rectangle, which is obtained from II by 
cutting along a fiber H and Q, as a fiber preserving map C which leaves the 
two parallel edges Q pointwise fixed and which translates the inner points 
only along their fibers. To transform this map of the rectangle into the 
identity by a fiber preserving map, we proceed as in the proof of the Tietze 
deformation theorem by Alexander. We complete the rectangle to a strip by 
the region which is shaded in Fig. 8 and define a map C’ of this strip which 
coincides with C in the rectangle and is the identity in the shaded region. Let 
T(t)  be a stretching of the band upward which leaves the lower boundary Q 
of the band fixed: the ordinate 5 of a point of the band should go over to tt. 
Then T ( t ) - ’ C ’ T ( t )  = C’( t )  is a topological map of the strip, which maps the 
rectangle fiber preservingly into itself for t > 1. For t = 1 this map coincides 
with C in the rectangle. As t -+ 00, C‘( t )  continuously approaches the identity. 
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FIG. 8 

Thus C and therefore J n  is deformed into the identity by a fiber preserving 
deformation. 

We now describe this deformation by a parameter T which decreases from 
1 to + . Let the map corresponding to T be Jn(7). To extend J, to the desired 
map J , ,  we cut V to a cylinder (of radius 1) and introduce cylindrical 
coordinates z, v, p. Then p = const gives a concentric torus of radius p. We 
map each of the tori onto itself under a fiber preserving map. The boundary 
torus is mapped under J n  = Jn( I ) .  If the map Jn(7)  in the coordinates z ,  ‘p is 
given by 

(Jn(7))  
z’ = Z’(Z,9),7) 

v’ = v’( z, ‘p, 7) 

the map J ,  for 1 > p > + is defined by 

cp’ = v’(z,v, P )  2 

z’ = z’( z ,  q, P )  

P’ = P 1 
whereas for f 2 p > 0 it is the identity. This construction of the map A ,  
completes the proof of Lemma 6 .  

Instead of constructing A ,  as above, we could have described this map 
directly in terms of cylindrical coordinates. For if 

( J n )  I I = F(z,rp) 

9, = 9,(z,v) 

[ = z’(z,(p, l ) ]  

[ = ‘p’(z,’p, I ) ]  

describes the map J , ,  of the torus lI in terms of cylindrical coordinates, then 
the desired map A ,  is given in the range 1 2 p > 4 by 

v’ = 2(p - + ) F  - 2(P - I)cp 

2’ = 2(p - + ) 2  - 2(p - 1)z 

P‘ = P 

( A “ )  
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and for $ 2 p 2 0 it is the identity. However, since it is not quite easy to 
demonstrate that this map A ,  is a homeomorphism, we have chosen the 
method above. 

6. Classes of Fibered Spaces 

If w is a path on the orbit surfacef from a point h ,  to a point h, ,  we can in 
the fibered space deform the fiber HI into the fiber H ,  over fibers so that the 
image on f runs along w .  The path w does not determine the mapping of HI 
to H ,  pointwise, but during the deformation the fiber can be translated in 
itself. But the map of HI to H ,  is determined up to orientation preserving 
autohomeomorphisms of h,. Therefore, if H I  is oriented, then the orientation 
is translated uniquely to H ,  along the path w.  We shall take up this point 
more closely at the end of this section. 

If w’ is another path of h ,  to h, ,  the translation of a fixed orientation of h ,  
along w‘ can lead to a different result as translation along w.  However, the 
end orientations agree if w can be deformed to w’ on the orbit surface. In 
particular, if w is a closed curve onf,  it is possible that running along w the 
orientation of the fiber is preserved or changed. Depending on whether we 
have the first or second case, we associate the value + 1 or - 1 to the curve w .  
Since this value is invariant under deformations of the curve, to each element 
of the fundamental group there corresponds a unique value. To the product 
a * b of two elements of the fundamental group corresponds the product of 
the two corresponding values; the inverse of a has the same value as a. This 
implies that the value of a curve is determined already by its homology class. 
For each null homologous curve has value + 1 since it represents an element 
of the commutator subgroup of the fundamental group, and is therefore a 
product of commutators, and each commutator aba-lb-’ has value + 1. 
Therefore the values of all curves are known if the values of a fundamental 
system of curves of the fundamental group, or even the homology group, are 
known. 

We say that two fibered spaces F and F’ belong to the same class if their 
orbit surfaces f and f’ can be mapped onto each other under a 
homeomorphism such that each curve is mapped to one with the same value. 
The class of a fibered space is therefore determined by its “valuated orbit 
surface.” Two fibered spaces belong certainly to different classes if their orbit 
surfaces are not homeomorphic. However, spaces belonging to different 
classes may have the same orbit surface. We shall give a complete 
enumeration of the classes in $7 and $8. For example, for the projective plane 
there are two classes, depending on whether the orientation of the fiber is 
preserved or reversed along the projective line. For a simply connected 
surface there is only one class since each closed curve on it is null 
homologous, hence has value + 1. 
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I f  we drill out a fiber of the space and replace the drill hole by a new torus 
seal as in 95 , the class of the fibered space is not changed. For the class is 
already determined if we know the value of one curve in each homology class. 
The representatives of the homology classes can then be chosen so that they 
are not affected by the drilling and filling, i.e., this process of changing the 
space does not affect the valuation of the curves, as it does not affect the 
orbit surf ace. 

If we drill out all the exceptional fibers from a fibered space F and fill in 
the drill holes with ordinary torus seals, we obtain from F by this process (but 
not in a unique way) another space F, which has no exceptional fibers and 
belongs to the same class as F. Conversely, we can get back F from F,. 
Therefore we first would like to characterize all spaces without exceptional 
fibers belonging to the same class. To this end, we cut the orbit surfacef of a 
space F, into the fundamental polygon u, where we have to require that f be 
closed, hence F be a closed space. We adopt this restriction from now on. We 
change the fundamental polygon to a polygon 5 by cutting off the vertices, 
which means that we change the surfacef to a punctured surfacef by cutting 
out a 2-cell which contains the vertex h of u.  Figure 9 shows the punctured 
fundamental polygon of the orientable surface of genus p = 2. We can think 
off  as the orbit surface of a space F, which is obtained from F, by drilling 
out a fiber H .  Then Fo is uniquely determined by Fo since F, does not depend 
on the choice of the drilled out ordinary fiber, by Lemma 5 ($5 ) .  Now we 
triangulate f using the edges of the polygon ij (dotted lines of Fig. 9). The 
fibers of F, which map to points of a 2-simplex of the triangulation constitute 
an ordinary fibered solid torus, by Lemma 3 ($4). As in the proof of Lemma 3 
we can build up the polygon 5 step by step from 2-simplexes so that after 
each step we obtain a 2-cell. This construction corresponds to a construction 
of F, from ordinary fibered solid tori, which gives us an ordinary fibered solid 
torus v. The edges of 5 correspond in v to fibered annuli. If two edges a’ and 
u” in t. are identified with an arc a off, we have to identify the corresponding 

FIG. 9 
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annuli A’ and A ” in v with a fibered annulus A of Fo under a fiber preserving 
map. If we identify in this way all the corresponding annuli of v, we get Fo. 
If we know how two edges a’ and a“ of C5 are identified (under an orientation 
preserving or orientation reversing map) and whether the fiber orientation is 
preserved or reversed along a closed curve off which intersects the edges of E 
only in one point of the edge a,  then the identification of the annuli A’ and 
A ”  is uniquely determined up to an orientation preserving and fiber 
preserving map of one of the annuli onto itself, say A’ .  This map of A’ can be 
induced by a fiber preserving map of the solid torus v which keeps all the 
other annuli (which correspond in pairs) fixed. The map of A’ to A’ has 
therefore no effect on the closing of to F,. All fibered spaces with 
boundary obtained in this way can be mapped onto Eo under a fiber 
preserving map. 

This shows that all closed fibered spaces F, without exceptional fibers 
which belong to the same class give the same fibered space (with boundary) 
Fo after drilling out an arbitrary fiber. If we drill out r + 1 fibers instead of 
just one, we again obtain the same fibered space (bounded by r + 1 tori), 
namely, the sapce obtained from F, by drilling out r fibers. As the proof of 
Lemma 5 (55) shows, it does not matter which fibers of Fo are drilled out. We 
sum up: 

THEOREM 3. Each class of closed fibered spaces determines (and is 
determined by) a unique fibered space with boundary, the classifving space F,. 
The classibing space is the on4  fibered space with boundary and without 
exceptional fibers which has as orbit surface the punctured valuated orbit surface 
which characterizes the class. From F, we obtain all spaces of the class by 
drilling out a finite number r of fibers and closing the r + 1 boundary tori with 
arbitrary torus seals. The enumeration of all classes will be given in Theorem 
7, 58. 

So far, we started with a given fibered space F and defined its class, i.e., its 
valuated orbit surface. Now we start with an arbitrary valuated closed surface 
and show that it is the valuated orbit surface of a class. We cut the given 
surface f into the fundamental polygon u as above and puncture it by cutting 
off the vertices of c to get 3. The ordinary fibered solid torus v which has 5 
as meridian disk can be made into a fibered space (with boundary) Fo by 
identifying under a fiber preserving map any two annuli A‘  and A ”  on the 
boundary on v which map to corresponding edges a‘ and a” of C5 such that a 
fiber of A’ is identified with a fiber of A” if the point of a‘ is identified with 
the corresponding point of a”. Then there exist essentially two distinct maps 
of A’ to A ” .  For if we orient the the fibers of v simultaneously so that any 
two oriented fibers on v are homologous, we can map A’  to A “ under a map 
which preserves and under a map which reverses the fiber orientation. In the 
first case the orientation of the fiber is preserved along a curve which goes 
from a point of A’ through the interior of v to the equivalent point of A ” ;  in 
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the second case it is reversed. If we identify in this way any two annuli of V 
which correspond to two equivalent edges of E under one of the two maps, we 
get a space with a boundary no which consists of fibers. These boundary 
fibers correspond to the boundary curve 5 .  Therefore II, is a torus or a Klein 
bottle. To show that TI, is a torus, we observe that if we run along the 
boundary curve off ,  we cross each edge of the polygon u exactly twice. In 
both cases the fiber orientation is either preserved or reversed so that if we 
run once along the boundary curve the fiber orientation is preserved; but this 
is the case only for the torus. The space obtained from under the 
identifications is therefore a fibered space (with boundary) without ex- 
ceptional fibers. Its orbit surface is the punctured surface f ,  whose valuation 
was obtained from an arbitrary valuation of the edges of a fundamental 
polygon (namely the fundamental polygon dual to u). This proves 

THEOREM 4. For an arbitrary valuated closed surface there is a corresponding 
class of fibered spaces. A valuation of the surface is obtained by an arbitrary 
valuation of a canonical system of fundamental curves, i.e.,  the edges of a 
Poincare fundamental polygon of the surface. 

We proved the last remark by constructing for any arbitrarily given 
valuation of the fundamental curves a space Fo whose orbit surface is the 
given punctured surface; the valuation of the orbit surface determined by Fo 
agrees for the fundamental curves with the arbitrarily given valuation. One 
could easily have shown directly that an arbitrary valuation of the 
fundamental curves, i.e., of the generators of the fundamental group, leads to 
a well-defined valuation of the whole group since each generator appears 
exactly twice in the single relation of the fundamental group, and therefore an 
arbitrary valuation of the generators gives a well-defined valuation of the 
single defining relation and hence of each relation between elements of the 
fundamemtal group. 

Theorems 3 and 4 give us the tools to determine complete invariants of 
fibered spaces under fiber preserving maps. We now describe in detail the 
translation of the fiber orientation along a path which was used in the 
definition of class. If  w is a path on the orbit surface from a point h ,  to a 
point h, and if s is a continuous parameter from 0 to 1 on w, we have for each 
value s of the parameter a point h ( s )  off and hence a fiber H ( s ) .  Orient each 
fiber H ( s )  arbitrarily. If the same fiber H belongs to different values s, which 
happens if w has multiple points, we give H the same number of mutually 
independent orientations. A fiber neighborhood of H ( s )  or, more precisely, 
the corresponding orbit neighborhood on f cuts out from w a neighborhood 
of the point h(s) .  If for each value of s all the fibers corresponding to the path 
near h(s)  are homologous in the fiber neighborhood of H(s) ,  where a p-fold 
exceptional fiber counts p times, we say that the fibers are oriented simul- 
taneously along w. It is clear that there exists such a simultaneous orientation 
of the fibers along w if w is covered by one orbit neighborhood w ;  because 
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then we need only orient all the fibers which map to points of w so that they 
are homologous in Q . I 4  In the general case we decompose w into finitely 
many pieces so that each piece lies in the interior of an orbit neighborhood. 
The fibers of the individual pieces can be oriented simultaneously so that 
each fiber at the intersection of two pieces gets the same orientation from the 
two pieces. Then all the fibers are oriented simultaneously along w. The fibers 
can be oriented simultaneously along w apparently only in two opposite 
ways; the orientation along w is determined by the orientation of a single 
fiber, e.g., the initial fiber. Under a simultaneous orientation of the fibers of 
w, the orientation of the first fiber is translated along w to the last fiber. 

If w and w’ are homotopic curves of the orbit surface which both go from 
h ,  to h, ,  and if the fiber HI is oriented, then the translation of the orientation 
along w and w’ to H ,  gives the same result; i.e., the fiber orientation is 
preserved under translation along the closed path ww’-I. For ww’-’ bounds a 
singular 2-cell on f, i.e., the continuous image of a 2-cell e. We triangulate e 
so small that the image of each 2-simplex is contained in an orbit 
neighborhood on f. Since the path ww’- I  can be built up from boundary 
paths of 2-simplexes by canceling out edges which are traveled in opposite 
directions, and since the fiber orientation is preserved along a closed path 
which lies in an orbit neighborhood, the fiber orientation is preserved along 
ww‘ - I .  

We now want to solve the problem whether and in how many different 
ways the orbit surface Jb can be embedded in the classifying space Fa so that 
each fiber intersects it exactly in its image point. To this end, we cut fo into a 
fundamental polygon U which, in contrast to the fundamental polygon G 
above, contains the hole of fo in its interior, i.e., ii is a punctured 2-cell. This 
corresponds to a cutting of Fa into a fibered hollow torus 0. The “inner” 
boundary surface no of 0 is mapped onto the boundary of the hole of ii, 
whereas the “outer” boundary Z is decomposed into an even number 2j  of 
pairwise equivalent fibered annuli which map onto edges of the polygon ii. 
Suppose we have succeeded in embedding fo into F,,; then yo appears in 
necessarily as an annulus which meets Z in a crossing curve Q and no in a 
crossing curve Qo. If Q ; ,  . . . , Qy,Q,”, . . . , Qy are the 2j oriented edges 
which make up Q and which correspond to the 2 j  lateral surfaces of Z, then if 
two such lateral surfaces (annuli) A,! and A: are identified, the two edges Q; 
and QY which they contain have to be identified under an orientation 
preserving or reversing map. (Conversely,) a crossing curve Q with this 
property can always be found on Z by choosing the crossing lines 
Q; ,Q; ,  . . . , Qi arbitrarily, but such that their end points go to the same 

I41n this case we say that the fibers of 51 are oriented simultaneously. More generally we talk 
about a simultaneous Orientation of all fibers of a fibered space if in each fiber neighborhood any 
two fibers are homologous, where a p-fold execptional fiber counts p times. Not every fibered 
space admits a simultaneous orientation of fibers but only the spaces of the classes 00 and Nn I 
of p. 391. 
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point under the identification of the lateral surfaces. Then fo can be 
embedded into Po; for example, we can cut 0 into a hollow cylinder 
(annulus X I) and draw from the points of Q radii which lie orthogonal to the 
cylinder axis. These radii in 0 make up the required orbit surface. 

Suppose now we havef, embedded into F, in a different way, with crossing 
curves Q* and Q: instead of Q and Q,. The lines Q,’ and QI’* of Q (resp. Q*), 
which lie in the same lateral side Al’ of Z, have (after choosing an orientation 
of Z) a certain intersection number” y:; here we assume that Q,’ and Q,’* 
have no common endpoints, which can be achieved by a small deformation 
of the embedded orbit surfaces. Since under the identification of the 
corresponding lateral sides Al’ and A: the lines Q,’ and Q;* are identified with 
the lines Q,” and Ql”* (resp. with - Q,” and Q”*), the intersection number is 
y,” = - yi or = + y,!, depending on whether A/  and A: form an association of 
type one or two.I6 y = ‘y,! + y:, i.e., the intersection number of Q and Q* 
is 0 if all the lateral sides of C are identified in the first way, i.e., if F, is 
orientable. Otherwise we can choose Q* such that y is a given even number. 
Therefore, if F, is orientable, Q can be deformed into Q* and hence Q, into 
Q:, i.e., on the boundary surface II, of F, there exists a crossing curve Qo 
which is determined up to orientation and deformations, such that Q, is the 
intersection of II, and the orbit surface Jb is embedded in F,. I f  Po is 
nonorientable, there are besides Q, infinitely many crossing curves Q: which 
can be the intersection of f, and no. They all differ from Q, by an even 
multiple of the fiber. If we cut the fibered torus x I, 0 along the embedded 
orbit surface j,, we obtain a drilled-out fibered prism in which bottom and 
top surface are equivalent and the lateral surfaces are pairwise equivalent. We 
shall use this representation of the classifying space in $10 to determine the 
fundamental group. 

7. The Orientable Fibered Spaces 

Our task to determine all fibered spaces and to characterize them by 
invariants splits into two parts: first, to determine all the classes; second to 
list all spaces of a given class. We first solve this problem for orientable 
spaces. 

First suppose the orbit surface is orientable of genusp. Since the space is 
orientable, the fiber orientation is preserved along any curve of the surface. 
For if w is a closed curve of value - I  on the orbit surface (which misses 
exceptional points), there is a fiber preserving deformation of the space which 
traces the fiber H along the curve w.  This is so because w can be covered with 
finitely many orbit neighborhoods without exceptional points (Heine-Borel). 

l5O. Veblen, “Analysis Situs,” 2nd ed., Amer. Math. SOC. Colloq. Publ. No. 5, Part 2. Amer. 

I6H. Tietze, Topologische Invarianten, Monufsh. Mufh. Phys. 19 (1907). [See Seifert and 
Math. SOC., New York, 1931. 

Threlfall, this Lehrbuch p. 220.1 
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Inside each orbit neighborhood one can apply the fiber preserving 
deformation of the proof of Lemma 5 and thus deform the fiber step by step 
along w into its initial position. In particular we can choose the deformation 
such that an orbit neighborhood w of the point h comes back to itself, since 
along w the orientation of the surface is not changed because it is orientable. 
The corresponding fibered solid torus Sl is then mapped onto itself under an 
orientation reversing map. But, by a well-known theorem, the orientation of 
an orientable space is not reversed under a deformation. Therefore, all curves 
have value + 1, and there is for each orientable orbit surface a single class of 
orientable fibered spaces. Now the fibered topological product of a punctured 
surface of genus p and S ' is an orientable fibered space whose orbit surface is 
the punctured surface of genus p and all of whose curves are of value + I .  
Since this space has no exceptional fibers, it is the classifying space Fo. 

Even if the orbit surface is nonorientable, there is on4 one corresponding class 
of orientable spaces. As in the above case we first observe that the fiber 
orientation is preserved along an orientation preserving curve of the orbit 
surface. But if w is an orientation reversing curve of the orbit surface, then 
the space is orientable only if the fiber orientation is reversed along w. 
Therefore the valuation is determined by the surface. The classifying space is 
in this case not the topological product of the punctured surface of genus k 
and S ' ,  but has to be constructed by the method of 16. Figure 10 shows it for 
k = 3. In the prism we have to identify bottom and top disks under a 
translation. The two lateral surfaces in which we have drawn the fiber H are 
to be identified so that the edge a ,  of one surface is identified with the edge 
of the other surface. Similarly we have to identify the other four unshaded 
lateral sides of the prism. The six shaded sides become the boundary torus of 
the classifying space and the bottom surface becomes the orbit surface. 

This finishes off the determination of the class and we now proceed to 
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determine the invariants of an orientable fiber space F. We orient the space 
and the invariants depend on the orientation. We shall obtain the invariants 
by drilling out the exceptional fibers of F and replacing them by ordinary 
solid tori whose meridians are uniquely determined by the fibered space F up 
to orientation. In this way we get from the oriented space F a  unique oriented 
space F,, without exceptional fibers. Let C ,  be an exceptional fiber of F and 
9, a fiber neighborhood of C , .  The solid torus 9, gets a certain orientation 
from F, which induces on the boundary torus II, of &, a certain orientation 0. 
On II, we choose an oriented crossing curve Q and an oriented fiber H .  
These two curves determine an orientation 0' on II, . For, cutting II, along Q 
and H into a rectangle, a certain orientation of it is determined by the 
sequence Q H Q - I H - ' .  By reversing the orientation of one of the curves Q 
and H ,  we reverse the orientation 0'. But 0' is not changed by reversing the 
orientation of both curves simultaneously. We now orient Q and H so that 0' 
agrees with 0. This can be expressed by saying that using the orientation o the 
curves Q and H shall have intersection number + 1. Another pair of curves 
Q, and H I  which determines the same orientation 0' = o on II, is related to Q 
and H (on II,) as follows: 

H - & H I ,  Q - E Q ,  + y H ,  ( E  = k 1, y arbitrary integer). ( I )  

For if Q , ,  H ,  determine the same orientation as Q, H ,  the determinant of the 
transformation must have value + 1. This implies that in the transformation 
formulas (1) and (4) of $ 1 ,  E ,  = E~ (= E ) .  The meridian curve MI of the solid 
torus 9, can now be expressed in terms of Q and H as 

MI -aQ + ~ H - E E ~ Q ,  + ( C X ~  + @ ) H I  = a , Q , +  PIHI .  (2) 

a ,  > 1 and O < P ,  < a , ,  (3) 

We can choose Q, and H I  such that 

which determines E and.v. If instead of MI we choose the meridian curve with 
opposite orientation, we only have to reverse both the orientations of Q, and 
H I  to obtain the same homology MI - a lQl  + PIHI. Hence the numbers 
a , ,  PI are determined uniquely by the nonoriented meridian of 9, and the 
crossing curve Q, is determined up to its orientation. We now drill out a, and 
replace the drill hole with a new torus seal V ,  which has Q, as meridian 
curve. Then V ,  is an ordinary fibered solid torus since the meridian is a 
crossing curve. Thus we have derived an orientable fibered space F ,  from F 
which is uniquely determined by F, the orientation of F, and the drilled-out 
exceptional fiber. For F,  is independent of which fiber neighborhood &, of C ,  
is drilled out because by Lemma 4 (95) we can deform an arbitrary fiber 
neighborhood of the fiber C ,  onto another under a fiber preserving 
deformation of F. 

We now apply this construction to F , ,  i.e., we drill out an exceptional fiber 
C, and obtain the pair a 2 ,  P2 as additional invariants of the oriented space F.  
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Continuing in this way, we finally obtain an oriented space F, without 
exceptional fibers which is determined by F and its orientation. F, is 
independent of the order in which we have drilled out the exceptional fibers 
of F because we can drill them all out at  the same time by choosing the fiber 
neighborhoods sufficiently small. 

From F, we drill out an arbitrary fiber neighborhood Vo and obtain the 
class space F, of F.  I t  inherits the orientation from F. Since Fo is orientable 
there is a distinguished crossing curve Q, on the boundary torus II, of F, 
which is determined up to orientation and deformations as the boundary of 
the orbit surfacef, embedded in F, (see $6). We orient Q, and a fiber H ,  of 
II, so that they give on no the same orientation as that induced by V,. The 
meridian curve M ,  of V,, which is a crossing curve, is in the system Q,, H ,  of 
the form 

M , -  Q, + bH0. (4) 

The integer b is determined by the oriented space F,, hence by F and its 
orientation. 

This gives us a complete system of invariants of F, by the following: 

THEOREM 5. A n  orientable fibered space F together with its orientation is 
determined by a one-to-one correspondence by a system of invariants 

( 0 , o ; p  I b ; a , ,  P1;a2, p2; * - .  ;a,, P,) 

(Qn; k I b ;  a,, P I ;  a2,  P2; . . . ; ar, P,).  
or 

Here 0 means that F is orientable; o (resp. n) means that the orbit surface is 
orientable (resp. nonorientable). p and k are the genus [number of handles (resp. 
cross-caps)] of the orientable (resp. nonorientable) orbit surface. The three 
symbols to the left of the bar determine therefore the class of F. The number b 
determines uniquely the construction of the space without exceptional fibers F, 
from the class space F,. The numbers a;, pi determine uniquely (one-to-one) the 
exceptional fibers in F. 

The theorem tells us when two orientable fibered spaces with given 
orientations are homeomorphic under an orientation and fiber preserving 
map. Theorem 6 shows how the invariants change if the orientation is 
reversed. 

We have seen how to find the system of invariants for a given oriented 
space F. To show that this system is complete, we construct conversely to a 
given system of invariants a unique oriented space F. The numbersp (resp. k )  
determine the class (see p. 384) and hence by Theorem 3 (16) the class space 
F,. We can orient F, arbitrarily since there exists a fiber preserving and 
orientation reversing map of F, onto itself (reflection of the solid torus v of 
16 on a meridian disk). This determines the crossing curve Q ,  of the 
boundary torus II, of F, and a fiber H ,  up to simultaneous reversion of their 
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orientation. b determines M ,  - Qo + bH, up to orientation and therefore the 
closing of F, to F, uniquely. From F, we have to drill out r arbitrary fibers; 
the resulting space which is bounded by r tori is independent of the choice of 
the drilled-out fibers by Lemma 5. On each of the boundary tori there is a 
distinguished (up to orientation) crossing curve Qi,  namely, the meridian of 
the drilled-out solid torus, and the orientation of F, therefore determines a 
pair of curves Q,,Hl up to simultaneous reversion of orientation. This 
determines uniquely the meridian M, - a,Q, + p l H ,  of the new torus seal (up 
to orientation) and therefore uniquely the closing of F, to F. 

We now describe for an orientable fibered space F a useful “diagram” V ,  
which together with Fo determines the space. Choose in F disjoint fiber 
neighborhoods 52, of the exceptional fibers. Then the ordinary torus seals V, 
which replace the drill holes in F, are disjoint. We can choose the fiber 
neighborhood Yo, which we removed from F, to obtain the class space F,. in 
such a way that it contains all torus seals V, in its interior by Lemma 3. The 
fibered space with boundary Po that is obtained from Vo after removing the 
V, ,  and which is the topological product of S 1  and a disk punctured r times, 
is the diagram of the fibered space F if the distinguished crossing curve Q, of 
F, is drawn on the boundary torus no of F,, and the meridian curves M ,  of 
the drill holes 52, are drawn on the remaining r boundary tori II,. Obviously 
Q, determines how one has to glue on the class space F, [which is determined 
by p (resp. k ) ]  to the boundary torus II,. By Lemma 6 ,  MI determines the 
filling in of the drill hole 52,. Furthermore, if we orient v,, we get an 
orientation of F. 

To obtain the invariants b ;  a I ,  PI;  . . . ; a,, p, of F from the diagram V,,  
we orient the fibers of Po simultaneously, i.e., so that they are homologous in 
v,. Then the orientation of the fibers H,, H I ,  . . . , H ,  on the boundary tori 
&,II,, . . . , II, is determined. Hewe the crossing curves Q , ,  . . . , Q, on the 
boundary tori are determined together with their orientation by requiring that 
the orientation on II, which is induced by Q, and H ,  shall be opposite to the 
orientation induced by v,, and by requiring that the numbers a,, p, in 

- 

- 

MI - a; Qt + PI HI (on n;) ( 5 )  

satisfy a, > 1, 0 < p, < al. The Q, are meridians of the torus seals V, .  Closing 
vo with the V l ,  we obtain an ordinary solid torus Vo with the meridian 

Mo - Qo + bHo (on no) ( 6 )  

and it is easily proved that 

M , -  Q I  + Q2 + * * . + Q, (in Po) 
and hence 

- Qo + Q ,  + Q2 + . . + Q, - bH, (in vo). (7) 

Figure I 1  shows vo with r = 3, b = 4. 
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FIG. 11 

We now want to find out how the invariants are changed if the orientation 
of F is reversed. In the diagram Po only the orientation is reversed, but not 
the curves Mi and Qo. I t  is useful to reverse the orientations of the fibers of 
vo simultaneously; let H i , H ; ,  . . . , H,! be the fibers H o , H , ,  . . . , H,, but 
with opposite orientation: 

H,’- - H, (on Hi, i = 0,1, . . . , r ) .  ( 8 )  

We have to replace the Q I ,  Q2, . . . ,,Qr by the crossing curves Q;, 
Q;, . . . , Qr’. Then 

(2,’- Qi +y,H,  (on IIi, i = 1,2, . . . , r ) .  (9) 

The sign of Q, is + 1 since the determinant of the transformation of the pair 
(8) and (9) has value - 1, so that the orientation on vo is reversed and hence 
the orientation of Hi. For the same reason 

Qi - QO (on no). (‘0) 

Then we have for the meridian Mi 

Mi - aiQi + P,Hi - alQI’ + ( a s ;  - Pi)H,’ = a,’Q,’ + P,’H,’. 

The requirement a,! > 1 and 0 < P,’ < u,’ gives us a,! = a, and PI’ = ai - P,, i.e., 
y, = 1. b’ is [as b from (7)] now determined by 

- Q; + Q;  + . . . + Q,’- b’H6. ( 1 1 )  

Using (7)<10), we get b’ = - r - b. 

THEOREM 6. The oriented fibered space F with invarianls 

( 0 , o ; p  1 b ; a , ,  P I ; .  . . ;ar ,  P , )  
[ resp . 

(0, n; k I b ; a l ,  P I ;  * . P r ) I  
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has after reversing its orientation the invariants 

( O , o ; p l - r - b ; a , , ( ~ ~ - P ~ ;  . . .  ; L Y , , L Y , - & )  

(0, n; k 1 - r - b;  L Y , , ( Y ,  - PI; . . . ;a,,a, - p,)]. 
[ resp . 

If we had normed the numbers pi to the interval 

- ;ai < pi < $ai 
instead o f  norming to 0 < pi < LY, by (3), the invariants b, p,, . . . , p, would 
only change their signs if the orientation of F were reversed, in the case that 
no exceptional fibers of order 2 were present, i.e., all a, > 2. But if 
a ,  = 2, . . . , as = 2, only the last r - s invariants p would change their signs if 
the orientation were reversed, but b would have to be replaced by - s  - b, so 
that choosing the new normalization would not lead to an essential 
simplification for the purpose of reorientation. 

8. The Nonorientable Fibered Spaces 

As in the orientable case we first determine the classes. First assume the 
orbit surface f is orientable. Then the genus of f is > 0, since otherwise F is 
orientable (see $6 and $7). We show: For each orientable orbit surface of genus 
p > 0 there is exactly one class of nonorientable spaces. The claim is true for 
p = 1. For if a and b are two conjugate simple closed curves on a torus, then 
a,  say, has value - 1. We can assume that then b has value - I ;  otherwise we 
replace b by ab. Now suppose the claim is true for genus p - 1 ( 2  1). We 
prove it f o rp  by showing that on a surface of  genusp > 1 there is a handle on 
which all curves have value + 1. Cutting off this handle we get a punctured 
surface of genus p - 1 having some curves of value - I which is unique by 
the induction hypothesis. To show the existence of such a handle choose a 
system of curves which cuts the surface into a fundamental polygon with 
boundary a,b,a;'b;' . . . apbpap-'bp-l. I f  there is a pair a,,b, of value + I ,  we 
are done. Otherwise a , ,  say, has value - 1. Assume b, has value + 1 
(otherwise replace 6 ,  by alb l ) .  There is a curve aJ or bJ ( j  > 1) of value - I ;  
thus one of the curves ala, or albJ-' has value + 1 and spans together with 6 ,  
a handle with each curve of value + 1. 

Since the class is unique we can choose (on a surface of genus p > I )  a 
canonical system all whose curves have value - 1. 

I f  the orbit surfacef is nonorientable of genus k we represent it as a sphere 
with k cross-caps xI  , . . . , xk (see Fig. 12). Then a, is a curve which intersects 
the cross-cap in one point; i.e., a, is orientation reversing. Then 
H , ( f )  = { a l ,  . . . , ak:2a, + . - + 2a, - O } .  The valuation of f is therefore 
determined by the valuation of a,,a,, . . . , a,. If all the a, have value - 1, F is 
orientable. Thus at least one a, has value + 1. 
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FIG. 12 

\ / 

FIG. 13 

This leads to the following cases: 

Case (a) a, has value + I for each i. Then F N N  f X S 1  and &NN 

(punctured fl X S I .  

Case (b) k, of the a, have value + 1, k, = k - k, have value - I (k ,  > 0, 
k, > 0). Suppose f #  P 2  (k  = 1) and j# Klein bottle (k = 2). We claim that 
we can always assume that k ,  = 1 or = 2. This is clear for k = 3. Suppose 
k > 3 and k ,  # 1, k, # 2. There exist at least three a,, say u2,u3,u4 of value 
+ 1 and one, say u, ,  of value - 1. Let 1 be a curve which separates the 
cross-caps xI,x2,x3,x4 from the others. I separates f into cp and 4, where cp is 
a sphere with the cross-caps x , ,  . . . , x4 and one boundary 1. On cp there are 
two disjoint simple closed curves a’, 5 a ,  + a, + u3 and a; - a ,  
+ u3 f u4 of value - 1. There is a simple closed orientation reversing curve c, 
disjoint to a; U a;, (see Fig. 13), such that the surface ?p, obtained from cp by 
cutting along a; and a; ,  is nonorientable. We can represent ?p as a sphere with 
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two cross caps and three boundary curves I ,  a;',a;'. cp is obtained from (p by 
identifying diametrical points of a;, and a;'. Gluing back I/ and I ,  we have a 
new representation off as sphere with k cross-caps. Since a; and a; now have 
value - 1, the number of negative cross-caps has increased at least by 1. 
Continuing, we get k ,  = I or k ,  = 2 .  

We now show that the latter two valuations are distinct. Let d be a curve 
on f such that 

d - 2 y,a, 7L 0 and 2d - 2y1a1- 0. (1) 
(For example, d can be chosen to be a simple closed curve that intersects each 
cross-cap exactly once. In this case, cuttingf along d we obtain an orientable 
surface with one or two holes, depending on whether k is odd or even. d is 
called an orientation producing simple closed curve.) Since 2 d - 0  is a 
consequence of 2a,  + + 2ak -0, CZy,a, differs from C 2 a ,  only by a 
factor and all the y, are equal and odd since otherwise d - 0 .  Hence d has 
value (- 1)"~.  Thus the valuations off with even k ,  are different from those 
with odd k,;  in particular the valuations k ,  = 1 and k ,  = 2 yield different 
valuations off.  The investigation of all classes of fibered spaces is complete. 

THEOREM 7. For each orientable orbit surface f of genus p there is exactly one 
class of orientable fibered spaces, and if p > 0, exactly one class of non- 
orientable fibered spaces. For each nonorientable orbit surface f of genus k there 
is exactly one class of orientable fibered spaces, and if k > 2, exactly three 
classes of nonorientable fibered spaces; for k = 1 there is one class, for k = 2 
there are two classes. 

The following table lists the different classes. 0, N refer to orientability and 
nonorientability of F, and 0, n to the orbit surfacef, whose genus must be 
given in order for the class to be determined. Recall that a closed curve w off  
is given the value + 1 if the fiber orientation is preserved along w;  otherwise 
w gets the value - 1 ,  and note that the class and therefore the classifying 
space Fo is uniquely determined by the valuation of all the curves o f f .  

00 

On 
No 
Nn I 
Nn I1 

Nn 111 

All curves have value + I ; Fo E (punctured f) X S I ;  

All one-sided curves have value - 1 ; 
There are curves of value - 1 ; 
All curves have value + I ; Fo E (punctured f) X S I ;  

There are one-sided curves of value - I and of value + 1; each 
orientation producing simple closed curve has value - 1 ;  
There are one-sided curves of value - 1 and of value + 1 ; each 
orientation producing simple closed curve has value + 1. 

For p = 0 there is only the class 00, for k = 1 only On and Nn I ,  for k = 2 
only On, Nn I ,  Nn 11. Fo can now be constructed as in $6. 

We now characterize the nonorientable fibered spaces F by invariants. Let 
C ,  be an exceptional fiber in F, a, a fiber neighborhood of C , ,  n, the 
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boundary of Q ,  , MI a meridian on II, , Q an arbitrary crossing curve on II, , 
and H a fiber; then 

MI - aQ + P H  (on n1). ( 2 )  

H - t l H I ,  Q - E ~ Q ~  + y H , .  (3) 

Using formulas (1) and (4) of $ 1, 

we can choose a new crossing curve Q ,  and fiber H I  such that 

For the first requirement determines E ~ .  Choosing y suitably we reduce PI to 
[ - t a , , t a , ]  and finally we choose 6 , .  There is no orientation on II, 
determined by F since F is nonorientable; hence e l  and E~ can be chosen 
independently (cf. $7 in the orientable case). a , ,  PI are uniquely determined 
by Q ,  and hence by C,. The same holds, if a ,  > 2, for Q ,  and HI, up to 
simultaneously changing their orientation, which is permitted since the 
orientation of MI is not given by 52,. But for a ,  = 2 there is besides Q , , H ,  
another system 

Q ; - Q , + H , ,  H ; - - H I  ( 5 )  

MI - 2 Q ;  + H i .  ( 6 )  

in which MI also appears in normal form (4): 

If a ,  > 2, we drill out Q ,  and replace it by an ordinary torus seal V ,  having 
Q, as meridian and do the same for all exceptional fibers of multiplicity > 2.  
This determines uniquely a nonorientable fibered space F,, which has only 
s Z 0 exceptional fibers of multiplicity 2. To investigate F, further, we need 

LEMMA 7. A nonorientable fibered space F with boundary which is obtained 
from a (closed) jbered space by drilling out finiteh many exceptional fibers 
admits a fiber preserving autohomeomorphism keeping the boundary tori 
pointwise fixed except for one, fi. On n a given crossing curve Q is mapped to a 
crossing curve of the form 

Q ' -  + ( Q  + 2 z H )  or Q'- - ( Q  + 2 z H ) ,  (7) 
where z is an arbitrary integer and H is an oriented fiber on n. Furthermore, 
one can choose the homeomorphism orientation preserving or reversing on II." 

Prooj (a) Let z = 0. To find an orientation reversing homeomorphism we 
glue on an ordinary fibered solid torus V having Q as meridian and get a 
space F +  V .  The required map will be the end result of a fiber preserving 
deformation of F + V .  Choose on P + I/ a simple closed curve W from an 
interior point P of V and disjoint to the exceptional fibers which is 

"The theorem does not claim that we can choose the sign in (7) arbitrarily. 
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orientation reversing. Deform F + V (fiber preservingly) so that P runs along 
W and at the end V is mapped to itself (see $7). Then V and hence TI is 
mapped to itself under an orientation reversing homeomorphism which maps 
Q to Q’- + Q or Q’- - Q, depending on whether the fiber orientation is 
changed along the curve W.  Finally, remove V to get the desired map of F. 

(b) By (a) there is a fiber preserving map of F mapping Q + r H  to 
+ ( Q  + z H )  and orientation reversing on n. Here Q is mapped to 
Q’- ? ( Q  + 2zH). To get such an orientation preserving map, follow this 
map by a homeomorphism of F sending Q’ to 2 Q’ and reversing orientation 
on n. 

We use the lemma to show that F, is uniquely determined by the class and 
s, if s > 0. Drill out the s exceptional fibers. The resulting F, is determined by 
the class of F, (= class of F )  and by s, because F, = Fo (for s = 1) or F, = Fo 
(drilled out (s - 1) times) (see $6).  From we obtain F, by closing with s 
solid tori of multiplicity p = 2. This closing is independent of how the torus 
seal D is sewn (fiber preservingly) onto the boundary II of c. For if Q is a 
crossing curve, H a fiber of n, and M a meridian of D, then 

M - 2 Q  + y H  (on w). 
We show that the result is independent of y .  Since M is a simple closed curve, 
y is odd. If y = 1 (mod 4), there is a fiber preserving map of F, keeping all 
boundary components fixed except for and such that is mapped 
orientation preservingly and Q is mapped to 

Q ’ -  2 { Q + 2 [ ( 1  -y ) /4 ]H} ;  

hence M is mapped to 
M’-2Q’+yH’- ?(2Q + H )  

(Lemma 7). If y = - 1 (mod 4) we choose a fiber preserving map of F, which 
is orientation reversing on and which sends Q to 

Q’- ? { Q  + 2 [ ( 1 + ~ 4 1 ~ ) ~  

hence M to 

M ’ -  + ( 2 Q +  H ) .  

Thus instead of 

M - 2 Q + y H  

we can choose M I -  %(2Q + H )  as meridian of the torus seal. Therefore F, 
depends only on F, and on s. 

If s = 0, we obtain F, from Fo by closing with an ordinary solid torus 
having a crossing curve Q on II, as meridian. On IIo there are exactly two 
essentially distinct crossing curves. For by Lemma 7, Q can be mapped to 
0’- +(Q + 2rH) by a fiber preserving map of Fo. 
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Therefore, if Q, is a crossing curve of II,, for example Q, = fo fl no, where 
fo is the orbit surface embedded in F,, we have only the two cases: Q - Q, or 
Q - Q, + H .  If jo can be embedded into F, so that f, n II, = Qo, then fo 
cannot be embedded into F, so that f, n II, = Q, + H ,  and vice versa (see 
$6). Therefore the two cross curves Q, and Q, + H are essentially different, 
i.e., there is no fiber preserving map of F, to itself which sends Q, to 
2 (Q, + H ) .  Therefore the fibered spaces F, and FA obtained from Po by 
taking Q, and Q, + H ,  respectively, as meridian Q of the torus seal are 
different. For a fiber preserving map Fo+ FA could be so deformed that the 
torus seals and hence the meridians of F, and FA correspond; hence there 
would be a fiber preserving map of F, sending Q, to 2 (Q, + H ) .  The two 
distinct spaces F, and Fh are therefore determined by F, and by the number 
b=Oor = 1. 

Now suppose we know F, (s 2 0). Then F is uniquely determined by 

ai, Pi (ai  > 2, 0 < Pi <fa,), i = s + 1, . . . , r .  

For, drilling out r - s arbitrary fibers from F,, there is a unique (unoriented) 
crossing curve Qi on each boundary torus IIi, namely, the meridian of the 
drilled-out solid torus. Choosing an oriented fiber Hi on ni, the meridian Mi 
of the new torus seal is determined by 

MI - aiQj + &Hi,  

by Eq. (4). But, since the orientation of Qj and Hi is arbitrary, we obtain 
besides M i  another possible meridian 

Mi'- ajQi - P I H i .  

By Lemma 7 there is a fiber preserving map of the bounded space which 
keeps IIj pointwise fixed ( j  # i )  and maps n, under an orientation reversing 
map to itself such that Qi+ 2 Qi.  Then Mi + ?Mi'-  ?(ajQi  - PiHi ) .  Hence 
it does not matter which of Mi or Mi' is chosen as meridian of the torus seal. 
Thus F is uniquely determined by its class and the numbers ai, Pi,  s, and 6 .  
Analogously to Theorem 5 we formulate the result in: 

THEOREM 8 .  A nonorientable fibered space F is unique& determined by a 
system of invariants 

(No;P 1 b ; a l ,  P I ;  . . . ;as, Ps;as+l, P,+I ;  . . P,) 
or 

(Nn I ; k  1 b ; a l ,  P I ;  . . . ;as, Ps;as+l, . . . ;a,, P,) 
or 

(Nn 1I;k 1 b ; a l ,  P I ;  . . ;a3 ,  P , ; ~ , + I ?  & + I ;  . - 1 ;a,, P r )  

(Nn 1II;k I b ; a , ,  P I ;  . . . ;a,, P , ; a s + l y  &+I;  . . . ;a,, P,). 
or 
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Here N means that F is nonorientable; o (resp. n) means that the orbit surface 
is orientable (resp. nonorientable). The numbers a,, PI determine the exceptional 
fibers. u, = 2. PI = I for i < s and u, > 2, 0 < PI < a, for i > s .  b is of any 
significance only i f  s = 0. In this case b = 0 or = 1 and determines the closing of 
the classibing space F, to F,. I f  s > 0, then F is  already uniquely determined 
without specifying b ,  and b is omitted. 

EXAMPLE. Let F be a nonorientable fibered space with one exceptional 
fiber of multiplicity 3. with Fo determined by Nn I ;  k .  Here F o x  (punctured 
nonorientable surface of genus k )  X S I .  We obtain the two different fibered 
spaces: 

(Nn 1 ; k  I0;3,  1) and (Nn 1 ; k  1 1;3, I ) .  

But adding an exceptional fiber of multiplicity 2, both spaces go over into the 
same space 

(Nn I ; k  I - ;2,1;3,1).  

9. Covering Spaces 

Let F be a (unbranched) covering of F (i.e., there is a covering niap p 
of F onto F such that for each point P of F and each PI of p - ' ( P )  there exist 
neighborhoods U (  P ) ,  U (  P,) such that p I U(  P I ) :  U (  PI) + U ( P )  is a homeo- 
morphism). 

Let F be a fibered space, H a fiber. Let fi be a component of p - ' ( H ) .  
Then fix S I or R I .  Let S be the collection of all the curves fi, for all fibers 
H of F. When is S a fibering of F? 

Let Qc be a fiber neighborhood of a fiber C of F and let 6~ be a 
compo_nent of p - ' ( Q C ) .  Then 66 consists of curves of S and contains the 
fiber C [which is a component of p - I ( C ) ]  in its interior. 6, is determined by 
Qc and an integer u (including co) which denotes the multiplicity of the 
covering 6, -+ Qc. Thus c -+ C is a u-fold covering. 

If u < 00, then all the curves of fie are closed; if u = 00, they are all 
open. Thus each curve of S has a nejghborhood which consists entirely of 
closed or of open curves of S .  Hence F is the ucion of two disjoint open sets, 
the sets of closed and open curves of S .  Since F is connected one of these is 
the empty set. Hence, S cannot contain closed and open curv_es at the same 
time. I f  (a l l )  the curves of S are closed, then S is afibering of F, since a finite 
covering of a fiber neighborhood, Qc is again a fibered solid torus. 

From now on we assume that S is a fibering of F. Since the covering 
fi?+Q, is completely determined by the integer u, we can compute t_he 
invariants ji,; of fie from the invariants p,v of fiC and from u. Cutting Qc 
into a fibered cylinder, we have to identify the top and bottom disks under a 

1. 

2. 

3. 

4. 
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rotation through 

(p ,u)  = gcd of p and u. Therefore, by definition of the characteristic numbers 
(0  I), 

Thus in the cylinder de there are fi  = p / (  p,u) parallel lines, which form one 
ordinary fiber of 6,. Thus each ordinary fiber of !& is covered by ( p , u )  
ordinary fibers of d,, but the middle fiber C is covered only by one fiber c 
of &. Therefore p :  F+ F induces a continuous map ji of the orbit surface f 
onto f. If c and c" are the points corresponding to, the fibers C and c, 
respectively, then if ( p, a) > 1, the covering of f by f is branched over c of 
branch index (p,u).  The index of the branching always divides the 
multiplicity of the exceptional fiber C .  Hence only exceptional points can 
occur as branch points. 

Since F < p by ( l ) ,  the covering c of C is always an ordinary fiber if C 
is ordinary. But if C is an exceptional fiber ( p  > I), then may or may not 
be exceptional. For example, identify two congruently fibered solid tori with 
an a-fold exceptional fiber along their boundary so that congruent points are 
identified. The result is a fibered space F with invariants ( 0 , o ;  0 I - 1 ;  
a ,  p ;a ,a  - p )  which is homeomorphic to S 2  x S ' .  Taking the a-fold 
covering of each of the solid tori and identifying equivalent points, we get an 
a-fold covering F +  F without exceptional fibers. For the invariants in (1) are 
p = a ,  u = a ;  hence /i = I for both (exceptional) fibers. 

which cover two ordinary fibers H and H ' ,  
p and p' times, respectively, then p = p' .  For, join fi and fi' in F by a path 
whose projection in F does not meet exceptional fibers. Since in a 
(sufficiently small) neighborhood of an ordinary fiber the multiplicity of the 
covering is not changed, it remains constant along the entire path. 

6 .  The universal covering space k of F is a fibered space if and only if for 
a fiber H of F a component fi of p - ' ( H )  is closed (by 3). Then H is covered 
p times by fi, p < 00. Since f i - 0  in fi (simply connected), H P - 0  in F.  
Therefore, is a fibered space if and on& if a finite multiple of the fiber of F is 
homotopic to 0 in F. Clearly, if this holds for a single fiber H ,  i t  holds for all 
fibers of F. 

Let F be a nonorientable fibered space and k the 2-fold orientable 
covering of F. Since any fiber H of F is orientation preserving, H lifts to two 
closed curves fi and fit .  Hence fi is closed and 2 is a fibered space, and 
u = 1. Therefore p I 6 ~ : 6 , j  + Q H  is a fiber preserving homeo- 
morphism. Let T : F +  F be the fiber preserving involution (without fixed 

5. 

If fi and fi' are two fibers of 

7. 
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points) which is the nontrivial covering transformation. T reverses the 
orientation of k and induces a fixed point-free involution of J? 

For example, let F be the space 

(No;p I b;a1, P I ; .  * .  ;ar ,  P,). (2) 
F has 2r exceptional fibers; if H is an exceptional fiber with invariants a l ,  P I ,  
then H is covered by two exceptional fibers fi and fit with invariants a l ,  PI 
and a I , a I  - PI.  respectively (by Theorem 6). For the fiber preserving 
involution of F maps fi to fi' and reverses the orientation of F. Since 
furthermore f is an (unbranched) 2-fold covering of j ,  f is orientable of genus 
2p - I ; hence F is the space 

(0 ,0 ;2p -  I I &a1, P I ; .  . . :a r7  Pr;aI,aI - P I ; .  * * ;a,,a, - a). (3) 

Since F admits an orientation reversing fiber preserving homeomorphism, the 
invariants are the same if the orientation of F is reversed. By Theorem 6, 
has the invariants - 

( 0 , 0 ; 2 p  - 1 1 - 2 r  - b ; a , ,  PI; . . . ;ar ,  p,;a,,a, - p1; . . . ;a,,a, - P,). 
(4) 

For (3) and (4) to be equal we must have that 6 =  -2r  - i, hence 6= - r ,  
independent of b. Similarly for the other cases. Result: 

Let F be the orientable 2-sheeted covering of F.  

F(No;  p 1 b ; a l ,  P I ;  . . . ; a r ,  P,) 
F(00 ;2p  - 1 I - r i a l ,  P I ;  . . . ; a r ,  pr:aI 'aI  - P I ;  . . . ;a,,a,,a, - P,)? 

F(Nn 1;k 1 b ; ( ~ l ,  PI ;  . . . ;a,, P,) 
F ( o o ; ~  - I I - r i a l ,  

F (Nn 1I;k  1 b ; u , ,  /1 , ;  . . . ;a,, 0,) 

i 
i 
I 

. . . : a r ,  P,;aI,aI - P I ;  . . . ;a,,a, - P,), 

F(0n;2k - 2  I - r : a I .  p l ; .  . . ;a, ,  Pr;a,, p,;a,,a, - P I ;  f . . ;a,,a, - P,), 

F(Nn 111; k 1 b ; a I ,  PI ;  . . . ;a,, 0,) 
\F(0n;2k  - 2 I - r ; a I ,  bI:  . . . ; a r ,  P~;(Y~.LY~ - P I : .  . . ;a,,a, - P,).  

In  the two latter cases the orbit surface f is nonorientable since there are 
one-sided curves on f along which the fiber orientation is reversed, i.e., which 
are orientation preserving in F. 

8. Let F be a fibered space with orbit surface f. Let f be an (unbranched) 
covering of f, p" a point over a point p of j ,  and P a point of F which maps to 
p.  Let F = ( ( P ,  p3) .  A neighborhood of a point ( P o ,  Po) consists of all points 
( P ,  j )  where P lies in a neighborhood of Po (in F )  andp" in a neighborhood of 
F0. Defining g ( P ,  p) = P,  we see that g: F - +  F is a covering of F. The 
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multiplicity of this covering is the multiplicity of the coveringf"-f. If a point 
P of F runs along a fiber H ,  then ( P ,  p") for fixed runs along a curve 5 
which lies one-to-one over H .  Hence k is a fibered space by 3 above and a 
fiber neighborhood 6, of k is mapped onto 3, under a fiber preserving 
homeomorphism. 

For example, let F be the orientable space (On; 1 I b ; a I ,  PI;  . . . ;ar,&) 
with orbit surface the projective plane. Let f be the 2-sphere. Then F is 
orientable, hence of class (00; 0). Orienting k so-that g:k+ F is orientation 
preserving, the fiber neighborhoods 0" and 3i' map to the same 3, 
preserving orientations, and therefore to the exceptional fiber with invariants 
a, /? correspond in k two exceptional fibers both with invariants a, P.  
Drilling out the exceptional fibers of F and filling in ordinary solid tori and 
doing the same thing in k, we obtain F, and F, without excytional fibers and 
k, is a 2-fold covering of F,. We find that b = 2b; hence F is 

(00;O I2b ;a , ,  P I ;  * * ;ar ,  P,; a,,  PI;  * * ; a r ,  P,). 

10. Fundamental Groups of Fibered Spaces 

We cut the classifying space F, of a fibered space F into a fibered prism 
with a drill hole, as in $6 but so that the drill hole touches the prism along an 
edge H .  Similarly we drill out the r ordinary tori V, ,  . . . , V, (which have to 
be replaced by exceptional tori) so that they touch H .  Then the r + I 
boundary tori II,, II,, . . . , II, intersect the bottom surface in the cross 
curves Q,, Q , ,  . . . , Q,. (See Fig. 14 forp = 2 and r = 2). 

We obtain the fundamental group of this space F, = F, - int(V, U . . U 
V,) by running around the 2-cells. Then for an orientable orbit surface of 
genus p > 0 we have'* 

nl(Eo) = { A I , B I I . .  . , Ap,BP,Qo ,Ql , .  . . , Q r , H  : 

('1 A , H A , - ' = H S , B , H B , - ' = H ' . ' ( i = I  , . . . ,  ~ ; E , , E , ! =  ? I ) ,  

I l l  P P P  
QoQl . . . Q, = A B A -IB,- I * * * A B A -IBp-', 

Q ~ H Q ~ - '  = H ( j  = 0, I ,  . . . , r ) } .  

Here ej (e,!) = k 1 or - 1 depending on whether the fiber orientation is pre- 
served or reversed along A, (B,).  

For p = 0 we get the relations 

Q O Q I  * 1 * Qr = 1, 

Q ~ H Q ~ - '  = H ( j  = 0, I ,  . . . , r ) .  (2) 

"Cf. H. Seifert, Konstruction dreidimensionaler geschl. Raume, Ber. S&s. Akad. Wiss. 83 
(1931). 33. The auxiliary paths and therefore the relations of the first type are redundant, since Fo 
contains only one vertex. 
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4 
FIG. 14 

For a nonorientable orbit surface of genus k we get 

al(Fo) = ( A l , .  . . , A , , Q , , Q , , .  . . , Q k , H :  

(3) 
A , H A , - I =  H ” i =  1,2, .  . . , k ; ~ , =  kl ) ,  

QoQ, . . . Q, = A : .  . . A:, 

Q,HQ,-’ = H ,  ( j  = 0,1, . . . , r ) } .  
- 

r,(F) is obtained from r,(F,) by adding r + 1 relations which correspond to 
the r + I torus seals of the boundary tori II,, II,, . . . , IIr. They are 

Q , H ~  = Q ~ I H P I  = . . . = Q ~ H P ,  = 1. 

For example, QPIHB1 = I means that the meridian M I  - a ,Q ,  + P , H ,  of the 
torus seal belonging to II, is null homotopic in the torus seal. For example, 
the fundamental group of the space (00; 0 I b; a , ,  P I ,  . . . , CU,, p,) has the 
relations 

(4) 

Q o Q l *  * Qr = 1, Q , H b  = Q ~ I H P I  = + . . - - Q?HP,= 

Q,HQ,-’ = H ( j  = 0, I ,  . . . , r ) .  ( 5 )  

Adding the relations Q, = Q ,  = . . . = Q, = H = 1 we obtain from a , ( F )  
the fundamental group al(f) of the orbit surface f. Geometrically this can be 
seen as follows: The mapping of F +  f induces a homornorphi~m’~ of rI(F) 
onto r,(f) and therefore a , ( f )  is a quotient group of rI(F). Similarly H , ( f )  is 
a quotient group of HI(&‘) ,  and this is also true for open fibered spaces. (we 
shall use this fact in 0 14.) 

Among the closed 3-dimensional manifolds the ones which occur as 
fundamental regions (Diskontinuitatsbereiche) of 3-dimensional spherical 
groups of motions, and thus have finite fundamental groups, have been 
thoroughly investigated. Therefore we are interested in the question whether 

I 9  A homomorphism is sometimes called a “one- or multiple-to-one isomorphism”. 
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the fibered spaces give us new manifolds of finite fundamental group, or if 
they are already included among the fundamental regions. In DB I1 (see 
footnote 1) we shall show that the fibered spaces with finite fundamental 
group coincide with the fundamental regions of fixedpoint-free spherical 
groups of motions. A necessary condition for the finiteness of the 
fundamental group of F is that the fundamental group of the orbit spacef be 
finite since the latter is a quotient of the former. Hence f is a 2-sphere or 
projective plane. 

I f f  is a 2-sphere, then ( 5 )  are the relations of the fundamental group of F. 
Adding H = I ,  we obtain the factor group 

For r > 3 this is a polygon net group. Taking an r-gon with angles 
n / a l ,  . . . , ./a, on the 2-sphere, the Euclidean plane, or the hyperbolic 
plane, depending on whether 

1 C - > , = , o r  < r - 2 ,  
; = I  ai 

(7) 

and reflecting it successively on its sides, we obtain a polygon net which 
covers the sphere, or the Euclidean or hyperbolic plane, with alternating 
congruent and mirror imaged (black and white) r-gons. It admits a group of 
orientation preserving covering translations which has as fundamental region 
a double polygon, i.e., a white and adjacent black r-gon. This group is the 
above factor group (6).20 Since for r > 3 this polygon cannot lie on the 
2-sphere so as to cover it, it follows that (6 )  and hence ( 5 )  is infinite. For r = 3 
the group (6)  is finite only if it is a Platonian group, i.e., if a I ,  a2 ,  aj is one of 
the triples (2,2,n),(2,3,3),(2,3,4),(2,3,5) (n 2 2). It can be shown (DB 11, $7) 
that for these triples the group ( 5 )  is finite. If r < 2, then ( 5 )  is cyclic (finite or 
infinite). 

I f f  is the projective plane, then F is the space 

(On; 1 I b; a ]  9 PI ;  * * ; a,, P,)  (8) 
since a nonorientable (closed) 3-manifold has infinite fundamental group. 
This follows also since the first Betti number of the fundamental groups of 
fibered spaces is > O.*' The space (8) has a 2-fold orientable covering ($9), 
namely, 

(00;O 12b;aI,  Pl ;a l ,  P I ;  . . ;ar ,  Pr;ar ,  P,).  
This space has infinite fundamental group unless r = 1. Therefore follows 

THEOREM 9. A fibered space F with finite fundamental group has the 
projective plane or the 2-sphere as orbit surface. I n  the first case F has at most 

20Cf. W. Threlfall, Gruppenbilder Abh. Such. Akad. Wiss. 41 No. 6 (1932). 
21 Poincare has introduced P I  = pI + 1 as Betti number. We follow H. Weyl. 
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one exceptional fiber, in the latter case F has at most three exceptional fibers. I f  
F has three exceptional fibers, they have to be of multiplicity (2,2, n), (2,3,3), 
(2,3,4), or (2,3,5). 

When are two fibered spaces homeomorphic but not homeomorphic under 
a fiber preserving map? 

THEOREM 10. Suppose F and F‘ have the 2-sphere as orbit surface and have 
at least three exceptional fibers of multiplicities a I ,  . . . , a, and a ; ,  . . . , a;,, 
respectively. If F is homeomorphic to F‘ (not necessarily under a fiber preserving 
map) then the tuples a I ,  . . . , a, and a ; ,  . . . , a;. must be equal (up to order). 

Prooj For r = 3, the center of (5) is the subgroup { H )  generated by H .  
For if the center were bigger than { H ) ,  then (6 )  would have a nontrivial 
center. This is not the case if (6 )  is a group of the Euclidean or hyperbolic 
plane. If (6)  is a Platonian group it  has a nontrivial center only if it is a 
dihedral group whose order is a multiple of 4. It can be shown that in this 
case the center of ( 5 )  is not bigger than { H }  (DB 11, $6). Hence ( 6 )  is the 
quotient of ( 5 )  by its center. If F x  F’,  then .rr,(F) = r , ( F ’ )  and 
. rr , (F)/{  H } N .rr,(F’)/{ H ’ ) .  But two polygon net groups (6)  are isomorphic if 
and only if the polygons have the same number of vertices and the same 
angles, which proves the theorem. To see this, we can assume that none of the 
polygon net groups is a Platonian group, for such a group has necessarily the 
vertex number 3 and the triples of Theorem 9. The elements el, . . . , e, of 
(6 )  are rotations about the r vertices of a polygon II through 
2 r / a I , .  . . , 2n/a,. Since an element of finite order of (6) is (as a 
transformation of a metric plane) necessarily a rotation about a fixed point, 
i.e., about a vertex of the polygon net, it follows that each nontrivial element 
of finite order of (6)  is conjugate to a rotation about a vertex of II, i.e., to a 
power Q,K (y, = I , .  . . , a, - I ) .  But two such powers @ and Qi’/ are never 
conjugates (as can be seen from the geometry). Therefore the numbers 
a, ,  . . . , a, determine uniquely the number of conjugate classes of elements of 
finite order and conversely one can easily verify that the numbers a , ,  . . . , a, 
are determined by the number of conjugate classes of elements of given finite 
order. 

11. Fiberings of the 3-Sphere (Complete List) 

In $3 we described fiberings of S 3  with two exceptional fibers of orders 
m, n where ( m ,  n)  = 1. We now show that these are the only fiberings of S3. 
More generally, we look at all simply connected (closed) fibered spaces. 

Let F be a fibered space with r , ( F )  = 1. Then fx S 2  and F is 

A necessary condition for n , ( F )  to be finite is that r < 3 (by Theorem 9). For 
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r = 3 the quotient group (6)  of n,(F),  where F is as in Theorem 9, is a 
Platonian group, and hence not trivial. Therefore if n,(F)  = 1, then r 6 2. 

For r = 0 ,  ~ , ( F ) = { Q o , H : Q o H b = l = Q o ) = { H : H b = l ) .  Hence b =  
2 1. Therefore (00; 1 1 1) or (00; 0 I - 1) are the only simply connected 
fibered spaces without exceptional fibers. They differ only in their orientation 
(by Theorem 6 )  and are the fibering of S’ by circles since this is free from 
exceptional fibers. 

For r = 1, ba, + PI = 2 1 is necessary and sufficient for n , ( F )  = 1. Now a I  
( 2  2) is arbitrary. For b and PI there are then two solutions, b = 0, PI = 1 
and b = - 1, PI = a1 - 1. The two spaces (0o;O 1 0; a , ,  1) and (0o;O I - 1; 
a I  , a I  - 1) differ only in their orientation (Theorem 6), and therefore there is 
a unique simply connected fibered space (up to orientation) having a single 
exceptional fiber of order a, .  This space is therefore the trace curve fibering 
of S 3  with the values m = 1, n = a I  . 

For r = 2, n l ( F )  is cyclic of order Jba,a ,  + p,a2 + PzaIl. The equation 

ba,az + pIa2 + &aI = 5 1 

has a solution only if (aI,a2) = 1. But for any given coprime a I , a z  (> 2) 
there are exactly two solutions for b, PI,  p2, for which 0 < PI < a1 and 
0 < p2 < az .  The corresponding spaces differ only in their orientation. This 
will be proved in $12 for an arbitrary r .  Therefore there is only one fibering 
(up to orientation) for any two given coprime exceptional fibers. which 
therefore has to agree with that of $3. This proves 

THEOREM 1 1. A closed simply connected fibered space is S ’. Any fibering of 
S’ is uniquely determimed by two positive coprime integers m and n .  For 
m = n = 1 there are no exceptional fibers; if only one of m (or n )  is 1 there is 
one exceptionalfiber of order n (or m).  If m and n are different from 1, they are 
the orders of the two exceptionul fibers. AN fiberings of S 3  agree with those of 
§ 3 .  

The ordinary fibers for m # 1, n # 1 are torus knots which wind m times 
around the z-axis and n times around the unit circle in the conformal space. 
For m = 2, n = 3 they are trefoil knots. 

12. The Fibered Poincare Spaces 

We now determine which fibered spaces are Poincare spaces, that is, which 
have trivial first homology group” and which are not homeomorphic to S 3 .  
By $10 if H , ( F )  = 1, then H, ( f )=  I ;  hence f- S 2  and F is (00; 0 1 b; 
a , ,  P I ; .  . . ;a,, P,). H , ( F )  is the Abelianized a , ( F )  and has the r + 2 
generators 

Qo, Q,, . * 9 Q,, H 

=Cf. DB I, p. 51. 
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and in addition to being commutative has the relations 

QOQI  * * Qr = 1. Q ~ H ~  = Q ~ I H P I  = . . . = Q ~ . H P ,  = 

In additive notation, 

Qo + b H  = 0 
UlQl + P , H  = 0 

arQr +PrH = 0 
= o  

( 1 )  

QO + Q I  + . . * + Qr 

We obtain equivalent relations and generators for HI( F )  by transforming 
the generators and relations by unimodular substitutions. In this way we can 
transform the coefficient matrix into a normal form which has all entires 0 
except possibly in the main diagonal, where the entries are the invariant 
factors of the original matrix. If H , ( F )  = 1, then in the normal form all the 
elements in the main diagonal are 1 (otherwise we would have a nontrivial 
relation kiQ, = 1). That is, the Betti number = 0 and there are no  torsion 
coefficients. Since the given matrix is square the two conditions are 
equivalent to 

A =  = 21. 

Computing A we get the equation 

A = b ~ I ~ ~ ~ ~ r + ~ I ~ 2 ~ ~ ~ ~ r + ~ I ~ 2 ~ 3 ~ ~ ~ ~ , +  . . .  + f f I ( Y 2 . .  . ar - IPr  

= & ( E =  21). (3) 

If we reverse the orientation of F,  i.e., if we consider (0 ,o;  0 I - r - 6 ;  aI, 
aI  - PI;  . . . ; ar,ar - Pr), we would get a determinant A' = -A .  Therefore we 
can assume that E = 2 1. This determines the orientation of F. To solve (3) 
with E = + 1, we let a l ,  . , . , a, be given (ai > 2) and try to solve for 6 ,  
P I , .  . . , O r .  For r = 0 and r = 1 we get b = 1 and ba, + P,  = 1, which was 
discussed in 9 11. Thus assume r > 2. There exists no  solution of (3) if two of 
the a, have a common divisor. Hence assume the a, are pairwise coprime. 
Then 

gcd(a, . . * (Y,,(Y~ * * * (Y , , (Y~(Y~ .  . . ar, . . . ,aIa2 * * * ( Y ~ - ~ ) =  1. 

Hence there exists a solution 6 ,  P I ,  . . . , Pr and (&,ai )  = 1;  otherwise the 
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left-hand side of (3) would have a common factor # 1. But pi need not satisfy 

0 < p; < ai. 

But this condition can be satisfied by replacing pi by p, + xi", and at the 
same time b by b - x i ,  which also satisfies (3). This normalized solution is 
unique for if b', p i ,  . . . , pi is any other normalized solution of (3), then 

( b  - b')a, * * * (Y, + ( P I  - p;)~rz . * . ar + * * ' = 0. 

This implies p, - p,' = 0 (mod a;), hence pi = p,'. 
This solution of (3) completes the proof of Theorem I 1. Hence for r = 2 the 

fibered spaces with trivial first homology group are homeomorphic to S'. For 
r > 2 they are Poiricare spaces since by Theorem 1 1  a fibration of S 3  has at 
most two exceptional fibers. Thus follows 

THEOREM 12. A fibered Poincari. space (# S 3 )  has at least three exceptional 
fibers; their multiplicities a , ,  . . . , ar are pairwise coprime. Conversely, for any 
r 2 3 pairwise coprime integers 2 2, there exists a unique fibered Poincare space 
having r exceptional fibers with the given multiplicities. Two fibered Poincare 
spaces are homeomorphic if and only if they are homeomorphic under a fiber 
preserving map; i.e., a Poincari. space admits at most one fibering. The only 
fibered Poincari. space with finite fundamental group is the dodecahedral space.23 

It remains to prove the two latter claims. If two fibered Poincare spaces are 
homeomorphic, they must have the same multiplicities for the exceptional 
fibers, by Theorem 10. But these determine already the fibering of a Poincare 
space. 

By Theorem 9, a fibered Poincare space with finite fundamental group can 
have only three exceptional fibers with the multiplicities 2 ,3 ,5  because this is 
the only triple in Theorem 9 with pairwise coprime integers. This space has by 
(3) the invariants 

(0o;Ol - l ; 5 , 1 ; 2 , 1 ; 3 , 1 )  

and its fundamental group has relations 

QoH-'  = Q f H  = Q,'H = Q,'H = QoQ,QzQ3 = 1. 

(These relations imply that H commutes with the Q;). Eliminating H ,  we 
obtain the presentation of the binary icosahedral groupz4 of order 120: 

In DB 11, 07, it is shown that this is the dodecahedral space by exhibiting a 
fibering of the dodecahedral space. 

"Cf. DB I,  512. 
24Cf. Aufgabe 84 in Jahresber. Deutsch Math.-Verein. 41 (1936), 6. 
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13. Constructing Poincare Spaces from Torus Knots 

M. Dehn25 described a method for constructing Poincare spaces as follows: 
Let A be the complement of a regular neighborhood of a knot C in S 3 ,  and 
let II = 3 A .  Then H , ( M )  is the free cyclic group generated by a meridian M 
on n. If B is a simple closed curve on II intersecting M in one point, B - x M  
(in A )  and we can assume that x = 0 by replacing (if necessary) B by 
B - x M .  Then B is uniquely determined by requiring that M f l  B be a point 
and B -0 in A (up to orientation and deformation on II). Closing A with a 
torus seal V’ having as meridian 

M ’ - M + q B  (onII ;q#O) ,  ( 1 )  

we get a closed space R with HI( R )  = 0. 
Now suppose C is a torus knot. Such knots are ordinary fibers of the 

fiberings of S 3 ,  given in $3, which are characterized by two coprime integers 
m and n ( 2 2). Drill out an ordinary fiber C. Then a fiber H of II can be 
deformed in A into n times the z-axis, and since the z-axis is -mM in A 
(with suitable orientation of M ) ,  we have that H - m n M  (in A ) .  Hence 
h - m n M - O i n A , i . e . , H = B .  By(I) ,  M ’ - M M q B - ( 1 - q m n ) M + q H  
on 11. Since M is a crossing curve on II, the torus seal has an exceptional 
fiber of multiplicity lqmn - 11, for since m and n > 1 (otherwise C would be 
unknotted and we would not get a Poincare space), lqmn - I1 > max(m,n) 
> 1. Thus R is the unique Poincart space (by Theorem 12) with three 
exceptional fibers of multiplicities m ,  n ,  lqmn - 11. Furthermore, since 
)q ,mn - I \  # )q2mn - 11, if q1 # q2,  two Poincark spaces obtained from the 
same torus knot with different q’s are not homeomorphic by Theorem 12. 
Finally, two Poincare spaces obtained from different torus knots are never 
homeomorphic. For if a Poincare space with exceptional fibers a I  < a2 < a3 
is obtained from a torus knot, then it can only be the knot m = a l ,  n = a2,  
since Iqmn - 11 > max(m,n). This implies by the way that two torus knots 
m < n and m‘ < n’ are topologically equivalent only if m = m’, n = n‘, since 
only in this case are the Poincare spaces which can be constructed from them 
the same. 

THEOREM 13. A Poincare space can be constructed from a torus knot if and 
on4 if it can be fibered and the fibering has exactly three exceptional fibers of 
multiplicites a1 < a2 < a3 ,  where a,  , a2,  a3 are pairwise coprime integers ( > 1) 
and a3 = 1qa1a2 - 1 I (q  an arbitrary integer). Such a PoincarC space can on& be 
constructed from a unique torus knot in a unique way. 

For example, the Dehn trefoil space constructed from a trefoil knot m = 2, 

z5M. Dehn, Uber die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), 
137-168. 
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n = 3,  q = 1 is homeomorphic with the unique fibered Poincare space with 
three exceptional fibers of multiplicities 2,3,5. Its fiber invariants are listed in 
0 12. 

14. Translation Groups of Fibered Spaces 

A translation group (31 of a fibered space F is a finite group of 
homeomorphisms F +  F such that each map of W maps each fiber H onto 
itself and preserves orientation of H .  For an arbitrary fiber H of F let 
@ = (cp I H,cp E a}. We claim that Q is a finite cyclic group of rotations of a 
circle. For if P is a point of H and P',  P " ,  . . . , P ( i )  = P are its equivalent 
points such that P' is next to P with respect to the given orientation of H ,  the 
points P, P', P " ,  . . . and the arcs between them are cyclically permuted 
under a map of 65. In particular, if P is a fixed point, then the arc PP' is 
mapped onto itself keeping P,  P' fixed, and since the map has finite order i t  
must be the identity. There is a map in Q which sends P to P ( k )  ( k  arbitrary). 
Therefore 8 consists of the powers of the map which sends P to P' .  

Claim. Every translation group @ is cyclic. It suffices to show that a map S 
of (3 which leaves an ordinary fiber H fixed is the identity, for then 8 is 
isomorphic to Q, which we know to by cyclic. The maximum of the 
translations of the points of a fiber H' under S converges to 0 as H '  
converges to H. But this maximal translation cannot be arbitrarily small since 
S is of finite order. Therefore S is the identity on a fiber neighborhood of H .  
The set of all ordinary fibers which are fixed under S is therefore open. The 
set of all ordinary fibers which are not pointwise fixed is also open, hence 
empty since F is connected. But then clearly all the exceptional fibers are also 
left pointwise fixed under S .  

The following theorem deals with the existence of translation groups: 

THEOREM 14. A closed fibered space of class (00; p )  or (Nn I ;  k )  admits a 
translation group of arbitrary order g. 

Proof. We first show that a fibered solid torus with invariants p , v  admits 
such a group. Cut the solid torus into a Euclidean cylinder of height 1, and let 
z be the height of a point P ;  then there is a continuous transformation group 
of the solid torus such that each point runs along its fiber and the 
z-coordinate changes continuously, z' = z + t .  Here z' is the coordinate of the 
image point and t the continuous parameter of the group. z has to be 
considered mod 1. If t increases continuously from 0, then t = 1 is the first 
value for which the middle fiber is mapped to itself, t = p is the first value for 
which the map is the identity. The cyclic translation group g consists of the 
transformations belonging to t = 0, p / g ,  . . . , p ( g  - l)/g. 

Let F be a fibered space with simultaneously oriented fibers; triangulate f 
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so that each exceptional point lies in the interior of a 2-simplex and each 
2-simplex contains at most one exceptional point and so that any two 
2-simplexes with exceptional points do not intersect. This corresponds to a 
decomposition of F into solid tori. We define a cyclic translation group of 
order g in each of the solid tori with exceptional fibers and on the remaining 
fibers of F which map to vertices o f f .  As generator Z of @ we take the 
translation which rotates the ordinary fibers by as little as possible in positive 
direction. Let K be a fibered annulus that maps to an edge of the 
triangulation off.  If K lies on an exceptional torus, then (35 is already defined 
on K.  If K lies on an ordinary torus, then (3 is already defined on the 
boundary curves a and b of K .  I t  is clear that @ can be defined on all of K ( Z  
is a rotation of K about 2n/g), since a - b in F, since the fibers are oriented 
simultaneously. Now (3 is defined on the boundary II of each ordinary 
fibered solid torus V .  

We think of V as being embedded in Euclidean space, symmetric with 
respect to an axis of rotation and such that each fiber of V is mapped to itself 
under a rotation about this axis. We choose a fiber preserving auto- 
homeomorphism A of the boundary torus II of V such that AZA -‘:II + II is 
a rigid rotation about the axis of rotation through an angle of 2n/g. This is 
always possible since the translation Z restricted to each of the three fibered 
annuli which form n (and which map to the three edges of a 2-simplex of the 
triangulation of the orbit surface) is conjugate to a rigid rotation of a 
Euclidean annulus through an angle of 2n/g. We can choose A such that 
each class of curves on n is mapped to itself. As shown in $5 we can extend 
A to a fiber preserving autohomeomorphism of V.  Therefore V can be 
mapped homeomorphically to a rotation symmetric solid torus V’ in 
Euclidean space (which has the property that a rotation about the axis of 
rotation rotates each fiber in itself) such that Z I II is then conjugate to a 
rigid rotation of the boundary torus rI’ of V’ through an angle of 277/g. This 
rotation II’ can be extended to a rigid rotation of V’ through the same angle. 
This defines a translation Z of order g on the sapce F, and proves Theorem 
14. 

We now show that the orbit space of F under @ is a fibered space F‘.  First, 
let @ act on a solid torus V .  If is an ordinary fibered solid torus, then 
clearly the orbit space of V is again an ordinary solid torus. Suppose V is a 
torus with invariants p,u. Suppose U is a nontrivial subgroup of (35 keeping 
the exceptional fiber pointwise fixed. U is cyclic or order u.  We claim that 
there exists a meridian disk of V which is mapped to itself under U. Cut V 
into a Euclidean cylinder of height 1 and let Eo be the meridian disk of height 
+ .  Let E , ,  E, ,  . . . , E,-  I be the images of Eo under U. We can assume that 
no E, intersects the top and bottom disk of the cylinder by choosing V 
sufficiently small. Each fiber of the cylinder intersects Eo,EI ,  . . . , Eup1 in u 
(not necessarily distinct) points. Choosing the highest such point on each 
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fiber we obtain a meridian disk E of V which is mapped to itself under U.26 
Therefore we can cut V along E into a cylinder on which U acts as a group 
of rigid rotations about the axis and translations of the fibers in themselves. 
The orbit space is a cylinder sector of an angle 2 n / u ,  where the two vertical 
faces have to be identified such that we get a fibered cylinder. In this 
cylinder, top and bottom disks are identified under a rotation of 2 a v / p ’ ,  
where p‘ = p / u ,  hence ( p’, v) = 1. Therefore the orbit space of U is a fibered 
solid torus V’ with a (p/u)-fold exceptional fiber. 

The translation group @ of V maps to a translation group (33‘ of V’ ,  where 
a‘ has order u = g / u  and does not contain a translation # 1 which keeps the 
exceptional fiber of V’ pointwise fixed. The cylinder corresponding to V’ is 
then divided by the t‘ - 1 images of the bottom disk into u equivalent parts. 
In each part, bottom and top disks correspond under a rotation of 2mv“ /p “ ,  
( p ” , v ” )  = 1. The orbit space D of a’ (on V’), which is also the orbit space of 

(on V ) ,  is a fibered solid torus which is covered by V’ (unbranched) u 
times. Since the fibers of D correspond one-to-one to those of V’, the orbit 
surface of V’ covers (unbranched) that of D. From $9 we have ( p ” , u )  = 1 
and hence by (1) in $9 p‘ = p” ,  i.e., D has a $-fold exceptional fiber. Now 
(g, p) = (uu,up’) = u(u, p’) = u and u = g / u  = g/(g, p). The numbers U , U  

are therefore determined by the order g of @ and the multiplicity p of the 
exceptional fiber of V.  

Result. The orbit space D of a translation group (33 of order g on a fibered 
solid torus V with a p- fold exceptional fiber is a fi’bered torus with exceptional 
fiber of multiplicity p / (  p, g). For ( p ,  g) > 1, the covering V+ D is branched, 
where the exceptional fiber of V is a branch curve of order ( p, g). This implies 
that the orbit space of F under (3 is a fibered space F’, and F+ F’ is a 
branched covering. 

We now compute the invariants of F’. Let F be the space (00; p I b ;  
a , ,  0,; . . . ;arr 0,). Drilling out the exceptional fibers and an ordinary fiber 
we get F x f  X S I ,  where f is an ( r  + I )  times punctured surface of genus p .  
On the boundary tori no, II, , . . . , n, we have the crossing curves 
Qo,Q,, . . . , Q,. The Qi and Hi ( H o , H , ,  . . . , H,  simultaneously oriented) 
determine on 

Qo+ Q, + * * + Q,-0 (in F ) .  

orientations opposite to that induced by F, and 

26To see that U maps E to itself, suppose there is a map B in U which sends a point P of E to a 
point P’ not on E. Then the line segment parallel to the axis of the cylinder V intersects E in a 
point Q‘  # P’. The line segment P’Q’ is mapped under B - ’  to a line segment PQ,  where Q lies 
on one of the disks E,. But P is the highest of the n intersections of the line segment through P 
and the disks E l ,  . . . , E,- I and therefore P Q  contains a point R of the top disk of V, whose 
image under B is a point R’ on the line segment P ’ Q ’ .  Now if P approaches continuously the 
axis of the cylinder, P ’ ,  Q‘ ,  R’  move continuously, and since at last P’ and Q’  coincide, R‘  must 
at  some time coincide with P’ or Q’,  i.e., there is a map B - I  of U that maps a point of a certain 
E, into a point of the top disk. This contradicts the choice of the disks E,. 
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We get F by taking Qo + bH,,cu,Q, + P,H,, . . . , arer + PrHr as meridians 
of the torus seals V,. The orbit space F’ of I F is the product of an ( r  + 1) 
times punctured surface of genus p and S1.  The orientation (and fiber 
orientation) of F carries over to F’. Let Q,, Q l ,  . . . , Qr and H,,H,, . . . , Hr 
be the images of Q,, Q, ,  . . . , Q,, H,, H I ,  . . . , Hr in F’. Then Po, Q,,  . . . , Qr 

are crossing curves on the boundary tori HA, n’, , . . . , II; of p, whereas HI 
covers a fiber HI’ of g times: kl = gH,‘. We have 

Q o + Q l + . . .  + Q r - o  (inF‘) 

and the orientation determined by Q, and H,’ on II; is opposite to that 
induced by F’. The orbit space F‘ is determined by the meridians 
MI’- iulQi + P,Hi and Mi - Qo + 6H;  of the torus seals V,’. MI 2: 0 in V, ,  
hence M, rr/ 0 in V,’ . Therefore 

MI - alel  + PIHI (on W 
implies 

4 - “,Q1 + PIHI  - %Q1 + Pi@,’ (on n:) 
-0 (in Vl‘). 

Therefore 

= iujQi + j j H ; - O  

and since iu, and Pi are coprime, M,‘ is a meridian on V;. 
Similarly MA- Qo + bgH6- Qo + dHi is a meridian on Vi .  But d,iuj, Pi 

are not yet the sought after fiber invariants of F’ since PI need not satisfy 
0 < 6; < iu,. But taking instead of Ql, . . . , Qr the crossing curves 
Q; - G I  + x , H ; ,  . . . , Q; - Qr + xrH;, and instead of Qo the crossing curve 
Qi- Qo - (x, + . . . + xr)H;, we have the correct homology 

Q; + Q; + . + Qr’-0 (in F’)  
and the orientation induced by Q; and H; on II; is the same as that from Qj 
and H;. Now in the new basis curves the meridians MI’ are as follows: 

M ~ - Q ; + ( ~ + X , +  * * *  + x , ) H ; = Q ; + b ’ H i .  

Choosing xl such that 0 Q PI’ < q’ and omitting those q’, PI’ for which a,’ = 1 
(P,’ = 0), we obtain the fiber invariants of F‘. 

If F is (Nn I ;  k I 6; a I ,  PI; . . . ;a r ,  Pr) we get a similar result. 

EXAMPLE. The trefoil space of Dehn (00; 0 1 - 1; 2 , l ;  3 , l ;  5 , l )  with 
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translation group of order g = 5. Now 

(a1, g )  = 1, (a29  g )  = 1, (a3, g )  = 5, 

hence xI  = 2, x2 = 1, x3 = 1. Therefore the orbit space F' is the space 

(00;0 1 b ' ;a ; ,  P; ;a ; ,  P ; ) = ( 0 0 ; 0  I - 1;2,1;3,2). 

n, (F ' )  is of order A = b'a;aY; + /?,'a; + a; /?; = 1. Hence F ' x  S 3  and the 
fibers are trefoil knots. In particular, the 5-fold exceptional fiber of F is 
mapped to an ordinary fiber of F', a trefoil knot. Therefore, F is a 5-sheeted 
branched covering of S 3  with a trefoil as branch curve. 

This result can be generalized. Let F be a Poincare space (00; 
0 1 b; a I ,  PI;  . . . ; a,, P,). Necessary and sufficient for F to be a Poincare 
space is that the determinant 

0 O PI b /  1 0 . . .  
0 a 1  * * *  

Now F'=j  x S ' ,  where j is a ( r  + 1) times punctured 2-sphere. The 
generators of H , ( F ' )  are Qo,QI,  . . . , Q, and an arbitrary fiber H '  and we 
have the single relation Q, + Q, + * * + Qr - 0. Closing F' to F' we get the 
additional relations 

Q o + J H ' = & l Q , + / ? l H ' =  * - a  = & , . Q , + b , H ' - O .  

Here 

J = bg, Lui = ai / (a i ,  g ) ,  

The relation matrix of H , ( F ' )  is therefore 

1 0 . * -  

0 & I  * * *  

0 0 . * *  

1 1 . * *  
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and its determinant A' is 

0 . . .  I '  0 

1 . . .  1 1  1 

F' is a Poincare space or S 3  only if A' = 2 1. Since a ,  , a 2 ,  . . . , a, are 
relatively coprime we have 

( a , .  g)(a*t 8) * * * ( a r ,  g) = ( ( ~ 1 ' 2  * * . a r '  8) 

and A' = ? 1 if and only if g divides aIa2  - * * a,. The multiplicities of the 
excpetional fibers of F' are the . . . , &, different from 1. By Theorem 
12, the &, characterize F'. Hence follows 

THEOREM 15. The orbit space F' of a translation group of a fibered space F 
with invariants 

(00; p I b ; a , ,  b,; . . . ;a r ,  0,) 
or 

(Nn 1 ; k  I b ; a l ,  P I ; .  . . ;ar ,  P r )  

is a fibered space of the same class, whose invariants are determined by those of 
F and the order g or Q. I f  F is the Poincark space with r exceptional fibers of 
multiplicites aI , a 2 ,  . . . , a,, then F' is a Poincare space or S 3  if and only if 
g I a ,  . . . a,. In this case F' is the Poincare space whose exceptional fibers have 
as multiplicities the following of the numbers which are # 1: 

f f I  a2 a r  _ _ _ ~  
( a , ,  g) ' (a27 g) ' . . . ' ( a r )  g) ' 

The covering of F' by F is branched over the exceptional fibers of F fer which 
( a I ,  g) > 1 of branching index ( a I ,  g) .  

Specializing, we get 
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THEOREM 16. The orbit space F' of a Poincari space F with r exceptional 
fibers of orders a ,  , a 2 ,  . . . , a, under a translation group of order g 
= aIa2  . . . a, is a Poincare space or S 3  with exceptional fibers of orders 
a,+, . f f ,+2, .  . . > f f , .  

THEOREM 17. Let a , , a2,  . . . , a, be r > 3 painvise coprime integers > 2, and 
let k ,  . k,, . . . , kr-2  be r - 2 torus knots in S 3  (which are ordinary fibers of a 
fibering of S3) of type m,n,  where m and n are any two of the numbers 
a , ,  . . . , a,. Delete these two numbers from the sequence a , ,  . . . , a, and take a 
one-to-one correspondence between the remaining a; and the knots k i .  Construct 
the branched covering of S3 having the knots k , ,  . . . , kr-2  as branch curves and 
having the following property E :  A curve @ of the covering space which lies over 
a closed curve w of S 3  - ( k ,  U . . . U k r - 2 )  is closed if and onb if the linking 
number x , ( w , k j )  is divisible by the number aj which corresponds to the knot k; 
( i  = 1, . . . , r - 2). This covering is (a Ia2  - ' a,/mn)-sheeted and is a Poincare 
space which is the same regardless of how one picks out the numbers m,  n from 
f f l , f f 2 , .  . . , a,. 

Proof. Assume m = a,- ,, n = a,, and a; corresponds to ki ( i  = 1, . . . , 
r - 2). Letting a translation group of order g =  a, * * .  act on the 
Poincare space F with r exceptional fibers of multiplicities a , ,  . . . , a,, we 
obtain as orbit space F' a fibered space with two exceptional fibers a,- , and 
a, by the previous theorem. Since a Poincare space has at  least three 
exceptional fibers (Theorem 12), F ' x  S 3  with a fibering having torus knots 
of type m = a,- I .  n = a, as ordinary fibers (33). By Theorem 15, F is a 
branched covering of F';  the branch curves are the exceptional fibers of 
orders a I  , . . . , which map to ordinary fibers in F',  hence to r - 2 torus 
knots k , ,  . . . , k r - 2  or type m,n. The branching index is (a; ,  g) = a;, i.e., a 
curve in F winding once around the ith branch curve maps to a curve in F' 
winding a, times around k,. The covering F-+ F' is regular and the covering 
transformation group is cyclic of order g = a ,  1 * . a,-2. Therefore (by the 
lemma in the Appendix) a curve @ of F lying over a curve w of F' 
- ( k  I u . * . u k ,  - 2) is closed if and only if for each I the linking number of 
w and k, is divisible by a,, and this property E characterizes F uniquely as 
covering of F ' .  Thus the covering of S 3  determined by property E is the 
Poincare space with r exceptional fibers o f  multiplicities a , ,  . . . , a,. By 
Theorem 12, F is uniquely determined by the numbers a , ,  . . . , a,. Therefore 
F is independent of the choice of the numbers m,n  out of a , ,  . . . , a,. 

Theorem 17 is interesting because i t  deals with the homeomorphism type of 
certain covering spaces, which can be characterized independently of any 
fibration. This is so since the requirement that the knots k , ,  . . . , k r P 2  be 
ordinary fibers of the fibering of S 3  can be replaced by the following: 
k , ,  . . . , k , - ,  are pairwise disjoint simple closed curves on a torus which 
separates S3 into two solid tori, and these curves are not null homotopic in 
either solid torus. Then i t  can be shown that there is a fibering of S 3  that 
contains these r - 2 curves as ordinary fibers. 
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The special case of Theorem 17 for r = 3 deserves special attention. 
The g-fold cyclic covering of a knot k in S’ i s  the branched covering with 

the following property: A Curve 6 of the covering space which lies over a 
curve w of S3\k is closed if and only if the linking number of w and k is a 
multiple of g.27 The special case can now be formulated as follows: 

ADDENDUM TO THEOREM 17. Let a l , ( ~ 2 , ( ~ 3  be three painvise coprime 
numbers > 2. Then the “’-fold cyclic covering of the torus knot of y p e  m = a I ,  

n = a2 is a Poincare space. The same space is obtained if a,,a2,a3 are 
arbitrarily interchanged. 

For this Poincare space is the fibered Poincare space with three exceptional 
fibers of multiplicities aI,a2,a3. Thus the Dehn trefoil space, which was 
obtained by drilling out and sewing back a trefoil of S3, can be obtained as 
5-fold cyclic branched covering of a trefoil or as 3-fold cyclic covering of the 
torus knot m = 2, n = 5 or as 2-fold cyclic covering of the torus knot m = 3, 
n = 5. 

Finally, each fibered Poincare space (00; 0 I b; a I ,  PI;  . . . ; ar, Pr) can be 
obtained as aIa2. . * ar-fold branched covering of S’. For, letting a 
translation group of order g = aIa2  . . . a, act on F, we get a fibered space 
without exceptional fibers which is S 3  by Theorems 16 and 12. This fibering 
of S 3  is by unknotted curves any two of which are simply linked. The branch 
curves in S 3  are the images of the r exceptional fibers, i.e., r unknotted and 
pairwise linked curves in S’ ,  of index aI,a2, . . . , ar, respectively. 

15. Spaces Which Cannot Be Fibered 

Let F be a fibered space (open or closed). Let H be an ordinary fiber, 0 a 
point of H and W a closed curve starting and ending at 0. Translating the 
fiber H along W ,  H comes back as H ‘  = H ’  I .  Thus as elements of the 
fundamental group, W ~ ‘HW = H ‘ I .  Therefore i f  a manifold M can be 
fibered, then n , (M)  must contain an element H such that for each element W 
of r , ( M ) ,  W ~ ‘HW = where E (  W )  = 2 1. This condition turns out to 
be nontrivial since we shall show that an ordinary fiber H represents the 
trivial element of the fundamental group only if the fibered space is S 3  or a 
lens space with a fibration that can be explicitly described.2* In particular, if 
the fundamental group is infinite, then H is not trivial. 

2 7 A n ~ t h e r  characterization of the cyclic covering is as follows: Cut S3 along a spanning 
surface of k to get a “sheet” and glue g of those sheets together cyclically. H. Kneser 
communicated to me that there are in general besides this cyclic covering other g-fold coverings 
of a knot which also have the property that for a small loop linking the knot once the g-fold 
multiple is the first to l i f t  to a closed curve in the covering space. The cyclic coverings play some 
r6le in knot theory. See K. Reidemeister, Abh. Math. Sem. Univ. Hamburg 5 (1927), 7 ,  
“Knotentheorie.” Berlin (1932). 

**About lens spaces. see. DB 11, $ 1 .  



414 TOPOLOGY 01. 3-DIMtNSIONAL N E E R E D  SPA(  t S  

First we prove a preliminary theorem. 

THEOREM 18. An open simp4 connected space cannot be fibered. 

Proof. Suppose F is an open simply connected fibered space with orbit 
surface f. Then f~ open disk. We distinguish two cases: 

(a) Suppose F is without exceptional fibers. Since rl(F) = 1, H bounds a 
singular disk E in F. The image on f is a singular disk e which can be covered 
by an orbit neighborhood o since f is open and simply connected. E lies in a 
neighborhood 52 corresponding to 9, i.e., H = O  in the solid torus Q, a 
contradiction. 

(b) F has at least one exceptional fiber C of order a. Drilling out C we 
obtain a space F with orbit surface f, a punctured open disk. HI( F )  is free of 
rank 1, generated by a meridian M of the drilled-out solid torus which maps a 
times onto the boundary curve 1 of f, a 2 2. The map F+f induces a 
h o m ~ m o r p h i s m ~ ~  of H , ( F ) +  H , ( j )  (onto). Since H , ( j )  is infinite cyclic, M 
has to map onto a generator ? 1 of H l ( f i ,  but M + al, a > 1, a contradiction. 

Theorem 18 implies that R 3  can not be fibered. If we project as in 53 a 
fibering of S 3  stereographically in Euclidean space, the latter will be filled 
with curves which resemble closely a fibration. Only one curve, the z-axis is 
not closed. 

Using Theorem 18 we can prove 

THEOREM 19. If in a fibered space F a fiber H or a finite multiple of H is 
homotopic to 0, then F is closed and r , ( F )  is finite. 

Proof. The universal covering of F is a fibered space [by 69, (6)] which is 
closed by Theorem 18 (therefore yz S 3 )  and therefore the covering p +  F is 
finite sheeted. 

THEOREM 20. If F is a (closed or open) fibered space in which an ordinary 
fiber is homotopic to 0, then F is a Lens space. Any Lens space admits such a 
fibering. 

Proof: By Theorem 19, r , ( F )  is finite. We apply Theorem 9. I f f -  S 2  and 
F has three exceptional fibers, then 

QOQIQ2Q3 = 1, Q,HQ,-' = H ( j  = 0, l m ) } .  

a I , a 2 , a 3  is one of the Platonian triples. Eliminating Q, and adding the 
relation H 2  = I ,  we obtain a quotient group with defining relations 

Q,HQi-I  = H ( i =  1,2,3) .  ( 2 )  Qyp, = Q 1 2 3  Q Q H a 4  = H 2  = 1, 

29See Footnote 19. 
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Here 6 , ,  6,, 6,, 6, = 0 or = 1 depending on whether P I ,  p2, p3, b are even or 
odd, respectively. Taking new generators, we can always assume that 
6 ,  = 6, = 6, = 1, 6, = 0. For in the Platonian triples a I , a 2 , a 3  one exponent, 
say a, = 2. Then p2 = 1 (0 < p, < a,); hence 6, = 1. But if a ,  is odd, PI may 
be even and 6, = 0. In this case take as new generator Q ;  defined by 
Q, = QiH. The relation Qplk'~ = 1 becomes Q;a1H81+ul = 1 and a, + 6, = a, 
is odd, hence H ' I + ~ I  = k. Thus assume 6, = 6, = 6, = 1. Now if 6, = 1, we 
define Q; by Q, = Q i h .  Then = 0 and since a, = 2 the other relations are 
not changed. Therefore 

Q'Q'Q'  1 2 3  = 1, H 2  = 1. (3) Q ; ~ I  = Q;.z = Q;"3 = H ,  

The groups defined by these relations are (for the Platonian triples) the binary 
platonian groups. In Marh. Ann.  104, 26, it is shown that fi has order 2. 
Therefore H does not have order 1 in n,( F )  and H + 0 in F. 

Now suppose f~ P 2 ,  hence r = 1 or 0. For r = 1, .rr,(F) has relations 

A H A  - ' H  = 1, QoQ, = A , ,  Q,HQ,-' = H ( j  = 0,l)  

Q o H b  = 1 = QPIHPl. 

Eliminating Qo and adding the relation H 2  = I ,  we obtain a quotient group 
with relations 

(4) 

k2Q; I H 6 1  c Q P I H ~  = 1, H Z =  I ,  

j i j - 1  = fi, Q,HQ;I = H .  

Eliminating Q, we obtain the Abelian group 

H 2 =  1, 2 2 a l H s 3  = 1. 

6, ,a,, 6, are 0 or 1. In this Abelian group fi does not have order 1, regardless 
whether 6, = 0 or = 1; hence H $ 0  in F. If r = 0, we have a ,  = 1 and obtain 
the same result. 

The remaining case is that f = S 2  and F has at  most two exceptional fibers. 
We decompose f into two disks each having at most one exceptional point. 
This corresponds to a decomposition of F into two solid tori V ,  , V , .  Hence F 
is a lens space or S 2  x S I .  In S 2  x S 1  the fiber is not = O  (Theorem 19). For 
each lens space there are infinitely many distinct fiberings in which each 
ordinary H 2: 0. For a lens space is determined by a simple closed curve on 
a V ,  = n, which is identified with a meridian M ,  of V, .  Thus if M I ,  B ,  are 
meridian and longitude on n, , the lens space is determined by the homology 

M * - f B ,  + q M ,  (on = I ) ?  ( 5 )  

hence by p , q .  Here p # 0; otherwise M 2 - * M I  and F x  S 2  X S ' .  Fiber V ,  
such that 

H - p B ,  + xM, (6)  
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where x # q,  (x, p )  = 1. By Lemma 6 the fibering of the resulting lens space 
is uniquely determined by the fibering of V,. Now H = O  since 
H - M ,  - q M ,  + x M , ;  but M I  and M ,  are = O  in the lens space. This 
completes the proof of Theorem 20. 

By Theorems 1 1  and 18, S 3  is the only simply connected 3-manifold that 
admits a fibration. If, however, the fundamental group is not trivial, we can 
now state a fibration condition: 

THEOREM 2 1. If a (open or closed) nonsimply connected manifold M can be 
fibered, then n , ( M )  has an element H # 1 such that W - ' H  W = He( w), 
E (  W )  = ? 1 [for each W E 7rl(M)]. 

For either a fiber H II 1 in n , ( M ) ,  then M is a lens space and r , ( M )  is 
cyclic, or H # I in 7r,(M) and the result follows from the first paragraph of 
this section. 

Using this theorem we can exhibit infinitely many (open or closed) 
manifolds that cannot be fibered, namely, the connected sum of two 
manifolds. The connected sum of two manifolds R, and R, is obtained by 
removing from each a 3-ball and gluing together the two resulting boundary 
2-spheres, which can be done in two different ways. If A and B are the 
fundamental groups of R, and R,, then the fundamental group of the 
connected sum is the free product A * B of A and B.30 The free product A * B 
is defined as follows3': An element is an arbitrary product of finitely many 
elements of A and B which are called terms. Each such element which is not 
the identity element can be reduced to a normal form, in which terms of A 
and B different from the identity alternate. Two elememts of the free product 
are equal if and only if their normal forms agree term by term. For example, 

AilBjIAi2Bj2 * * * A i  B,, = Af I  B.'Al! J I  2 B.' J i  . * * A,:BJ: 
if and only if 

. . .  , B .  = B.' 
Jr Jr' Ail = A,!], BjI = B;], 

Two elements are multiplied by composing the terms of the two products. 

LEMMA 8. If A and B are nontrivial groups, then the free product A * B has 
an element H as in Theorem 21 if and only if both A and B have order 2.  

Proof: It follows from the normal form of the elements of A * B that 
H @ A and H E B ,  since, e.g., composing an element of A with an element 
# 1 of B cannot give an element of A .  But since H 4 A ,  H does not commute 
with any nontrivial element of A ,  since aHa-' does not have the same normal 
form as H .  Therefore, for a # 1 E A ,  aHa-' = H - ' .  For a'# 1 E A ,  

We now use 

proof of this claim is on p. 36 of the paper cited in Footnote 18. 
3'See C. Schreider, Die Untergruppen der freien Gruppen. Abh. Math. Sem. Univ. Hamburg 5 

(1927), 161. 
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FIG. 15 

a'Ha'-' = H - I ,  hence a'-'aHa-'a' = H ,  hence a-'a' = 1, Therefore each 
element a' # 1 of A is = a -  I ;  in particular, a -  I = a, i.e., A = Z,(a). The same 
holds for B .  

Theorem 21 now implies 

THEOREM 22. The connected sum of two nonsimply connected 3-manifolds can 
be fibered only if both manifolds have a fundamental group of order 2. 

In the exceptional case the connected sum can be fibered, for example the 
sum of two projective spaces. P 3  # P 3  is obtained by identifying diametrical 
points on the boundary spheres K ,  and K2 of Sz x I (see Fig. 15) since the 
dotted 2-sphere separates this manifold into two punctured projective spaces. 
The fibers are the radii of S z  X I; any two diametrical radii form one fiber. 
The invariants of the fibering are (On; 1 I 0); b = 0 since P 3  # P 3  admits a 
fiber preserving orientation reversing homeomorphism (reflection on the 
dotted S2) .  Therefore by Theorem 6,  (On; 1 I b) = (On; 1 1 - b), hence 

The simplest example of a space that cannot be fibered is ( S 2  x S ' )  

(1) F cannot be fibered. 
(2) F can be fibered in only one way (Poincare spaces). 
(3) F has infinitely many fiberings (S') .  In this example all fibrations 

have the same orbit surface, namely S2.  

We conclude with an example of a space having two fiberings with 
different orbit surfaces. I t  is the quaternion space, with fundamental group 
the quaternion group. It is obtained from a cube by identifying any two 
opposite faces under a rotation of a/2. Since the quaternion group, which is 
generated by 2 1 ,  * i, ' j ,  * k ,  has an element, namely, - 1, that commutes 
with all others, and also another element, e.g., i, that commutes with 2 1, and 

b = - b .  

#(Sz  x S ' ) .  We have encountered three possible cases: 
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FIG. 16 FIG. 17 

2 i and whose conjugate with + j ,  ? k is - i ,  one could conjecture that the 
space can be fibered in two different ways. This is indeed the case. We 
deform the cube to a cylinder where bottom and top disks are identified 
under a (say right-handed) rotation of m / 2 ,  and the lateral surface of the 
cylinder is divided by four vertical lines into four faces, where each two 
opposite faces are identified under a right-handed rotation of m/2 (see Fig. 
16). Under the identification the lateral faces are deformed so that a vertical 
line becomes a quarter circle of the bottom (resp. top) disk. 

If we deform the bottom disk of the cylinder under a continuous left 
rotation of total angle m/2  into the top disk, then each point of the bottom 
disk describes a screw line, in particular the center point of the bottom disk. 
These screw lines form the first fibering of the quaternion space. There are 
three 2-fold exceptional fibers: the axis and the diagonals of the pairwise 
corresponding faces. 

The second fibering is obtained from the first by reflection on a plane 
through the axis, i.e., consists of right hand screw lines (see Fig. 17). There are 
no exceptional fibers. 

The two orbit surfaces are distinct, since in the first fibering the fibers can 
be simultaneously oriented, in the second this is not possible. By Theorem 9 
the orbit surface of the first fibering is S2,  that of the second is P 2 .  In the first 
case we can take as orbit surface a semidisk of the bottom disk, where the 
radii and quarter circles on the boundary have to be identified. In the second 
case it is the whole bottom disk with diametrical points on the boundary 
identified. 

Appendix. Branched Coverings 
1. Definition of Branched Covering 

height), and p (radius) be polar coordinates, 
For a Euclidean 3-ball E of radius 1 let q (geographical length), 6 (angular 

0 < ~ p < 2 ~ ,  - ~ / 2 < 6 <  +m/2. 0 < p <  1. 
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Denote polar coordinates for a Euclidean ball 
branched covering of E if the map of i to E is given by 

by tildes. i is called a p-fold 

p = i .  a = $ ,  ' p = p @  (mod27r) ( p >  1). 

In both E and i, the diameter from south pole to north pole is called the 
branch curve. I f  K and l? are homeomorphic images of E and k, then l? is 
mapped to K via 2 and E.  Then l? is also called a p-fold branched covering 
of K ,  and the curves in K ,  l? which correspond to the branch curves of E ,  k, 
respectively, under the homeomorphisms are called the branch curves of K ,  
l?, respectively. If k maps homeomorphically to K ,  we say that l? is an 
unbranched covering of K .  

Let k , ,  . . . , k, be a finite number of simple closed curves, called knots, in 
a 3-manifold M with the following properties: For each point P of the knot k, 
there is a neighborhood U ( P )  in M ,  disjoint to k, for j # i ,  which can be 
mapped homeomorphically to the interior of a Euclidean 3-ball so that the 
image of k, n U ( P )  is a diameter. U ( P )  is called a normal neighborhood of P 
and kj  n U ( P )  the diameter of U(P). If P does not lie on a knot, we call 
normal any neighborhood which is homeomorphic to the interior of a 3-ball 
and which is disjoint from all the knots. An admissible path in M is the image 
under a continuous map of an oriented line segment such that i t  is disjoint 
from the knots except possibly for _the endpoint. 

Let fi be a 3-manifold and % : M +  M be a continuous map. We say that 
the point P" of fi lies over the point P of M and that P is the projection of P' 
i f  P[(F)= P. An admissible path in M is a path whose image under % is 
admissible in M .  Now fi is called a branched covering of M with branch 
curves k , ,  . . . , k, if the following holds (see also $9) :  

1. 
11. 

Over each point P of M lies at least one point P' of fi. 
If FI,F2, . . . are all the points which lie over P, there is a normal 

neighborhood U ( P )  in M and there are normal neighborhoods U ( P , )  
U(P, ) ,  . . . in fi which together consist of all points lying over points of 
U ( P )  and which have the following properties: (a) If P is a point on a knot 
k,, then U(F, )  is a branched or unbranched covering of U ( P )  withhj n U ( P )  
as branch curve; (b) If P does not lie on a knot, then 3 I U(Fi): U ( P i ) +  U ( P )  
is a homeomorphism. 

Let N be the open submanifold of M obtained from M by removing all 
points on the knots; let I? be the submanifold % - ' ( N )  of A?. Then we have 
the following theorems, which we state without proof: 

(1) I? is an unbranched covering of N ( $ 9 ) .  
(2) If P = P ( t ) ,  0 < t < I ,  is an admissible path in M from a point P(0 )  to 

a point P( I), and i f  p(0) is a point over P(O), then there exists a unique lift P( t )  
in fi which starts at p(0) and such that F(t )  lies over P ( t ) .  

(3) If G is a closed curve of I? which lies over a contractible curve in N ,  then 
G is contractible in I?. 
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(4) If exactly n points lie over some point of N ,  then exact4 n points lie over 
each point of N (n-fold covering). 

2. Tbe Subgroup @ of the Fundamental Group 

Let 3,g be the fundamental group of N, i?, respectively. Choosing the base 
point 6 for 6 over the base point 0 for 8, a homotopy class of (based) loops 
of i? is mapped to such a class of N. This induces an isomorphism of & onto 
a subgroup 6 of 8. We call 8 the subgroup of 5 corresponding to the given 
covering. Note however that 8 depends on the choice of the base point 0 
over 0; we choose once and for all a fixed 6 over 0. (If we would choose 
another base point over 0, we would get a subgroup conjugate to Q in 3.) 
based loop in N belongs to 8 if and only if its lift from 0 is closed in N. 
Decomposing 5 into its cosets of 8, 

S = @ + @ F 2 + @ F 3 +  . . . ,  
we get a one-to-one correspondence between these cosets and the points over 
0 as follows: Choose a path w from the coset QF, and lift it from 6 to 3. The 
endpoint of 3 corresponds to the coset QF,,. This correspondence is 
apparently independent of the choice of the path w from @ F , .  In particular, if 
the covering of N by 5 is finite sheeted, then the number of sheets equals the 
index of 8 in 8. 

3. Unique Determination of 

For the following it is convenient to consider only a particular system of 
neighborhoods of the covering space. As neighborhoods of a point P of the 
covering space we consider only those 3-balls which lie concentrically in a 
normal 3-ball and which cover (branched or unbranched) a normal 
neighborhood of the image point P. This system of neighborhoods (for all 
points P of fi) is equivalent to the system of all open seis of fi. 

If k, and M2 are two branched covers of M which induce the same subgroup 
@ of 3, then they are homeomorphic so that corresponding points have the same 
image in M .  In order to define the homeomorphism f:&,+ 
M,, join a point P", E fil to 6, by an admissible path C, and lift the image 
path a of GI to a path 6, in f i 2  from Let f(i,) be the endpoint of this lift. 
f(pJ) is uniquely determined by PI and does not depend on the path 6, .  For 
if PI does not lie over a point on a branch curve, and if d, is another path 
joining PI to 6, ,  then the path i,&-' is a closed curve in 6, and therefore its 
image in M is contained in the subgroup 8 of 8;  since f i 2  corresponds to the 
same subgroup 6 it follows that the lift Z,b;-' is a closed curve in fi2 and 
therefore the endpoint of b; is the same as that of i,. If i, lies over a point on 
a branch curve, we deform the path i ,d;' inside an arbitrarily small ball 
neighborhood cI of PI into an admissible path as follows: Choose a point 2, 
on a", close to PI such that the subpath 2,P", of a", lies in c,; similarly, choose 
a point i1 on b, shortly before i, and join 2, and g, by a path 5 inside cl 

by @ 
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which misses the branch curve. The corresponding detachment is done in the 
ground space M. The ball neighborhood fi, is mapped to a normal 
neighborhood, the points i,,B”, into two points a , b  close to P ,  and the 
detached ground path belongs to $j since i t  is the image of an admissible 
closed curve in A?,. Since we can choose fi, arbitrarily small, we can detach 
the path a b - ‘  into a curve of 8 in an arbitrarily small normal neighborhood 
of P. Now supposing that li, and b; lead from 6, to different endpoints j2 
and 02, we could find disjoint ball neighborhoods c2 and ?, of P“, and &. 
The corresponding normal image neighborhoods U and V of P in M have a 
neighborhood W in common, inside which we detach the path ab-‘.  Lifting 
the path a (from 0 to A )  to A?,, we obtain a path from 6* to a point i2. 
Running from A along o to B ,  the lift in fi2 leads to a point B”, which lies in 
fi,. On the other hand, running from 0 to B along b, the lift in A?, is a path 
from 6, to a point in p2. But since the detached path ab- ‘  belongs to $5, the 
latter point has to be g,. Therefore fi, and F2 cannot be disjoint and 

This shows that the map f:i, + A?, is well defined and one-to-one. To 
show that f is a homeomorphism, we have to find for any given neighborhood 
cl of P“, a neighborhood 6, of p2 =f(F,) such that f(fi2) c fi,. If U ,  is the 
normal neighborhood of P in M which is (branched or unbranched) covered 
by fi, and if a is a path from 0 to P which lifts in 6, to a path from GI to 
P I ,  then each path from 0 to a point P’ of U , ,  which agrees with a up to a 
point A shortly before P and from there remains inside U, lifts in 6, from 6l 
to a point in fi, . Now let 6, be a ball neighborhood which is mapped into a 
normal subneighborhood U ,  of U,.. In A?,, a lifts to a path from 6, to F,, 
and we can get to any point Fi of fi, along a path which agrees with i, up to 
a point shortly before P“, and which from there on remains in fi,. In the 
ground space M ,  this path maps to the type of paths from 0 to a point P ’ ,  
discussed above. This lifts in A?, to a path from 6 ,  to a point in fi,. Hence 
f: A?, + fi, is continuous and, since the same arguments apply to the inverse 
map, f is a homeomorphism. 

This shows that the covering A?+ M is uniquely determined by the 
subgroup 9. In the same way one can show that to a given subgroup $j of 
finite index there exists a corresponding covering 6. 

Q 2 =  F, .  

4. Regular Coverings’ 

LEMMA ABOUT BRANCHED COVERINGS OF s3 WITH ABELIAN GROUP OF 

COVERING TRANSLATIONS. Let 6 + M = S 3  be a regular finite sheeted 
covering branched over the knots k ,  , . . . , k,. with group of covering translations 

* Translators note: In this section regular coverings and covering translations are discussed and 
i t  is shown that for a regular covering corresponding to the normal subgroup 6 of ;4 the group of 
covering transformations is isomorphic to ;4/$. A more detailed exposition can be found in 
Chapter VIII. 557 of “Seifert and Threlfall: A Textbook of Topology.” 
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Abelian and of order g = a ,  . ;a,. Assume: For a small loop C, that links k; 
exactly once, the lifts of CF in M are closed curves.32 Then it follows that a path 
6 of 6 that covers a path w which misses the knots is closed if and only if for 
each i the linking number x of w with k; is divisible by a;. Since this determines 
the subgroup @ of 8 corresponding to h? there is by $3 only one covering h? with 
the above property. 

Prooj Every loop of 8 lies in a certain coset of @ in 8. A null homologous 
loop w of 3 belongs always to 6, since w is a product of commutators which 
all lie in 6 since FF;/Q is Abelian. Hence two homologous loops of 5 lie in the 
same coset. But the homology group of N is the free Abelian group generated 
by C,, . . . , C,. Thus each loop w of N is homologous to a linear 
combination C;= ,x iC, ,  where x i  denotes the uniquely determined linking 
number of w with k, (with a suitable orientation of k;). In particular w - 0 in 
N if and only if all its linking numbers vanish. Therefore loops of 5 with the 
same linking numbers xi lie in the same coset 6 of 5. The loop C, need not 
be based at  0 and may thus not belong to 8, but joining 0 to a point of C, by 
an admissible path u, we get a path c,  = u,C,u;I that belongs to 8, is 
homologous to Cj in N ,  and whose q t h  power belongs to @. But C? has 
linking number a, with k; and linking number 0 with the other knots. 
Therefore those loops of CS: whose linking number x is divisible by a, (for 
each i )  belong to 8. Two loops w and w' with all x linking numbers 
congruent, i.e., 

xi =xi (mod a;) ( i  = 1, . . . , x), 

belong to the same coset of 6 in 5. Since there are only a ,  . . . a, incongruent 
systems of linking numbers, and just as many cosets, all loops of 5 whose 
linking numbers with the knots k , ,  . . . , k, are piece by piece congruent make 
up a coset of Q in 3. In particular @ itself consists of all loops whose linking 
numbers x , ,  . . . , x, are divisible by a ,  (resp. a*, . . . , a,). The theorem 
therefore is true for all loops based at 0. But then the theorem holds also for 
the other loops, since each loop w in N can be deformed without crossing the 
knots into a loop based at 0, and this neither changes its linking number with 
ki nor its property of being covered by a loop of the covering space. 

321t suffices to require that at least one lift of Ci* is a closed curve; since the covering is 
regular, it  then follows that all other lifts are closed curves. 


